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ABSTRACT: Consideration of moisture transport in addition to external loading is a prerequistite for reliable
durability analyses of structures made of concrete. The presentation is concerned with the modeling of cohe-
sive cracks in partially saturated cementitious materials using the Extended Finite Element Method (X-FEM),
focussing on the interactions between cracks and moisture transport. To this end, a coupled hygro-mechanical
model for partially saturated concrete is extended for the consideration of cracks in the context of a 3D X-FEM
model. Moisture flow within crack planes is accounted for by assuming Poiseuille flow within the crack planes,
taking the tortuousity and the crack width dependence of the liquid permeability within cracks into account. For
the three-dimensional implementation of the X-FEM formulation a higher-order spatial discretization concept
based on Legendre polynomials is used. The applicability of the hygro-mechanical X-FEM-model is investi-
gated by means of a representative 3D benchmark example considering a hygro-mechanical loading scenario.

1 INTRODUCTION
Numerical prognoses of durability of structures made
of cementitious materials such as concrete or geome-
chanical analyses require the consideration of mois-
ture transport together with and the hygro-mechanical
couplings governing the hygro-mechanial response of
porous materials (see, e.g. (Coussy 2004; Lewis and
Schrefler 1998)). In particular, transport of moisture
within opening and evolving discontinuities such as
cracks in concrete and shear bands in soils has to be
taken into account in these analyses. For reliable dura-
bility analyses of cementitious materials such as con-
crete (Coussy and Ulm 2001), the highly accelerated
moisture transport in cracks is a major source for cor-
rosive processes.

The paper is concerned with a concept for cou-
pled hygro-mechanical analyses of partial saturated
cementititous materials in the in the framework of
the BIOT-COUSSY theory considering discontinuities
of the displacement field representing the opening of
cracks taking the influence of discrete cracks on the
liquid permeability of concrete into account (Barton,
Bandis, and Bakhtar 1985; Meschke and Grasberger
2003). To this end, the Extended Finite Element
Method (X-FEM) (Moës, Dolbow, and Belytschko
1999; Abellan, de Borst, and Bergheau 2005) is em-
ployed for the discrete representation of cracks in con-
crete structures.

The numerical representation of continuous crack

paths, as it is required in X-FEM-analyses, in three
dimensions is a difficult and challenging task. How-
ever, a few fully three-dimensional applications of the
X-FEM to crack propagation analyses have been pub-
lished in the recent years (Sukumar, Moës, Moran,
and Belytschko 2000; Sukumar, Chopp, and Moran
2003; Gasser and Holzapfel 2005). In several cases
the crack topology and the propagation of cracks has
been described implicitly (Moës, Gravouil, and Be-
lytschko 2002; Gravouil, Moës, and Belytschko 2002)
by the level-set-method (Osher and Fedkiw 2003).

For the spatial discretization in structural mechan-
ics, the p-version of the finite element method has
proven to be an efficient and powerful tool (Düster
2002; Szabó, Düster, and Rank 2004), in particu-
lar due to its ability to avoid locking effects that
occur when a non-adequate element kinematics is
used. The field of application of the p-finite element
method has been extended during the last decade.
Besides linear analyses, also geometrically nonlin-
ear (Ander and Samuelsson 2001) as well as ma-
terially nonlinear (Düster and Rank 2002) problems
were solved adequately. Also for multi-physics prob-
lems like thermo-mechanically (Düster, Niggl, and
Rank 2002) or chemo-mechanically coupled prob-
lems (Kuhl, Bangert, and Meschke 2004) the p-
version has been successfully applied. The p-FEM
as well as the X-FEM allow for the use of meshes
that consist of relatively large elements. In the X-



FEM, the crack can be introduced discretely with-
out mesh adaption or mesh refinement. The proposed
approach aims at a combination of both methods to
benefit from their properties when simulating hygro-
mechanical problems in concrete structures.

The paper is organized as follows: A concise sum-
mary of the kinematics considering discontinuities
and the model for partially saturated cementitious ma-
terials ion in the context of hygro-mechanical coupled
problems is presented in Sections 2 and 3. Section 4
is concerned with a model for moisture transport in
cracked materials considering tortuousity effects in a
phenomenological manner. The use of the spatial p
finite element method is described in Section 5. The
finite element formulation of the X-FEM model en-
hanced for partial saturated cracked structures is de-
scribed in Section 6, considering enrichment func-
tions for open cracks. The benchmark example de-
scribed in Section 7 investigates the applicability of
the model using an anisotropic 3D-p-element in the
context of a hygro-mechanical analysis of a concrete
beam.

2 KINEMATICS: DISCONTINOUS DISPLACE-
MENT FIELD

A domain Ω of a body B is considered to be separated
into two parts Ω+ and Ω− by means of a localization
surface ∂SΩ which is defined by the local coordinate
system with its normal vector nS and its tangential
vector tS (Figure 1). The displacement field u is ad-
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Figure 1: Body B separated into two parts Ω+ and Ω− by local-
ization surface ∂SΩ

ditively decomposed into a continuous part ū and a
discontinuous part ǔ as follows

u(x) = ū(x) + ǔ(x), ∀x ∈ Ω, (1)

with ǔ(x) = SS(x) û(x) where ū and û are continu-
ous functions in Ω and SS(x) is the SIGNUM-function
defined as

SS(x) =
{

1 ∀x ∈ Ω+

−1 ∀x ∈ Ω−. (2)

The amplitude of the displacement field at the discon-
tinuity ∂SΩ is given as

[[u]] = 2 û ∀ x ∈ ∂SΩ. (3)

The geometrically linear strain field ε is obtained
by taking the (symmetric) gradient according to the
equation (1)

ε(u) = ∇Sū + SS∇
Sû

︸ ︷︷ ︸

regular

+ 2(û ⊗ nS)S δS
︸ ︷︷ ︸

singular

. (4)

u ū ǔ∂SΩ ∂SΩ ∂SΩ

= +

Figure 2: Decomposition of the displacement field

3 HYGRO-MECHANICAL MODEL FOR PAR-
TIALLY SATURATED CONCRETE

The extension to a coupled hygro-mechanical model
is formulated in the framework of the BIOT-COUSSY
theory of porous media. Full coupling between mois-
ture transport and the mechanical behaviour of con-
crete is taken into account. Hence, moisture move-
ment may initiate cracks (e.g., in restrained drying
processes), and, in turn, cracks strongly affect the per-
meability of the material.

We consider the macroscopic capillary-pressure pc

as the driving force for moisture transport

pc = pg − pl (5)

with the gaseous pressure pg and the liquid pressure
pl. Provided that there is thermodynamically equilib-
rium between the mixture of water vapour and dry air
and the external athmosphere, it may be assumed that
the gaseous phase is at constant athmospheric pres-
sure, taken as zero pg = 0 (Bear and Bachmat 1991).
Therefore, for the sake of simplicity, the capillary-
pressure is expressed as pc = −pl in what follows.

In cementitious materials such as concrete,
saturation-dependent internal stresses develop as a
consequence of molecular adsorption and capillary
condensation. When subjected to drying, the internal
stresses may lead to severe cracking in concrete struc-
tures when the material strength is exhausted, see
Figure 3. Structural effects connected with restrained
deformations resulting from inhomogenities of the
material of the material at the micro- and meso-level
and the non-uniform moisture distribution associated
with the geometry of the structure must be considered.

The coupling coefficients are identified in this sec-
tion. The BIOT coefficient b and the BIOT modulus
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Figure 3: (a) Moisture transport induces capillary-pressure; (b)
Cracks promote transport of moisture and aggresive substances

M are obtained as (Grasberger and Meschke 2003;
Meschke and Grasberger 2003)

b = Sl

[

1 −
1 : C : 1

9KS

]

M−1 = φl
∂Sl

∂pl

(6)

see also (Lewis and Schrefler 1998) for a similar for-
mulation. The volumetric marcroscopic stress σ =
trσ/3 is expressed in terms of the solid matrix stress
σ′ and the liquid pressure pl as

σ = (1− φ)σ′ − φlpl (7)

where φl is the part of the porosity φ filled with liq-
uid water. Based upen the pore network model of
(Mualem 1976), the following relation between the
capillary pressure and the liquid saturation is pro-
posed in (van Genuchten 1980)

Sl(pc) =
[

1 + (pc/pr)
1

1−m

]−m
for pc > 0. (8)

with the reference pressure pr = 18.6237N/mm2 and
the coefficient m = 0.4396 specified in (Baroghel-
Bouny, Mainguy, Lassabatère, and Coussy 1999).

The total stresses σ can be expressed as a function
of the effective matrix stresses σ′, the BIOT coeffi-
cient b and the capillary pressure pc

σ = σ′ + bpc1. (9)

4 MOISTURE TRANSPORT MODEL
The moisture transport properties of concrete are
strongly affected by changes of the microstructure

(Jox, Dumstorff, and Meschke 2006). Flow of mois-
ture within porous materials is assumed to be de-
scribed by a diffusion model providing a (in general
nonlinear) relation between the moisture flux ql and
the spatial gradient of the liquid pressure ∇p:

ql =
ρl

µl
kf(Sl)kφ(φ)∇pc (10)

with the liquid permeability matrix kf , the dynamic
viscosity of liquid µl, the porosity φ and the mass den-
sity ρl.

The moisture flux along one single crack is mod-
eled taking the solution of the NAVIER-STOKES
equation for plane POISEUILLE flow with an ideal-
ized crack formation, assumed to be planar, parallel
and of constant opening width wc, as a starting point:

ql =
w2

c

12µl
∇pc. (11)

Following the approach of (Barton, Bandis, and
Bakhtar 1985) to take into account the roughness of
the cracks as well as the aperture variation and tor-
tuousity effects, the mechanical crack width wc is re-
placed by

wh =
w2

c

R2.5
for wc ≥ wh (12)

where wc = the nominal and wh = the equivalent hy-
draulic crack width in µm and the parameter R de-
scribes the roughness of the crack. The model param-
eter R is evaluated by means of a reanalysis of two
different series of tests performed by (Aldea, Ghande-
hari, Shah, and Karr 2000; Oshita and Tanabe 2000)
to study the dependency of the liquid permeability
of concrete on the cracking process under various
boundary conditions. This assumption is confirmed
by experimental and numerical data shown in Fig-
ure 4. Hence the crack permeability

kt
c0(wh) =

w2
h

12
(13)

is expressed considering tortuousity effects along the
crack channel ΩS (Snow 1969; Meschke and Gras-
berger 2003). The permeability of the uncracked ma-
trix material

kf (Sl) = kr(Sl)k0 (14)

with the intrinsic permeability k0 and the relative per-
meability kr(Sl) given by an analytical expression
suggested by (van Genuchten 1980) for soils as

kr(Sl) =
√

Sl

[

1− (1− S
1/m
l )m

]2

(15)

for 0 < m < 1. The permeability of the evolving
crack channel

kt
c(Sl,wh) = krc(Sl)k

t
c0(wh) (16)



depends on kt
c0(wh) (equation 13) and the relative

crack permeability

krc(Sl) = 8 · 10−6exp(11.7Sl) (17)

corresponding to the liquid saturation Sl of the crack
channel.
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Figure 4: Experimental and numerical data of the relation be-
tween crack opening and permeability

5 SPATIAL p-FINITE-ELEMENT-METHOD
The spatial discretization is based on the hierarchi-
cally organized LEGENDRE polynomials. The one-
dimensional shape functions can be generated by a
recursive formula. The shape functions for the three-
dimensional brick element are generated by a spa-
tial multiplication of the one-dimensional ones lead-
ing to different shape function modes (Becker and
Meschke 2004). This allows for spatially anisotropic

nodal mode edge mode face mode internal mode

Figure 5: Shape function modes of the p-continuum element: lin-
ear nodal mode, p3-edge mode, p2,3-face mode, p2,2,2-internal
mode

shape functions that can be useful to reduce the com-
putational effort in e.g. shell analyses. In those cases
the in-plane degree of approximation of the displace-
ment field can be chosen arbitrarily high, whereas a
quadratic or cubic approximation in thickness direc-
tion could be sufficient (Becker, Kuhl, and Meschke
2005). Furthermore, because of the hierarchical or-
ganisation of the shape functions it is possible to
choose the order of approximation in multi-field prob-
lems fieldwise. This allows to match the requirements

of each field variable without increasing the compu-
tational effort by generating totally new shape func-
tions as would be necessary in the LAGRANGEAN
discretization concept. In addition, the BABUŠKA-
BREZZI-conditions may be fulfilled simply by us-
ing TAYLOR-HOOD-like shape functions (Ehlers and
Ellsiepen 2001), characterized in hygro-mechanical
analyses by the approximation of the displacement
field one degree higher than that of the pressure field:

p(pc) = p(u)− 1. (18)

The enhanced displacement field is restricted to a
linear approximation to simulate a linear crack open-
ing during crack propagation.

6 ALGORITHMIC FORMULATION AND FI-
NITE ELEMENT IMPLEMENTATION

This section contains details of the finite element
formulation of the model. First, the main character-
istics and properties of the implementation of the
three-dimensional extended finite element method are
briefly described, followed by the finite element for-
mulation of the coupled problem.

6.1 3D X-FEM Implementation
The basic element is a 3D-p-brick element that allows
for a fieldwise choice of spatially anisotropic shape
functions. For the sake of simplicity of the numerical
integration and tracing of the crack path in three di-
mensions, cracks propagate elementwise by intoduc-
ing a new plane crack segment into a finite element as
soon as crack propagation is being signalled. There-
fore, no special crack-tip functions are used but the
enhanced degrees of freedom representing the crack
opening are set to zero at those facettes of the ele-
ment that represent the crack-tip. As a crack propaga-
tion and crack direction criterion a weighted principal
stress criterion is used. Furthermore the implemen-
tation includes a traction-separation law with hyper-
bolic softening to allow for the simulation of cohe-
sive cracks in concrete (Wells and Sluys 2001). The
traction-separation law can be turned off to simulate
problems linear fracture mechanics-related problems.

To perform the numerical integration at both sides
of the crack plane separately, the brick element is sub-
divided into a fixed set of six tetrahedrons. Depending
on how the crack plane is intersecting such a tetrahe-
dron, different subdomains may have to be considered
during the numerical integration. For the continuum
integration part these subdomains may be pyramids,
pentahedra or further tetrahedra. For the integration
of the traction-separation law and the moisture flow
the subdomains are either triangles or quadrilaterals.

The algorithm to follow the crack path is based on
the one presented in (Gasser and Holzapfel 2005).



This algorithm is less strict concerning the C0-
continuity of the crack path compared to other algo-
rithms (see e.g. (Areias and Belytschko 2005)). All
element faces or facettes that are cut by a crack will
be considered as part of the crack front. Consequently
all the elements that are not cut but include the crack
front will be considered as potential candidates for
”cracked elements”.

A crack plane is uniquely defined by a point P in
the element and the corresponding normal vector ob-
tained from the principal stress criterion. Figure 6 il-
lustrates how the point P is identified as the vecto-
rial average of all midpoints of the face crack lines.
Finally, the crack surface is visualized with the help

P1

P2

P

Figure 6: Definition of the base point P of the crack plane within
a cracked element

of the level-set φ = 0. Therein φ represents the short-
est distance of a point and the crack surface and is
calculated by the points P, X and the normal vector
nS:

φ = [X − P] · nS. (19)

6.2 Hygro-mechanical formulation
The primary variables within the domain Ω are con-
trolled by the balance of linear momentum and bal-
ance of liquid mass:

divσ = 0,
div(ρlql) + ṁ = 0. (20)

The system of differential equations (20) is completed
by the boundery conditions on the boundary Γ given
by

σ · nΓ = t∗, ql · nΓ = q∗l , u = u∗, pc = p∗c (21)

and the initial conditions in the domain Ω given by

u(t = 0) = u0, pc(t = 0) = pc,0 , (22)

where nΓ is the normal vector on the boundary sur-
face, q∗l is the liquid flux across the boundary Γq, p∗c is
the prescribed capillary pressure, u∗ is the prescribed
displacement and t∗ is the traction vector applied on
the boundary Γσ.

The weak formulation of the linear balance of
momentum together with the respective NEUMANN
boundary condition and the weak form of balance of
liquid mass together with the respective hygral NEU-
MANN boundary condition are given as

δWm =
∫

Ω

δε : σ dV −
∫

Γσ

δu · t∗ dA = 0

δWh =
∫

Ω

δpc
ṁl

ρl

dV −
∫

Ω

δ∇pc · ql dV

−
∫

Γq

δpc q∗l dA = 0.

(23)

The weak formulation of linear balance of momentum
can be written as follows

δW int
m =

∫

Ω

δε : σ dV

=
∫

Ω

∇δū : (σ′ + bpc1)dV

+
∫

Ω+−

SS∇δû : (σ′ + bpc1)dV

+2
∫

∂SΩ

δû · (t′S + bpcnS)
︸ ︷︷ ︸

tS

dA

(24)

with the total and effective traction vector (tS([[u]], pc)
and t′S([[u]])) at the discontinuity surface ∂SΩ.

Discretization in space yields a coupled set of equa-
tions in the standard form (Lewis and Schrefler 1998)

S(x)ẋ + K(x)x = r(x) (25)

with

S =





0 0 0

0 0 0

Qpū Qpû Spp



 (26)

and

K =






K ūū K ūû Qūp

K ûū K ûû Qûp

0 0 Hpp




 (27)

and the nodal degrees of freedom and forces

ẋ =






˙̄u
˙̂u
ṗ




 x =





ū
û
p



 r =





rū

rû

rp



 . (28)

Rewriting equation (25) in a more concise format
and applying time discretization using finite differ-
ences together with a fully implicit time integration
scheme yields a nonlinear system of coupled equa-
tions

S(x)ẋ + K(x)x = r(x) (29)

which is solved by means of a NEWTON-RAPHSON
procedure after consistent linearization:

[S + ∆tK]n+1
xn+1 = S xn + ∆t rn+1. (30)



6.3 Numerical Integration
For the spatial integration of the stiffness matrix Kûû

and the liquid permeability matrix Hpp different inte-
gration domains have to be considered:

Kûû =
∫

Ω+−

S2
S BT

u C Bu dV +
∫

∂SΩ

NT
u T Nu dA

Hpp = −
∫

Ω

BT
p kf/µl Bp dV

−
∫

ΩS

BT
p AT kt

c(w)/µl A Bp dV .

(31)

Nu contains the hierarchical shape functions of the
displacement field, Bu and Bp are the gradient ma-
trices of the displacement and the capillary pressure
field. The matrix A(nS) is the projection of ∇pc on the
crack channel characterized by the normal unit vector
nS of the crack surface ∂SΩ.

a) b) c)

ΩS W S

Figure 7: Integration concept: a) Integration of cracked and un-
cracked elements; b) Integration over the crack surface ∂SΩ;
c) Integration along the crack channel ΩS

The permeability matrix can be determined numer-
ically as

H̃pp = −
GPp
∑

n=1

BT
p kf/µl Bp|Jn|αn

−
GPc∑

j=1

BT
p AT kt

c(w)/µl A Bp wj |J∂SΩ,j|αj

(32)

using GPp integration points for the continuum and
GPc integration points for the crack channel (see Fig-
ure 7). The crack width wj and the Jacobian deter-
minant of the crack surface |J∂SΩ,j| are evaluated at
the integration point j with the corresponding weight
factor αj. The integration is performed either over tri-
angles or quadrilaterals representing the midsurfaces
of the crack channel in anology to the integration of
the traction-separation law for cohesive cracks.

7 NUMERICAL EXAMPLE
The applicability of the proposed finite element for-
mulation for concrete structures considering mois-
ture transport in cracks is demonstrated by means of
hygro-mechanical analyses of a cracked beam sub-
jected first to external loading. The material and ge-
ometry parameters are chosen as follows: Young’s
modulus E = 2000 [N/mm2], Poisson’s ratio ν =

0.2 [N/mm2], thickness t = 10 [mm] and liquid per-
meability k0 = 2.77 · 10−21 [m2].

Figure 8 contains the geometry, the mechanical and
hygral boundary conditions and the spatial discretiza-
tion with 272 3D-p-elements. For the approximation
of the regular displacement field, a polynomial degree
p = 2 is choosen in the plane of the structure and p = 1
in thickness direction, whereas trilinear shape func-
tions are used for the enhanced displacement field and
for the capillary pressure field.

The diagram in Figure 9 illustrates the mechanical
and hygral loading history of the beam structure. Af-
ter applying a displacement u∗ = 0.56mm on the top
of the beam, a drying process at the lower boundary
Γ2 from a liquid saturation of S∗2

l = 88.2% (pc =
10.0N/mm2) to a final saturation of S∗2

l = 58.8%
(pc = 20.0N/mm2) is prescribed, while the liquid
saturation S∗1

l at the upper boundary Γ1 remains con-
stant. As a consequence of the external loading a
crack of 3.25mm at the bottom side along the center-
line of the beam develops. Due to the drying process,
a further crack opening is observed (Figure 10).

100mm

10mm

u∗ Γ1

Γ2

Figure 8: Numerical Example: System and Loading

u∗ = 0.56mm

S1∗
l = 88.2%

S2∗
l = 58.8%

t = 0h 40h 130h

Figure 9: Numerical Example: Mechanical and hygral loading
history

The capillary pressure distribution shown in Fig-
ure 11 illustrates the effect of the accelerated mois-
ture transport through the crack on the moisture dis-
tribution after 40, 70, 100 and 130 hours. According
to the prescribed hygral boundary conditions, the dry-
ing front penetrates the beam starting from the bot-
tom face. In the vicinity of the crack, an increasing
pore pressure corresponding to an accelerated drying
process is observed.

8 CONCLUSIONS
In this paper a three-dimensional finite element dis-
cretization concept for hygro-mechanically analyses
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Figure 10: Numerical Example: Evolution of crack opening dur-
ing drying

t = 40h t = 70h

t = 100h t = 130h
10 12 14 16 18 20

Figure 11: Numerical Example: Pore Pressure Distribution
pc [N/mm2]

of partially saturated concrete structures considering
cracks has been presented. It is characterized by us-
ing the Extended Finite Element Method (X-FEM)
in conjunction with a p-finite element based on a hi-
erarchical formulation of higher order shape func-
tions and a hygro-mechanical model for partial satu-
rated materials based upon the BIOT-COUSSY theory
for the uncracked material. Moisture transport in the
crack channel has been taken into account considering
the topology of the crack channel. Details of the finite
element formulation and of the threedimensional nu-
merical integration using different subdomains for the
continuum part and the crack are provided in the pa-
per. As far as the moisture flux orthogonal to the crack
is concerned, the discrete character of the crack is not
yet fully considered in the present formulation. This
will be taken into account in an enhanced version of
the model currently in progress. The applicability of
the model has been demonstrated by means of a 3D
benchmark example.
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