
1 INTRODUCTION  

In the last decade, several structural applications of 
Ultra High Performance Fiber Reinforced Compos-
ite (UHPFRC) have been emerging in bridge engi-
neering, rehabilitation and strengthening techniques 
of damaged structures, nuclear waste container, etc. 
The driving force of these new materials is the opti-
mized microstructure that has been tailored to 
achieve high durability, ultra high compressive 
strength, and tensile pseudo-hardening behavior 
(Chanvillard & Rigaud, 2003). However, design 
codes require a reliable assessment of the post-
cracking ductility and fracture energy, especially in 
relation to the microstructure variability. For exam-
ple, the first design recommendations for UHPFRC 
(AFGC, 2002) reduces the characteristic tensile law 
of bended standard specimens by a factor (K = 1.25-
1.75) to account for the effective fiber distribution 
within the structure. Moreover, structural applica-
tions have been limited to thin elements where the 
fiber distribution is favored by wall effects (e.g., the 
fiber efficiency, defined as the average fiber projec-
tion in the direction of the external load, is 2/π and 
1/2 for 2D and 3D random distribution, respec-
tively). 

The importance of the fiber distribution on the 
mechanical properties has been verified experimen-
tally (Bernier & Behloul, 1998; Bayard & Plé, 2003; 
Chanvillard & Rigaud, 2003). For example, uniaxial 
tests on UHPFRC blocks reinforced with five differ-

ent fiber orientations showed the first crack occurs 
almost always perpendicular to the loading axis re-
gardless the fiber distribution (Bayard & Plé, 2003). 
Remarkably, the fracture energy reduces by a factor 
of about four when the fiber alignment changes from 
0º to 90º. As for the flexural behavior, the post-
cracking response of beams strongly depends on the 
fiber orientation up to an extent that, when the fibers 
are unfavorably aligned (e.g., parallel to the major 
crack direction), the material does not exhibit strain 
hardening behavior (Bernier & Behloul, 1998). 

At observation scale below macroscopic testing, 
the cracks initiate on a very small length scale 
within the cementitious matrix, and they evolve into 
fiber-matrix interface failure. Remarkably, a weak 
fiber-matrix interface may favor high toughness by 
promoting fiber-matrix interface failure (Marshall & 
Cox, 1985; Leung, 1996; Lin & Li, 1997). More-
over, other micromechanics phenomena may be at 
stake, such as matrix crumbling at the fiber exit 
point (Zhang & Li, 2002), local fiber bending and 
yielding (Leung & Chi, 1995), and fiber rupture.  

Chuang et al. (2001) showed that, in UHPFRC 
materials, the fiber aspect ratio (i.e., the length-to-
diameter ratio of the fiber) is optimally designed to 
induce simultaneous fiber debonding and matrix 
cracking. Contrarily, in normal FRC, the fiber length 
is often insufficient to satisfactory prevent early in-
terface failure and the average fiber distance is too 
large to lead to multiple cracking (i.e., the fiber is 
over designed with respect to the matrix strength). 
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Energy based approaches have been a powerful 
analytical tool to study fiber reinforced composites. 
Budiansky et al. (1986) applied a variational energy 
approach to study fiber-matrix interface failure 
showing that, in case of initially bonded fibers, a 
fairly small interface debonding toughness suffices 
to inhibit crack localization. Energy approaches 
have been also employed to identify the necessary 
conditions for the strain hardening: (i) the comple-
mentary energy has to exceed the crack tip resistant 
energy at the steady state crack propagation (Mar-
shall & Cox, 1985); (ii) the first cracking strength 
should be lower than the maximum composite fiber 
strength (Leung, 1996). By comparing the energy to 
form a new crack with the energy to open the first 
formed crack, Tjiptobroto and Hansen (1993) pro-
posed an analytical expression for the strain at the 
end of multiple cracking.  

Recently, continuum micromechanics theories 
have allowed disclosing the link between the micro-
structure and the overall properties. Karihaloo et al. 
(1996) accounted for the interaction of microcrack 
distribution by solving the elastic problem of a dou-
bly periodic array of elastically bridged cracks. 
However, experimental fracture tests indicate the 
crack distribution is random in nature. Dormieux et 
al. (2006) developed a fracture-micromechanics ap-
proach to model interacting random microcracks in 
presence of internal fluid pressure. Notably, they 
found that crack interaction may be a reason of 
strain softening behavior and that the energetic sta-
bility depends on the initial critical crack size and 
fracture energy.  

In this work, we pursue an energy based approach 
that derives the constitutive macro stress-strain rela-
tionship of UHPFRC materials from their critical 
microstructure features (i.e., the fiber distribution 
and the distribution of interacting cracks). However, 
at this first approach stage, we will focus only on the 
strain hardening phase, while disregarding the sub-
sequent crack localization. 

2 A FRACTURE-MICROMECHANICS 
APPROACH 

Every structural system can be characterized by a 
length scale L defining the structural dimension. At 
a level below, we consider a material point of ele-
mentary volume, which includes sufficient matter to 
be representative and it is characterized by a macro-
scopic length scale D. Below this scale, the matter is 
heterogeneous and this material system is character-
ized by the scale d of its components at the micro-
scopic level (for instance, the grain diameter or the 
aggregate size). A continuum description of a het-
erogeneous material requires that characteristic 
length (D) has to be much larger than dimension (d) 
of the components and much smaller than the struc-

tural dimensions (L). Figure 1 shows the qualitative 
multi-scale approach adopted in this work for de-
scribing a UHPFRC composite materials made of 
three phases, namely the discontinuous steel fibers, 
penny-shaped cracks, and the cement-based matrix. 

In the following, we assume a micros-scale sys-
tem made of an elastic-brittle matrix with narrow (or 
penny-shaped) cracks, while the fiber is indirectly 
only considered in term of the energetic contribution 
to delay the crack propagation. However, the fiber 
energy is linked to the fiber-matrix interface micro-
mechanics and the fiber orientation distribution. 
This approximation disregards the effect of fiber on 
the elastic properties of the bulk material, which is 
expected to be limited for the considered UHPFRC 
fiber content (Chanvillard & Rigaud, 2003).  

 
Figure 1. Multi-scale approach for UHPFRC materials. 

2.1 Thermodynamics of an elastic cracked medium  
The simplest crack system of a single planar crack 
embedded in an unbounded linear elastic material is 
analyzed within the theoretical framework of classi-
cal thermodynamics, Dormieux et al. (2006). The 
incremental externally supplied work extWδ  pro-
vided to the solid Ω  is stored in form of elastic en-
ergy density 0dψΩ  in the solid (where 0Ω denotes 
the initial volume of the considered structure and ψ  
the elastic free energy density of the solid part). Our 
starting point is the Clausius-Duhem inequality 
which states that the externally supplied work to the 
solid ( extWδ ), which is not stored as free energy 

0dψΩ  (or Helmholtz energy) in the system, is dissi-
pated into heat 

0 0extdD W dδ ψ= − Ω ≥  (1)  

The externally supplied work extWδ  is related to 
the surface forces T acting on the incremental dis-
placement dξ  over the external surface ∂Ω  (i.e., 
body force are neglected) as follows 

extW T d dSδ ξ
∂Ω

= ∫ i  (2) 

We now express the free energy elastic of the solid 
matrix ( , )EΨ = Ψ A  as a macro-potential function of 
two variables, such as the elastic strain E  (observ-
able variable) and the crack area A  (state variable). 
In the case of reversible evolutions 0dD = , A  is 
constant. By contrast, when the crack propagates, 



the free energy changes not only with the incre-
mental strain d E , but as well due to the increase of 
fracture surface A . Introducing (2) into (1), we ob-
tain 

0 0 0dD T d dS dE d
E
ψ ψξ

∂Ω

∂ ∂⎛ ⎞= − Ω − Ω ≥⎜ ⎟∂ ∂⎝ ⎠∫ i A
A

 (3) 

Fracture propagation dissipates energy through 
creation of additional crack surface dA  and the dissi-
pation rate is evaluated from Eq. (3)  

0
0

( , ) ( , ) 0A
dE

EdD d G E d
=

∂Ψ⎛ ⎞= −Ω = ≥⎜ ⎟∂⎝ ⎠
A A A A

A
 (4) 

Remarkably, Eq.(4) indicates that the thermody-
namic driving force of the crack propagation is the 
energy release ( , )AG E A . For example, in the case of 
a Griffith’s crack a fast run crack propagates, in an 
unstable manner, when the energy release rate 

( )AG A  reaches a critical threshold (R0), which is 
called fracture energy and is often considered a ma-
terial property. Owing the linearity of the solid be-
havior, the free energy is expected to be a quadratic 
function of E and Σ: 

hom1( , ) : ( ) :
2

E E C EΨ =A A  (5) 

Introducing the above equation in (3) allows us to 
identify the state equations of the cracked medium: 

hom ( ) :C E
E
ψ∂

Σ = =
∂

A  (6) 

Now, Eq. (4) takes the form 
hom( , ) 1 ( ): : 0

2A
E CG E Eψ∂ ∂

= = − ≥
∂ ∂
A A

A A
 (7) 

  The energy release GA can be estimated from the 
homogenized secant stiffness in function of the 
geometric parameter A . 

The approach of Dormiuex at al. (2006) can be 
extended to account the energy contribution of the 
fiber bridged zone behind the crack tip, we can em-
ploy the J-Rice integral, which is an alternative and 
convenient mathematically form of the energy con-
servation principle. Thus, the crack energy release 
can be computed as follows 

a b a b a b

a b( )a b a b

1
1

0

( ) ( )( / )
L

B

B

J n dS x dx
x

d G

λ

ξ

ξ
ψ σ ξ ξ

σ ξ ξ

∂
= + = ∂ ∂ =

∂

= − =

∫ ∫

∫

v
 (8) 

where a bξ  is the crack opening displacement and 
a b( )σ ξ  is the fiber bridging stress across the crack 

surfaces. We emphasize that the fiber energy can be 
seen as an energy release (GB) or a toughness term 
(RB) depending on the observer’s frame. In this case, 
an observer on the crack enclave will perceive the 

fiber as applied external forces. Figure 2 qualita-
tively shows the J-Rice integral contours around the 
fiber bridged crack. 
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Figure 2. J-Rice integral contours along bridged crack surfaces 
with enlarged view (right) of the stress-separation function 
pu([[ξ]]). 

The presence of two system of loads (i.e., external 
loads and fibers bridging force) involves additional 
energy cross-terms, which come from the energy re-
lease of the strain energy stored through the indirect 
work. Although the energy releases are not additive, 
they are square root additive (Bažant & Planas, 
1998), because of the Irwin relationship G=K2/E’ 
between the energy release G and the stress intensity 
factor K. Hence, the energy balance equation (4) can 
be written as 

0 2 0A B A BdD R G G G G= = + + ≥   (9) 

We can define the loading function 

0( , ) ( , )i if E G E R= Σ −A A   (10) 

which can be used to mathematically describe the 
loading/unloading conditions: 

( ) 0, ( ) 0, 0f f d d≤ = ≥A A A A  (11) 

If, due to incremental fracture propagation 
d→ +A A A , the energy release decreases from 

( , ) ( , )i iG E R EΣ =A A  to 0( , )i iG E d RΣ + <A A , the 
crack propagation will stop. This corresponds to sta-
ble fracture propagation if 

0

( , ) 0
dE

i
i

G Ef

=

∂∂ ⎛ ⎞= Σ <⎜ ⎟∂ ∂⎝ ⎠

A
A A

 (12) 

or otherwise unstable. In the following, we deter-
mine the terms of energy equation (9) from micro-
mechanics theory. 

2.2 Micromechanics background 
The premises of homogenization theory are that the 
macroscopic stress and strain quantities (Σ, E) are 
volume averages of local stress and strain (σ, ε) 
quantities: 

1 1( ) ; ( )x d E x dσ σ ε ε
Ω Ω

Σ = = Ω = = Ω
Ω Ω∫ ∫ (13) 



where the angular bracket stand simply for the 
spatial average phase average operator such as 

1b b d= Ω
Ω ∫  (14)  

Uniform internal strain is possible only if the ma-
terial is homogeneous. For uniform boundary condi-
tion, the applied strain E on the surface ∂Ω , sub-
jected to a displacement dξ , reads 

d E z zξ = ∨ ∈∂Ωi  (15) 

where z = the local coordinate system. Some simpli-
fications in the geometrical description are usually 
necessary to deal with complex microstructure inter-
actions. First, we assume that each rth phase is linear 
elastic with isotropic stiffness tensor Cr, and the fol-
lowing constitutive relation holds for each phase 

( ) : ( )r r rz C zσ ε=  (16) 

The strain fields within the rth constituent is ap-
proximated by their phase average, and it is linked to 
the macroscopic strain by a linear strain localization 
tensors Ar 

: :r r rr
ε ε ε= = Α = Α Ε  (17) 

The overall stress Σ can be expressed in terms of 
the average strain of each rth phase as follows  

hom
( )

0 0

: :
N N

r r r rr
r r

C E f f A Eσ
= =

Σ = = =∑ ∑  (18) 

which, after simple mathematical manipulations, 
leads to the composite stiffness 

hom

0

:
N

r r r
r

C f C A
=

= ∑  (19) 

Note that the summation of the strain localizer or 
stress tensor over all the phases gives the identity 
matrix (i.e., compatibility condition):  

0

N

r r
r

f A I
=

=∑  (20) 

Inserting the Eq. (20) into (19), we obtain the fol-
lowing simplified relation: 

hom
0 0

1
( ) :

N

r r r
r

C C f C C
=

= + − Α∑  (21) 

We remark that, although several homogenization 
models have these previous steps in common, they 
differ for the localizer tensor Ar that represents the 
effect of the morphology microstructure. For exam-
ple, the dilute scheme assumes a single inclusion 
embedded in an unbounded medium with elastic 
modulo C0 of the matrix, i.e., the inclusion interac-
tions are neglected. The strain localization tensor 
reads  

1 1
0 0[ ( )]Esh

r r rA I S C C C− −= + −  (22) 

where Sr is the Eshelby tensor analytically derived 
from the problem of a constant strain within an el-
lipsoidal inclusion body (Eshelby, 1957).   

To account for interactions between the inclu-
sions, we will use the Mori-Tanaka (1973) homog-
enization scheme that considers a single inclusion 
embedded in a reference material with the average 
strain of the matrix. The Mori-Tanaka estimate is 
relevant for morphology of microstructure where the 
cavity can be regarded as inclusions embedded in a 
continuum matrix, and its strain concentration tensor 
reads: 

11 1 1
0 0 0 0[ ( )] : ( )MT

r r r r rA I C C C I S C C C
−− − −= + − + −S  (23) 

We statistically describe a network of microcracks 
by the joint probability density distribu-
tion ( , , )f a ϑ ϕ  of the crack sizes and orientations 
(where ,ϑ ϕ  are two Euler angles describing the 
crack orientation). Its integral on a sphere of unit ra-
dius gives the volume of crack per unit volume N 
such as 

max

min

2

0 0

1 ( , , )sin
4

a

a a
N f a da d d

π π

ϕ ϑ
ϑ ϕ ϑ ϑ ϕ

π = = =
= ∫ ∫ ∫  (24) 

Assuming that the crack size distribution is inde-
pendent of the crack orientation, the density distribu-
tion simplifies as ( , , ) ( ) ( , )a rf a f a fϑ ϕ ϑ ϕ= and it 
follows  

max

min

2

0 0

( )

1 ( , ) sin
4

a

oa a
a f a da

N f d d
π π

ϕ ϑ
ϑ ϕ ϑ ϑ ϕ

π

=

= =

=

=

∫

∫ ∫
 (25) 

We define a crack family composed by penny-
shaped cracks with the same orientation (n) and 
crack radius (surface area 2aπ=A , crack density N). 
Moreover, for each crack family, it is convenient to 
introduce the micromechanics damage parame-
ter 3a== Ν , defined by Budiansky et al. (1976). 
Hence, the crack volume fraction (fc) of N penny-
shaped crack can be expressed in terms of the mi-
cromechanical damage density parameter as follows 

 34 4
3 3cf N a X Xπ π= = =  (26) 

where the crack aspect ratio X = c / a has been used 
in the ellipsoid volume formula. For example, in the 
case of a system of microcracks and a solid matrix, 
relation (26) into (21) yields 

hom
0 0

0

4: ( ) : ( )
3

4: ( ( ))
3

c c cC C I f C I

C I n

π

π

= − Α = − =

= − Τ M

=ΧΑ

=

 (27) 



where the tensor T has the property to have a finite 
limit when X→0 such as 

1

0
lim ( ( , ))psx

X I S X n −

−>
Τ = − M  (28) 

3 NON LINEAR FRACTURE MECHANICS 

In a quasi-static fracture process (without inertia 
forces), the energy equality ΣG = ΣR is satisfied 
whenever the crack is growing. Following the “R-
curve” approach (Bažant and Planas, 1998), we ana-
lyze a tensile test under mode-I condition by solving 
the system of the energy balance equation and the 
(macro) stress-strain relations based on the secant 
stiffness:  

( , ) ( , ) ( ) 0

( ) :
ii

f E G E R

C E

= − =

Σ =
∑= = =

=
 (29) 

For numerical implementation it is convenient to 
cast the Eq. (29) in a rate form and to derive the tan-
gent stiffness between the macro-stress (Σ) and 
macro-strain (E). When the crack grows ( 0d ≠= ), 
the condition df = 0 can be re-written as  

( , ) 0f f d fdf E d dE
dE f

∂ ∂ ∂ ∂
= + = → = −

∂ ∂ ∂ ∂
= Ε

= =
= Ε =

 (30)  

Then, the tangent material stiffness at the begin-
ning of each loading increment dΣ  (or strain incre-
ment dE ) can be formulated in terms of known 
quantities in an explicit manner such as  

( ) ( )( ) ( )d C C fC C
dE E f

Σ ∂ ∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂ ∂
= = = Ε

= =
= = =

 (31) 

Before solving Eq. (29), we need to define the 
fracture energy R0 and the fiber energy GB in terms 
of the microstructure crack density parameter = , 
which is the loading history parameter. Again disre-
garding fracture energy interaction, the total dissipa-
tion is the sum of the contributions of all the N 
cracks which are assumed to propagate of the same 
amount dA . For simplicity, we assume the crack 
grows simultaneously with constant number N in 
order that A and =  are equivalent state variables (in 
accordance with Dormieux et al., 2006): 

2/3
1/3

2/3

2;
3

d d
N N

ππ −⎛ ⎞= =⎜ ⎟
⎝ ⎠

A A=
= =   

The elementary contribution of a single crack to the 
total dissipation is given by  

0 0R d N Gf d R d= =A A = =  (32) 

where 

1/3

0
2 2
3 3

f
f

GNR G
a

π π⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =
 (33) 

Hence, after this change of variable, R0 is not any-
more an independent variable but is dependent on 
the crack size, and hence on the loading history. We 
are now left to find the fiber energy term GB of 
equation (29). We will address this point in the fol-
lowing section adopting a statistical fiber distribu-
tion. 

4 FIBER DEBONDING ENERGY  

This section reviews the analytical model for fiber-
matrix micromechanics proposed by Lin and Li 
(1997), which extends the previous work of Mar-
shall & Cox (1985). The constitutive relation be-
tween the fiber pull-out force (F) and the crack 
opening displacement ([[ξ]]) holds the key of the 
underlying role of the fiber micro mechanisms and 
several authors (Marshall & Cox, 1985; Li & Leung, 
1992; Lin & Li, 1997) have proposed the following 
form: 

a b( ) a b a b a b

a b( ) a b a b
a b a b a b a b a b

1/ 2 *

*
*

d

cr
cr

s cr

F k if

F k if

ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

ξ ξ

= ≤

−
= ≤ ≤

−

 (34) 

where the load coefficient and the crack opening 
thresholds are defined as 

a b a b

f f f

2
*

1 (1+ ) E ;
2

4(1 )
; / 2

f f
u

m m

cru f
f

f f

E V
k

E V

L
L

E

π φ η τ φ η

η τ
ξ ξ

φ

= =

+
= =

 (35) 

where Ef and Em are the elastic modulus of fiber and 
matrix, respectively; Lf = fiber length; φf = fiber di-
ameter; and τu = fiber-matrix frictional debonding. 
The model parameters employed in this work are 
summarized in Table 1.  

Experimental pull-out tests of steel micro-fibers 
showed that the effect of matrix edge pulley and the 
fiber local moment tend approximately to compen-
sate each other over the possible fiber inclinations 
(Shah and Ouyang, 1991). For simplicity, the fiber 
orientation effect on the pull-out response of a single 
fiber is here neglected.  

Table 1. Fiber-matrix interface model parameters. 
Em Ef Vf Lf φf 

[GPa] [GPa] [%] [mm] [mm]
50 210 2.7 13 0.2 

Although it is often assumed that the fibers are ei-
ther unidirectional or randomly dispersed in the ce-
mentitious matrix, the actual fiber orientation will 



never be unique and the state of anisotropy will de-
pend on the fiber geometry, fiber content and fluid 
flow properties during the casting phase. In this 
work we assume a statistical π-periodic Gaussian 
like probability density function, which is axisym-
metric in spherical coordinates: 

0
2

00 0

2

0 0

cosh( cos( ))( )
cosh( cos( )) sin( )

1where ( , ) sin 1
2

k

k

w kW
w k d d

W d d

π π

ϕ θ

π π

θ ϕ

θ θθ
θ θ θ θ ϕ

θ ϕ θ θ ϕ
π

= =

= =

−
=

−

=

∫ ∫

∫ ∫
 (36) 

where wk = 2 / k cosh (k). Although there is no a 
physical reason behind the chosen distribution func-
tion, one may assume that the axis of symmetry co-
incide with the average flow direction during the 
casting phase. The parameters k and 0θ control, re-
spectively, the degree of uniformity and the angle 
between the axial symmetric distribution and the 
crack plane normal direction. Figure 3 shows the 
distribution function varying the parameter values. 
Note that the distribution function is uniform when 
k = 0.  
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Figure 3. Fiber probability density distribution function for dif-
ferent values of the 2 parameters (k, ϑ0).  

Assuming that the probability distribution p(z) of 
the distance (z) between the fiber centroid and the 
crack plane is uncorrelated from the fiber orientation 
and uniformly distributed (i.e., p(z) = 2/Lf), the com-
posite fiber stress is evaluated by averaging the pull-
out force on the crack plane (Lin and Li, 1997), such 
as 

if a bξ  < a bξ * 

a b( ) a b( )a b

a b( )a b

0

0

/2

0 0

/2 ( /2)cos

0

4
( ) ( )

4
( ) ( )

f
B dz

f

Lff
sz

f

V
F p z p dz d

V
F p z p dz d

π ξ

ϑ

π ϑ

ϑ ξ

σ ξ ξ ϑ ϑ
πφ

ξ ϑ ϑ
πφ

= =

= =

= +∫ ∫

∫ ∫
 (37) 

if a bξ  > a bξ * 

a b( ) a b( )/2 ( /2)cos

0 0

4
( ) ( )

Lff
B sz

f

V
F p z p dz d

π ϑ

ϑ
σ ξ ξ ϑ ϑ

πφ = =
= ∫ ∫   (38) 

where the integration limits are properly defined to 
account only for the fiber intercepting the cracks ei-
ther for the frictional debonding phase or the slip-

ping phase. In this simplified approach, the fiber 
percentage intercepting the crack is the key parame-
ter. Figure 4 shows the fiber percentage intercepting 
the crack plane in function of the fiber distribution 
parameters (ϑ0 and k) as estimated from Eq.(36). It 
is noticed that a non uniform fiber distribution (i.e., 
high value of the parameter k) is favorable if ori-
ented towards the crack plane. In other words, the 
higher the value k, the faster the fiber number de-
creases with the angle ϑ0. 
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Figure 4. Percentage of fibers intercepting the crack plane 
varying the parameter (ϑ0 and k) with respect the loading axis. 

Finally, the fiber energy is evaluated by substitut-
ing, respectively, Eq. (37) and (38) in the J Rice line 
integral of Eq. (8). The dependence of the fiber 
debonding energy on the fiber distribution (defined 
by parameters ϑ0 and k) is shown in Figure 5 for a 
small crack opening displacement equal to 0.01 mm 
(i.e., ~[[ξ]]* of (37)).  

  
Figure 5. (left) Fiber debonding energy in function of the fiber 
distribution parameters (ϑ0 and k) at a crack opening of 0.01 
mm; (right) fiber orientation with respect the crack plane. 

To explicit the fiber debonding energy GB as a 
function of the crack size, we need the crack profile 
relationship, this is generally obtained by solving an 
integral function since the crack opening along the 
crack depends on the fiber bridging stress, which it-
self depends on the crack opening. For simplicity, 
we assume that the crack profile takes the same el-
liptical shape as that for a crack with uniform cohe-
sive traction (i.e., unperturbed by fiber bridging) 
such as 
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where ft = tensile strength, ν = Poisson’s ratio, 
r = radial crack coordinate, KIC = critical stress in-
tensity factor (which can be deduced by the fracture 
energy R0 by Irwin’s relationship). This assumption, 
which conveniently decouples the crack opening 
from the bridging stress σΒ, has been often used in 
literature (Lawn,1993; Leung, 1996), and it can be 
seen as a first order approximation for small crack 
opening displacement of the penny shape cracks in 
the strain hardening regime. 

5 MODEL VERIFICATION 

The model is calibrated on the experimental direct 
tensile response of notched specimens drilled out 
from an L-shaped prototype made of UHPFRC 
(Figure 6; Toutlemonde et al., 1999). This applica-
tion is suitable for validating our model since the fi-
ber orientation was found to be strongly oriented due 
to the casting process (injection) that is represented 
by a dashed arrow. More precisely, we have speci-
mens “C” drilled along the favorable fiber orienta-
tion induced by the casting process, and specimens 
“A” in the unfavorable orthogonal direction. The 
crack opening measurement is converted in strain by 
assuming a measurement length of 50 mm. 

The model parameters reported in Table 1 are 
identified from Toutlemonde et al. (1999), while 
further best fitting parameters are τu = 4 MPa and 
ft = 6 MPa. Figures 7 and 8 show the comparison be-
tween the experimental results and the model predic-
tion for a uniaxial tensile test in the two orthogonal 
direction assuming a strongly localized fiber distri-
bution (i.e., k = 30). In addition, the model predicts 
the evolution of the material anisotropy and the mi-
cromechanics crack parameter, as shown in Figure 9 
for the specimens “C”. In the same figure, we report 
the loading function and the stability condition to 
show that the cracking process is efficiently stabi-
lized by the fiber debonding.  

Finally, Figure 10 shows the model sensitivity to 
the fiber orientation in terms of the material consti-
tutive relationship prediction.  
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Figure 6. Specimens drilled out from the nuclear waste con-
tainer with indication of the main direction of casting flow 
(dashed arrow). 
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Figure 7. Numerical prediction of the experimental tensile test 
results for the favorable oriented specimens. “C”. 
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Figure 8. Numerical prediction of the experimental tensile test 
results for the unfavorable oriented specimens “A”. 
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Figure 9. Model prediction of the anisotropy ratio (α), the 
crack damage parameter, the loading function (f1) of Eq. (10) 
and the stability condition of Eq. (12) for the specimens “B”. 
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Figure 10. Sensitivity of the constitutive relationship to the fi-
ber orientation. 



6 CONCLUDING REMARKS  

This work develops a combined fracture-
micromechanics model to upscale the UHPFRC ma-
terial constitutive relation (before crack localization) 
from the critical microstructure features, such as fi-
ber distribution, fiber-matrix debonding micro 
mechanism, and initial crack configuration. The ap-
proach turns to be a strain formulation of an anisot-
ropic damage model where the homogenized com-
pliance is traced down to the crack density and 
morphology pattern. The Mori-Tanaka scheme has 
been used to account for the crack interactions. Two 
interesting conclusions can be reached: 
1. Relative small debonding toughness in UHPFRC 
(~6 time the fracture energy) are enough to delay the 
crack localization and allow a ductile strain harden-
ing behavior; 
2. The fiber orientation mainly governs the post-
cracking ductility up to an extent that, in case of un-
favorable distribution, the strain hardening may not 
occur.  

Combined with experimental in situ evaluation of 
the fiber distribution or numerical prediction by flow 
transport analysis, the model may be used to predict 
or assess the reliability of UHPFRC post-cracking 
behavior. Next, the model can be used to identify 
critical fiber distribution for stability and, after con-
sidering mixed fracture mode, to optimize UHPFRC 
structural applications.  
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