Coupling creep and damage in concrete through a constmainpeter

M. Bottoni
DISTART - Structural Engineering, University of Bologna, Bologna, Italy

F. Dufour, G. Pijaudier-Cabot
R&DO, GeM, CNRStcole centrale de Nantes, Nantes, France

ABSTRACT: Coupling between creep and damage is studied in order to properly describe tertiary creep
concrete. Evolution of damage is governed by a strain tensor through an energy norm, obtained by weight
total and elastic strain tensor by means of a constant parameter. In fact, previous analyses show that, if coug
between creep and damage rely upon total strains, tertiary creep occurs too early. In this study, damage m
with bilinear constitutive law and Benboudjema’s creep model are employed. Numerical simulations provic
the structural response after the introduction of the coefficient.

1 INTRODUCTION ergy decrease is not negligible (up to 30%). Therefore
The failure of quasi-brittle materials under mechani-we observe a shift towards the LEFM response in the
cal loading can be divided into two different parts. Ini- Size effect analysis.

tially, diffuse microcracking (damage) occurs in the Some authors proposed coupled models where con-
Fracture Process Zone (FPZ) due to heterogeneitie¥ete damage, humidity variation, and creep strain
at the micro-scale. Further on micro-cracks coalescére considered (see for example Hubert et al. 2001,
into a macro one yielding strain localization. As the Ozbolt and Reinhardt 2001). In the present paper, we
size of the FPZ is related to the microstructure, thisdevelop a model to couple creep and damage, whose
type of fracture yields a size effect extensively stud-parameters will be calibrated in the immediate future
ied by Ba&ant since the 70s (Bant 1976). For pre- by interpreting the experimental results in terms of
stressed concrete structures for which permanent lod@ilure due to tertiary creep and fracture energy re-
level is large, such as in walls of nuclear power plantsduction.

the influence of creep on the fracture process should For concrete damage, a strain-based formulation is
be taken into account. We tackled coupling betweeradopted (Badel 2001), where damage is written in
creep and failure properties from experimental anderms of a positive expression of strains, as often as-
numerical point of view keeping in mind the perspec-sumed in damage models for concrete (Mazars and
tive of size effect. Therefore, several analyses hav®ijaudier-Cabot 1989, Di Prisco and Mazars 1996).
been performed on three point bending tests on &reep is described through Benboudjema’s model for
notched beam of three homothetic sizes. basic creep (Benboudjema et al. 2005).

Coupling between creep and damage is well rec- In the coupling model, evolution of damage is gov-
ognized (Mazzotti and Savoia 2003, Proust and Pongrned by a strain tensor through an energy norm, ob-
2001, Baant 1993) in literature. Experimental evi- tained by weighting total and creep strain tensors by
dences of interaction between basic creep and danfeans of a constant parameter (Mazzotti and Savoia
age has been observed on three-point bending tes2902). In fact, previous analyses (Dufour et al. 2006)
with several levels of sustained load (Loukili et al. show that, if coupling between creep and damage is
2001, Omar 2004). Tertiary creep yielding failure hasrelated to total strains, tertiary creep occurs too early
eventually been reached for some of the largest bean@&d for smaller load levels.
and loaded at the highest level. For surviving beams a Numerical simulations on a simple structure, ob-
residual capacity test has been performed to evaluat@ined after having implemented the model in the fi-
peak load and fracture energy after three months ofite elemenCodeAster, are then reported, providing
creep at different load levels. The conclusion (Omaithe influence of the coupling parameter on the struc-
et al. 2004) of this study is that the bearing capacity igural response.
slightly influenced by creep whereas the fracture en-



2 DAMAGE MODEL stresses coincide (for demonstration see Badel 2005):
In this work, a simple isotropic damage model with

secant unloading is adopted (Badel 2001, Badel &; = Atr(e) [H(—tr(s)) + 11 ddH(tr(e))}
2005). For the state of pure tension, a bilinear stress- T

strain law is derived; for pure compression the law

is linear elastic. Such simplified assumption for ma- +2ué, [H(_gj) + 1-d H(gj)} (8)
terial behavior in compression is acceptable, because L+n~d

for beams of our experimental tests collapse is causedyistaction of the criterion statgs< 0, and evolution
essentially by tension stresses, with compressed zongg damage state variableis determined by Kuhn-
of beam cross-section remaining in the linear rangey cker conditions:

Material constants are initial elastic Young modu-

lus E,, peak strengths in tensien and compression { d:: 0 if f<0 (9)
0. and softening modulug; (slope of the softening d>0 if f=0
branch).

It is found that, to havef = 0, i.e. the condition for

Damage criteriory is defined in the following way: evolution of damage, damagss given by:

F(FY=F1 & (1)
_ , d=2 (/2w -1 (10)
whereF? is the thermodynamic force and thresheld Y K
is defined as: . "
with positive energy¥(e):
K= Ko+ Ky - tr(e) - H(—tr(e)) (2)

A
W(e) = Str*(e) H(tr(e)) + py EH(E) (11)
being H the Heaviside functions, andx, parameters j
depending on material strengths and elasticity modul

h h i i Reference is done to Badel 2005 for the computa-
and~ a dimensionless positive constant:

tion of the material tangent matrix, required by the
E, Newton-Raphson solution method. It can be shown,
Y = = (3)  tangent matrix can be expressed in a close form.
Crack closure is also taken into account by the
model through the termsi(—¢;) + =% H(¢;) and

S (1+79\ [(1+v—v? o e :
Ko = o\ Gp 1o @) H(~tr(e)) + {=L H(tr()). A tensile loading, for in-
stance, causes the material to damage i.e. coefficient
. (L2 E, - # 1; if later on the sign of the load is inverted and
k1 = 0o O+)(l—20) ’{"(1 )0 (5)  the material becomes compressed, initial stiffness is

restored through the Heaviside function.

Through,, concrete confinement is taken into ac-
count and contributes te only with negative bulk 3 CREEP MODEL
strains (through Heaviside function). In case tensiorin the present paper, Bemboudjema’s model for basic

strains prevail, termr(¢) is positive ands = . creep is adopted.
In Equation 1, thermodynamic forde is defined The model (Benboudjema et al. 2005, Benboud-
as: jema 2002) attributes the phenomenon of creep to wa-
90 ter movement in the cement paste and is described
Fi—=_"" (6) through the combination of hydrates elastic behavior
9d and water viscous behavior.
where free energy is easily written in the reference First, total strains are split into an elasto-damaged
system of principal strains: parte, and a (basic) creep pa.:
- L —d E=€.+€u (12)
(e, d) 2” () [H( tr(e)) + 1 +fde(tr(E))} Creep strains are then decomposed in reversible and

irreversible and then in their spherical and deviatoric
part, so obtaining:

. . 1—d .
T S ) I | |
j 7 Eo =7 4% +e¥ 4t (13)

whered is damage), p are Lang coefficients and;  where strain tensors?, €5, 7, ¢? are spherical re-

is thej-th strain component in the principal referenceversible, spherical irreversible, deviatoric reversible

system. and deviatoric irreversible, respectively. Components
Stresses in the principal reference system are easf these four tensors are the state variables of the

ily derived, since principal directions for strains and creep model.



For stresses an analogous splitting is operated, withase coupling would be total, and the worst case for
indexess and d indicating spherical and deviatoric the structure. Previous works show, in fact, total cou-

part of stresses: pling tends to underestimate structure ultimate capac-
o ity, (Dufour et al. 2006, Mazzotti and Savoia 2003).
c=0"t+o (14)  However, a partial coupling could happen, if only a

portion of creep strains contributes to damage. In this
work we suppose damage evolving to be controlled by
following strain tensog, obtained by weighting total
and elasto-damaged strain tensors (see also Mazzotti

Parameters of the model are:

e k;, — Spherical irreversible stiffness

e 1., — Spherical reversible viscosity and Savoia 2002):

e 1;, — Spherical irreversible viscosity €= (1-pP)e+ fe. (17)

e k., — Deviatoric reversible stiffness which can also be written as:

e 1,4 — Deviatoric reversible viscosity E=e—fe. (18)

e 1:.4 — Deviatoric irreversible viscosity whereg, e, ande, have the same meaning as in Equa-

tion 12 and parameteris constant.

Assumption of the model is that, deviatoric strains Total coupling or absence of coupling are obtained
depend only on deviatoric stresses and sphericas special cases with coefficighassuming values of
strains depend only on spherical stresses. Four diffef and1, respectively.
ential equations (not reported here) describe the phys-
ical problem. 4.2 Numerical procedure

The set of differential equation of the model canA Newton-Raphson or modified Newton-Raphson
be numerically solved by assuming a linear approxsolution method is adopted, providing the typical
imation in the time interval for stresses and relativeincremental-iterative numerical frame of non-linear
humidity. For each component of the creep strain tenproblems. The complete description of the numerical
sor (in the sense of the split given by Equation 13), arprocedure is graphically exemplified in Figure 1. In-
equation of the following kind is then obtained (and dexesn and: indicate timestep (increment) and gen-

written here fore?” ). eral Newton-Raphson iteration, respectively. Usually,
; ; . y y indexn of present timestep is not reported for sake of
Eern = Eerm—1 T &, + 0305 +Coy (15)  simplicity andg; indicates a certain variable at itera-

tion i of the current timestep. Tolerancevyy is the

where index: stands fom-th timestep. By summing accepted relative error on residual forces.

Equation (15) with the analogous oneség, ez, 2., Update of state variables as well as computation

%egstgln(z%lﬂat'on for updating total creep strain tenso(gf stresses is done for each i.teration in.the single
: Gauss point, where total strairs (and displace-
€urr = €uwrn1+A, +B,o, 1 +C,o, (16) mentst;) are supposed to be known from linearized
’ ’ Newton-Raphson problem. State variables of the cou-
MatricesB,,, C,,, b?", ¢ and vectoraA?, a, depend pled model are damagé and components of each
on timestepAt,, = ¢, — t,_1, relative humidityh and  creep strain tensoes’, 3¢, €, % (see Equation 13).

cr?! “er?

creep strains. For their computation reference is made The numerical procedure is composed by following

to Le Pape 2004 or Benboudjema 2002. steps:
4 COUPLING CREEP AND DAMAGE 1 Computation of weighted strairgs controlling
4.1 General idea damage, according to Equation 17.

Coupling between creep and damage is operated by
modifying strains causing damage evolution. In case
no coupling is assumed, creep strains must have no
role in structure damaging; under constant load and

2 Update of damage, which is operated by first
writing damage criterionf as a function of
weighted strains and then the Kuhn-Tucker con-

even for high load levels, structure deformation would dition f = 0:
grow with decreasing speed, eventually up to an 14~
asymptotically finite value. Nonetheless, we know the WW(é) =K (19)

phenomenon of tertiary creep can take place when
load level is elevated, with deformation growing with
increasing speed and so leading structure to collapse.
It is then necessary to connect creep with material
degradation, described by damage. A possibility is A 1 1+7W(é) 1 (20)
to let damage be governed by total strains; in this test K

The new level of damage is then found:




where positive energyy/ (£) is written as:

Stressesr,, at timet, are then known through
Equation 22.

v >\ 27y 2 A
Inizializing U, ¢, &, & wie) = St (&) Htr(e)) + “Zst(sj) (21)
i J
A
Incremental loads AF, Creep Crack closure in Equation 21 is still controlled
Matrices A, B,, C,,.ay by ep' (..) by total strains by arguments of Heaviside func-
‘\ tion.
Tangent matrix Computation of¢; is not exact at this point. In-
v fact, tensog; depends on stresses, which are still
U d unknown. Consequently, an internal loop (with
U, dg;, Uy &, tolerancev;,,) is required as shown in Figure 1;
€crio = €crp-1 creep strains are initialized with their value at
. . . previous time step,,_;. In the particular case of
y ~ Strains Cf”tro”'“g damage: total coupling no loop is necessary, singeare
Eik =& ;B orik-1 known and equal to total straies
Damage update: 3 Computation of stressesiatis operated by first
writing relationship between stresses and instan-
[ J1+y .,/ .
Qs == | | W(gi 4 ) -1 taneous strains:
E YTES @ NO On = Mlen—eon) (22)
S
§ where M at present iteration is the instanta-
= Loading: Unloading: neous secant matrix, defined as:
o
3 di)= diegt di)= dijes 5
= . (e
g Instantaneous secant matrix: - a { e, }dzcst (&)
= My = f(g.dix) g
v i After substitution of Equation 16 into Equa-
= Stresses o, £ tion 22, increment of creep strainsit,, = ¢, —
2 : = t,_q is found as:
© ]
fer) j <
= Creep strains: 3 A (1+CM) (24)
o Ecr,n - n :
é Asg:,i,k = f(agr,bgr’cgr,ci’k)
D:(:S v [An + Bno-nfl + CnM (En - Ecr,nfl)]
S
=
D
Z
[
[«5)
3
O}

4 Update of creep strains through Equation 15.

Residual forces R

\2

Values assumed from creep strains at this point is
not definitive, since they depend on damage through
instantaneous secant mathNk Therefore, computa-
tional steps have to be repeated from point 1, up to
convergence in the value of damage and creep strains.
Exception is given by cases of total or absence of cou-
pling, for which no iteration is needed.

Convergence is evaluated for two successive values
of damage and then reached when:

n = time-step number

END dy, — dj_
% < Wint (25)
Figure 1. Scheme of the algorithm in the frame of the k=1

incremental-iterative procedure. . .. . . .
P where index: indicates iteration in the internal loop.



0.018 T T T T T

0 0.016f P
0,016 | 0ad=70% peak i i 2l
0.014} ‘ -
: == T 0.012 R
T 0012 e ] E
E % |
= 001f 1
& 0.008} ] Z, ]
7
S 0.006 ——p=0 |1 1
ooo4t |07 B=02)
"""" p=04 0 ‘ ‘ ‘ ‘ ;
0.002f -— - B=07 | 1 0 100 200 300 400 500 600
: time [days]
% 100 200 300 200 500 co  Figure 3. Variation of coefficient for load level fixed t&30% of

time [days)] instantaneous peak.

Figure 2. Variation of coefficient for a load level fixed t&/0%

of instantaneous peak. formation can be summarized as follows:

1 beginning of damaging process and, conse-

5 RESULTS .
qguently, of tertiary creep, occurs later;

5.1 Tension test on a single finite element

First tests of the model were lead on a single bi-
linear four-noded plane stress finite element. The el-
ement was subject to a pure tension loading constant

in time. Load is quantified as a percentage of peak- Analogous observations can be made from dual di-
load. Results are given in term of displacements Veragrams of Figures 4 and 5, showing effect of load
sus time in a linear scale. When possible (no collapsgayiation for a fixed value of. With lower load lev-
occurs), finite element is tested up to 600 days (abou|s siope of displacement-time curve is less steep and
20 months). Temperature has been tak_en constant a%‘égins later because damage increase is slower.
equal to its reference value. Computation parameters ag for the first point, time is the most evident
are reported in Table 1. - parameter governed by coefficiefit This observa-

In Figures 2 and 3 effect of variation of new pa- tjon agrees to experimental reality, since as we know,
rameter is observed. All curves coincide, until the \yhen tertiary creep starts, structures where positive
process of material damage begins and tertiary creegresses play an important role, such as beams sub-
starts, leading very quickly to collapse. In fact, noject to flexural loads, tend to collapse very fast (brittle
ment subject to a state of pure tension. Tertiary Creegjipration of the coupling parameter is figured out.
slope. Influence of} in the evolution of element de- {glerancew,,, influences results. Two computations
with 8 = 0.4 and load set t@0 % have given the same
results in term of displacement-time behavior, when
tolerances have been set 10> and to10-'. This

2 when damage process starts later, slope of
displacement-time curve is less steep.

Table 1. Material and environmental constants adopted in nu
merical tests.

Description Symbol Value is due to the presence of Newton-Raphson iterations
Young elasticity modulus(Pa] FEy 31

Poisson ratio v 0.2 5 0E00

Tensile strengthl{/Pa) ot 3 LBE02

Compressive strengttd{Pa] O¢ 30 60

Softening modulusPa] E; —6 — 14E.02

Sph. reversible stiffness\{Pa] kys 6.00 - 10* E L2607

Sph. irreversible stiffness\fPa] Kis 3.00 - 10* E e

Sph. reversible viscosity\[Pa - ] Trs 5.95-108 £ Loros

Sph. irreversible viscosityf[Pa - 5] Nis 2.40 - 1010 S G oE0s .

Dev. reversible stiffness\fPa] krd 3.40 - 10% 40503 | — 70% peak
Dev. reversible viscosityN/Pa - s] Nrq  4.08-10M 20E.03 4 _233’ p::t
Dev. irreversible viscosity}/Pa - 5] Nid 2.33-10%2 0.0E+00 4 | | | | | | | °‘p
TemperatureC] T 20 50 100 150 200 250 300 350 400 450
Ref. Temperature’[] Tref 20 time [days]

Figure 4. Variation of load level witfy = 0.
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Figure 5. Variation of load level wit[¥ = 0.4.
Figure 6. Geometry and meshing of the beam under three point-
bending.

externally to loops in Gauss points; precision for the

overall procedure is then governed by the outer loop. _ _ _ _

This is very true and even trivial but computational Z€ro, too; instead, poin®21 is free to move in both

time variation would be a good factor to look at. In horizontal and vertical direction to simulate a vertical

our case, it was more convenient to take a h|gh preCUt, which forces COIIapse crack to take place in the
cision for the inner loop, since this enhances convercenter of the beam. Assumed constants for concrete
gence. With tolerance set 10!, convergence is ob- are the same as in Table 1. _

tained only reducing time step length and computa- In Figure 7 deflect_lon-tlme curves are depicted for
tional time was 1310 seconds; with tolerance set tdWo0 values of softening modulus,. Curves arrested
10-%, computational time resulted in 1230 secondsdue to lack of convergence before a significant in-

The gap could be much wider in case of a more comcrease in slope, which is presumably the reason for
plex structure; it is then significant to determine theWhich the procedure has not converged and then to be

more convenient value fap,,, for our next analy- €xpected after interruption. The two curves differen-

ses, which could be quite time-consuming since theyiate themselves gradually. Structure is expected to be
will involve non local damage, with a much greater damaged, since parameter gains a meaning only
number of dof’s. For the moment however, we makevhen damage is different from zero in some region
use of a modified Newton-Raphson method, adoptof the spatial domain. Gradual increase of displace-
ing the elastic matrix instead of the tangent matrix.ment together with non-zero value of damage is prob-
Tangent matrix, quite difficult to derive for a three- ably due to redistribution capabilities of the structure
dimensional law, is implemented only in the total cou-in bending, in opposition to a single element in ten-
pling case. Possibly, the convenience in assuming alon.
higher or smaller tolerance will be different, once tan-
gent matrix will be available for partial coupling too. 6 CONCLUSIONS

A partial coupling of Bemboudjema’s creep model
5.2 Structural response on three-point bending testand damage model has been implemented in Elec-

Two computations have then been performed onto Hicité De France’s finite element codendeAster
beam under three-point bending. Loadings have beegoupling has been introduced through a constant pa-
kept constant in time. As usual to exploit structuralfameters; this intervenes in determining the amount
symmetry, only half of the beam has been analyzed.
Limitedly to this introductory work, a local model has

been used in spite of the presence of material soft- ™
ening behavior; for this reason, mesh is very coarse 1o -

(Figure 6) since damage will localize in a single ele- /
ment band which should be as wide as the FPZ. Beany 8.0E-02 1
geometry is the same as the largest beam described iny  _ ., |
(Loukili et al. 2001), with distance between supports

equal to120 cm, depthd0 em, width 10 em, and vertical

cut6cm. However, our purpose was not to reproduce

deflect

4.0E-02 -

2.0E-02 4

experimental data, but begin to understand also struc- —E1=-6GPa
tural behavior under the influence of coefficignt 0.0E+00 o L Edch

Still with reference to Figure 6, half of the total ver- 0 5 10 15 20 25 30 35 40 45
tical load is applied at poinP23; at point P18 verti- time [days]

cal displacement is constrained to zero; at poitis, Figure 7. Deflection-time curve for the beam under three point-
P20, P22 horizontal displacements are imposed to bebending.
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