
1 INTRODUCTION 
 
It is now generally accepted that the linear elastic 
fracture mechanics (LEFM) is only applicable to 
large-sized structures such as dams and not to 
normal-sized structures such as concrete beams, 
whereas the nonlinear fracture mechanics (NFM), 
considering the energy dissipation in the fracture 
process zone (FPZ), has wider applicability 
(Petersson 1981; Xie and Gerstle, 1995). Extensive 
literature reviews recently carried out by the authors 
(Yang and Proverbs, 2004; Yang and Chen, 2004; 
Yang and Chen, 2005; Yang, 2006) show that, 
although both the LEFM- and NFM-based finite 
element methods (FEM) have gained considerable 
success in modelling single-crack propagation 
problems, modelling multi-cracking is still in an 
infant stage. Even for single-cracked problems, the 
necessity of complex remeshing operations makes 
fully-automatic crack propagation modelling a 
cumbersome task (Wawrzynek and Ingraffea, 1989) 
in both LEFM- and NFM-based FEMs. Besides 
remeshing, two more difficulties are encountered in 
fully-automatic crack propagation modelling when 
the NFM-based methods are used. The first 
difficulty is the lack of a well-validated crack 
propagation criterion. The most intuitive criterion is 
the maximum principal stress (σ1) criterion (e.g., 
Bocca et al, 1991; Carpinteri et al, 1993), which 
assumes the crack propagates perpendicular to the 
maximum principal stress direction when σ1 at the 

crack tip reaches the material tensile strength. This 
criterion needs fine crack-tip meshes, such as a 
complex rosette used by Carpinteri et al (1993), to 
accurately calculate stresses at the crack tip, which 
exacerbates the complexity in remeshing. Wells and 
Sluys (2000) and Mariani S, Perego U (2003) also 
used this criterion within the framework of the 
extended finite element method (XFEM). The most 
distinct advantage of the XFEM in modelling crack 
propagation is that remeshing is completely avoided. 
However, a fine mesh must be used in the high 
stress-gradient regions to accurately calculate crack 
propagation direction. This infers that if the crack-
path is unknown a priori, a very fine initial mesh is 
needed. The second difficulty is the need of a robust 
numerical solver to equation systems characterized 
with strong nonlinearity caused by a combination of 
factors such as material tensile softening, boundary 
changes and mesh changes. The latter two factors 
necessitate an accurate mesh mapping algorithm to 
transfer state variables (displacements and stresses) 
from the old mesh to the new mesh. The 
phenomenon of snapback further complicates the 
solution of nonlinear equation systems. Recent 
efforts (Yang and Proverbs, 2004; Yang and Chen, 
2004) demonstrate that the so-called local arc-length 
methods (May and Duan, 1997) can effectively 
solve such complicated equation systems. However, 
this comes with high computational cost. In addition, 
numerical problems such as divergence and other 
errors of unknown origin may happen, especially for 
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multiple crack propagation problems (Yang and 
Chen, 2005).  

In order to avoid the above difficulties, a “semi-
automatic” or two-step approach, i.e., the crack 
trajectories are automatically predicted by a LEFM-
based method first, followed by a NFM-based 
modelling of the cracked structure, have been 
adopted, e.g., by Cendon et al (2000) and Galvez et 
al (2002).  In these studies, the crack paths are 
predicted by the computer code FRAC2D, which 
uses a complicated remeshing procedure. The 
subsequent nonlinear problems are solved using 
ABAQUS by incorporating nonlinear springs or 
cohesive interface elements (CIEs) into special 
material subroutines. It should be noted that for such 
approach to be valid for normal-sized structures such 
as concrete beams, the crack paths predicted by the 
LEFM-based methods must be favourably compared 
with experimental observations. Fortunately, this 
seems to have been confirmed (e.g., Arrea and 
Ingraffea, 1983; Cendon et al, 2000; Galvez et al, 
2002; Yang, 2006). 

This study proposes a similar two-step approach 
to that of Galvez et al (2002). The difference is that 
this approach uses the recently-developed scaled 
boundary finite element (SBFEM) rather than the 
FEM. The SBFEM, developed recently by Wolf and 
Song (Wolf and Song, 1996; Wolf, 2003), is a semi-
analytical method combining the advantages of the 
FEM and the boundary element method (BEM). It 
discretises domain boundaries only, so that the 
modelled spatial dimensions are reduced by one, as 
in the BEM, but it does not need fundamental 
solutions, as in the FEM. Therefore, the wide 
applicability of the FEM and the simplicity in 
remeshing of the BEM are retained. One significant 
advantage of the SBFEM is that stress singularities 
at cracks are analytically represented by the stress 
solutions so that accurate stress intensity factors 
(SIFs) can be calculated directly by definition. 
Consequently, fine crack-tip meshes or singular 
elements as required by the FEM are not needed. In 
addition, a domain may be divided into subdomains 
in any desired way and the density of nodes on the 
subdomain edges or domain boundaries can be 
specified according to the desired accuracy. This 
allows crack propagation to be modelled more 
flexibly than the FEM. These advantages of the 
SBFEM have been demonstrated recently by Yang 
(2006) in which a remeshing procedure as simple as 
used in the BEM was developed and successfully 
applied to a variety of mixed-mode crack 
propagation problems. The present study uses this 
simple remeshing procedure as the first step. CIEs 
are then inserted into the crack path, forming a finite 
element-SBFEM coupled nonlinear problem, which 
is solved by the local arc-length methods. Interested 
readers are referred to (Deeks and Wolf, 2002; Wolf 
2003; Yang, 2006) for details of the SBFEM. 

2 THE FIRST STEP: REMESHING BASED ON 
SBFEM AND LEFM 

 
Fig. 1 illustrates the basic steps of the remeshing 
procedure (Yang, 2006) for the convenience of 
following discussion. Compared with remeshing 
procedures in the FEM (e.g., Wawrzynek and 
Ingraffea, 1989; Bocca et al, 1991), this remeshing 
procedure has the following advantages: (i) it is very 
simple because remeshing is carried on a few large-
sized subdomains rather than many small finite 
elements, and in each remeshing step, only a few 
operations on edges and vertices of the subdomains 
are involved. Discretisation is conducted after 
remeshing by assigning nodal seeds to each edge 
and higher accuracy can be easily achieved by 
assigning edges with smaller nodal seeds; (ii) the 
degrees of freedom (DOFs) do not necessarily 
increase with remeshing because neither crack-tip 
mesh refinements nor singular elements are needed 
to calculate SIFs. And indeed for some cases, the 
DOFs may decrease with remeshing (Yang, 2006); 
and (iii) the SIFs calculated from the semi-analytical 
stress solutions are highly accurate, which ensures 
good predictions of crack trajectories even using a 
small number of DOFs. Interested readers can refer 
to (Yang, 2006) for a full description of the 
remeshing procedure. 
 

  
(a) Subdomaining (b) Crack subdomains 

  
(c) After one crack 

propagation 
(d) After second crack 

propagation 
Figure 1. The first step: prediction of crack trajectory by a 
simple remeshing procedure based. 
 
3 CONSTITUTIVE LAWS OF COHESIVE 

INTERFACE ELEMENTS 
 
The crack is modelled by the fictitious crack model 
(Hillerborg et al, 1976) in the form of cohesive 
interface finite elements. Petersson’s bi-linear σ-
COD softening curve (Petersson, 1981) is used as 
the constitutive law of the CIEs in the normal 
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direction, which is shown in Fig. 2a. A simple anti-
symmetric τ–CSD relation as shown in Fig. 2b is 
assumed to model the shear resistance of the CIEs 
since there is little experimental data available in 
this respect. The loading-unloading paths are also 
indicated in Fig. 2. Both relations assume an 
“irreversible unloading path”, i.e., when the crack 
closes, an elastic unloading occurs along the scant 
line as the COD or CSD decreases. The areas below 
the curves in Fig. 2a and Fig. 2b are the mode-I 
fracture energy Gf and the mode-II fracture energy 
GfII respectively. The initial tensile stiffness kn0 
before the concrete tensile strength ft is reached 
should be high enough to represent the un-cracked 
material but not too high to cause numerical ill-
conditioning. A reasonable initial shear stiffness ks0 
is also needed before the ultimate shear stress τu is 
reached. If COD is negative during loading 
increments or iterations, a compressive stiffness of 
magnitude equal to the initial tensile stiffness kn0 is 
assigned to the CIEs in order to prevent penetration 
of crack surfaces. The four-noded interface elements 
developed by Xie and Gerstle (1995) are used to 
model the cohesive cracks.  
 

 
 

(a) normal traction σ-COD 
curve 

(b) shear stress τ-CSD curve 

Figure 2. Constitutive laws of cohesive interface elements. 
 
4 THE SECOND STEP: INSERTING COHESIVE 

INTERFACE ELEMENTS 
 
Predicting the crack trajectory using the simple 
remeshing procedure (Figs 1a-d) based on the LEFM 
and the SBFEM is the first step of the proposed 
method. The second step is to insert the above-
discussed CIEs into the predicted crack path (Fig. 
1d) to model energy dissipation in the FPZ before a 
nonlinear analysis is carried out.  

It should be noted that the two crack surfaces 
connected with the scaling centre of the crack 
subdomain S6 in Fig. 1d are not discretised, and thus 
the CIEs cannot be directly inserted to model these 
two surfaces. First, a new vertex (V9) is added at the 
scaling centre of the crack subdomain S6 in Fig. 1d, 
forming two new edges (E9 and E10) representing 
the crack surfaces connected with the crack-tip (Fig. 

3a). The cracked subdomain S6 is then subdivided 
into two subdomains (S6 and S7 in Fig. 3a) by 
adding a new edge E11 and a new vertex V10 which 
is the intersection point between the crack direction 
and the boundary edge E0.  The edge E0 is also 
divided into two edges E0 and E12. The scaling 
centers of S6 and S7 can be conveniently placed at 
their geometrical centers. Second, all the edges 
which are not connected to any scaling center are 
discretised by assigning a global nodal seed (Fig. 
3b). Because the edges E9 and E10 are not 
connected with any scaling centers anymore, they 
become normal edges and are also discretised. This 
allows the entire crack path to be inserted with CIEs, 
as shown in Fig. 3b, where the crack path is modeled 
by 8 CIEs. 

The resultant problem is thus a nonlinear SBFEM-
FEM coupled one. However, because the stiffness 
matrices and the equivalent nodal forces of the 
subdomains in the SBFEM and those of the CIEs are 
all based on the boundary nodes, they can be 
assembled to form the system stiffness matrix and 
equivalent nodal force vector without any difficulty. 
In fact, the assembling procedure is exactly the same 
as usually used in the FEM. The resultant nonlinear 
equation system is then solved by local arc-length 
method (Yang and Proverb, 2004; Yang and Chen, 
2004). 
 

 
(a) Subdivision of the crack 
subdomain into two normal 

subdomains 

(b) Discretisation of edges 
and insertion of cohesive 

interface elements 
Figure 3. The second step: inserting cohesive interface 
elements into the crack path. 
 
5 NUMERICAL EXAMPLES, RESULTS AND 

DISCUSSION 
 
The example is the four-point single-edge notched 
shear beam tested and analysed by Arrea and 
Ingraffea (1982). This shear beam has since become 
a benchmark to validate mixed-mode crack 
propagation modelling (Rots and De Borst, 1987; 
Xie and Gerstle, 1995; Cendon et al, 2000; Yang and 
Chen, 2004; Yang, 2006). The geometry and 
boundary conditions of Series B beams in the test 
are shown in Fig. 4. The available material 
properties from (Arrea and Ingraffea, 1982) are: 
E=24.8GPa and υ=0.18. The parameters defining the 
constitutive laws of CIEs are assumed as follows: 
Gf=100N/m, GfII=0.1Gf=10N/m, ft=3.0MPa, 
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Figure 4. Four-point  single edge-notched shear beam for 
mixed-mode crack propagation (unit: mm). 
 

The beam is divided into 5 subdomains as shown 
in Fig. 5a. The scaling centres of S1 and S2 are 
positioned at the left-top corner and right-bottom 
corner respectively, so that their associated edges are 
not discretised. The initial number of nodes is 119 
and most of them (81) are used to model S5 with the 
crack tip. Finer meshes are also modelled resulting 
in little difference in the displacement field. The 
elastic subdomains are modelled by 2-noded linear 
line elements. Eight Gaussian points are used in each 
CIE for the integration. In the first step, the 
smoothness of predicted crack trajectories is 
controlled by a constant incremental length Δa (ref. 
Fig. 1). A smaller Δa leads to a smoother crack 
trajectory. In solving the nonlinear equation systems, 
the global stiffness matrix is formed at the first 
iteration of every loading increment and remains 
unchanged during iterations afterwards, i.e., the 
modified Newton-Raphson iterative procedure is 
used.  
 

 
(a) initial mesh 

  
(b) Δa=20mm (c) Δa=40mm 

Figure 5. SBFEM meshes for the single notched shear beam. 
 
Two crack increment lengths Δa=20mm and 

40mm are used to predict the crack paths by the first 
step using the same initial mesh in Fig. 5a and the 

Cmax criterion (Erdogan and Sih, 1963). There are 
147 and 123 nodes in the final meshes for Δa=20mm 
and 40mm after 12 and 6 LEFM crack propagations 
respectively. Only slight increases in DOFs occur. 
The meshes in the core subdomains after the CIEs 
are inserted are shown in Fig. 5b and Fig. 5c 
respectively for the two crack increment lengths 
while the meshes outside the core subdomains are 
the same. One can see that using the same initial 
mesh, different crack increment lengths produce 
very consistent crack paths, which agree well with 
the experimental record. 

Although the LEFM can predict satisfactory crack 
trajectories, it generally overestimates global 
structural responses considerably (Yang, 2006). 
Good structural responses can only be obtained 
when a NFM-based method is used, as demonstrated 
in Fig. 6 where the results from the present two-step 
method are compared favourably with the 
experimental data. This is due to the fact that only a 
NFM-based method can accurately model the FPZ 
which cannot be ignored in normal-sized concrete 
structures.  
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Figure 6. Load-CMSD predicted by the developed two-step 
method for the shear beam. 
 

Figs 7-10 illustrate the evolution of the displaced 
configurations and the normal traction distributions 
along the crack path predicted by the two-step 
method. It can be seen that, at the peak load 
F=133.6kN (Fig. 7), the FPZ is slightly longer than 
3Δa=60mm and no real crack is formed. In the post-
peak stage, the fictitious crack tip moves upwards as 
the crack opens. The real crack initiates at a load 
slightly higher than F= 87.4kN (Fig. 8b). At this 
load, the real crack tip predicted by the LEFM has 
already passed the midpoint of the beam after 7 
crack propagations. As the load further drops, the 
FPZ rapidly shrinks from the lower end and the real 
crack extends upwards (Fig. 9b). Even at a very low 
load F=17.7kN the real crack extends only half of 
the beam depth (Fig. 10b) whereas the LEFM-based 
method has finished 12 crack propagations. The 
evolution of the normal traction profile from 
Δa=40mm is very close to Fig. 7-10, which indicates 
again that only a few long CIEs are sufficient to 



predict accurate results. This is also confirmed by 
Fig. 6 where slight discrepancy between the load-
CMSD curves from these two crack increments 
exists only at the post-peak stage. This may save 
computational cost considerably when the modelled 
domain is large. 
 

  
(a) displaced core subdomains (b) normal traction 
Figure7. Displaced mesh and normal traction along the 
crack at F=133.6kN (peak load). 

 

  
(a) displaced core subdomains (b) normal traction 
Figure 8. Displaced mesh and normal traction along the 
crack at F=87.4kN. 

 

  
(a) displaced core subdomains (b) normal traction 
Figure 9. Displaced mesh and normal traction along the 
crack at F=35.9kN. 

 

(a) displaced core subdomains 

 
(b) normal traction 

Figure 10. Displaced mesh and normal traction along the 
crack at F=17.7kN. 
 

Fig. 11 shows the predicted load-loading point 
deflection using the two-step method. The strong 
snap-back phenomenon is well captured, which 
demonstrates the robustness of the adopted local arc-
length method.  
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Figure 11. Predicted load-deflection at load point curves. 
 
6 CONCLUSIONS 
 
This study has developed a two-step SBFEM-FEM 
coupled method for semi-automatic modelling of 
cohesive crack propagation in quasi-brittle materials, 
in order to avoid various complexities involved in 
fully-automatic modelling approaches. The 
conclusions drawn from the numerical example are: 

(a) the simple remeshing procedure based on 
SBFEM and the LEFM is able to predict satisfactory 
mixed-mode crack paths; 

(b) due to the semi-analytical nature of SBFEM, a 
small number of DOFs allow accurate SIFs to be 
calculated. In addition, the increase in the number of 
DOFs during remeshing is kept to a minimum 
because of the flexibility in subdomaining and no 
special treatments such as refining crack-tip meshes 
or using singular element as needed in the FEM; 

(c) the cohesive interface elements are effective in 
modelling energy dissipation in the FPZ and useful 
in analysing the evolution of the FPZ; and  

(d) the local arc-length solver proves very 
powerful in tracing complex equilibrium paths 
characterised by strong snapback. 
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