
1 INTRODUCTION  

Hrennikoff (1941) first introduced lattice models, as 
a predecessor to finite elements, for solving classical 
problems of elasticity. Later, Burt & Dougill (1977) 
extended the method to the simulation of progressive 
failure of heterogeneous materials. Lattice models 
have also been used extensively in theoretical phys-
ics research at the atomistic scale, and have been 
used to solve conductivity problems through the ap-
plication of Kirchoffs laws in fuse networks (Krajci-
novic, 1996). Bazant et al.(1990), and Schlangen & 
van Mier (1992) were the first to extend lattice mod-
els to the simulation of progressive failure in con-
crete using both truss and beam elements. 

2 LATTICE MODELLING THEORY 

The fundamental concept of lattice modelling is that 
a continuum may be represented by a simple lattice 
type discretisation of regular or irregular unit cells of 
resolution length, l, containing constant or varying 
coordination numbers (number of ‘half beams’). 
Generally, the resolution length, l, is chosen such 
that it is not too fine to make the analysis unfeasible 
and not too coarse as to conceal important micro-
structural features. 

Figure 1. (a) A regular triangular beam lattice with a hexagonal 
unit cell (b) Element forces and displacements in global and lo-
cal coordinates. 
 

The lattice considered in this paper is a regular 
periodic triangular lattice network, with a constant 
size (l) unit cell, and a constant coordination number 
of 6, as illustrated in figure 1(a). The lattice beam is 
an Euler-Bernoulli plane frame member, which is 

Stochastic regularisation of lattice modelling for the failure of quasi-
brittle materials 

C. Joseph & A.D. Jefferson 
School of Engineering, Cardiff University, Cardiff, United Kingdom. 

ABSTRACT: A regular periodic triangular lattice model is developed in this paper to examine the isotropic 
damage of cementitious materials. The mesh size dependency of current lattice models, which results in a 
non-unique mechanical response, is addressed through consideration of statistical distributions of lattice beam 
strengths. The theory of ‘stochastic regularisation’ is presented for a simple 1D parallel bar model, and ap-
plied directly to a 2D plane stress lattice discretisation of uniaxial tensile experiments on notched specimens. 
The main issues to be considered when applying the theory to two dimensions are: (i) stress concentrations at 
crack tips; (ii) the existence of multiple cracking paths, and; (iii) the increase in ‘effective length’ of beams as 
damage progresses. These issues are addressed, in part, by the implementation of a two-part strength distribu-
tion, which can significantly improve objectivity, whilst maintaining realistic crack patterns without the need 
for explicit modelling of the mesostructure. 

Keywords: Lattice modelling, regularisation, fracture mechanics, quasi-brittle materials, concrete. 

 F, u Q, w 

M, ϕ 
θ 

 

 

 

wQ  ,

ϕ ,M
uF  ,

(b) 

 l   

l

l 

 2
3l  

(a) 

h(b)

t(b)



capable of transmitting both moment and shear 
forces in addition to axial forces, as illustrated in 
figure 1(b). The structural stiffness of the entire lat-
tice system is obtained from the addition of trans-
formed element stiffnesses according to the topology 
of the system. 

In order for the lattice network to adequately rep-
resent the continuum, the properties of the beams 
must be such that the strain energy stored in a unit 
cell (figure 1(a)), of volume V, of a lattice is equiva-
lent to its continuum counterpart under constant 
strains. A rigorous mathematical description of this 
equivalence is given by Karihaloo et al. (2003), the 
main results of which are given in equations 1 and 2; 
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where E, µ, and t are the Young’s Modulus, Pois-
son’s ratio, and thickness of the continuum, and E(b), 
h, l, and t(b) are the Young’s Modulus, height, length, 
and thickness of the beam. 

The mesostructure of concrete may be modelled 
by either (i) implementing a statistical distribution of 
beam strengths, or (ii) generating a random aggre-
gate distribution, which is overlaid onto a regular tri-
angular lattice to create a three phase model, as 
shown in figure 2. Beams are assigned equivalent 
properties of the aggregate, matrix or ITZ (Interfa-
cial transition zone) depending on whether both of 
their nodes fall within an aggregate particle, within 
the matrix phase, or on either side of an aggregate-
matrix boundary. 

A Mohr-Coulomb based failure criterion has been 
implemented which combines the individual contri-
bution of axial, shear, and centre-span moment in 
determining the effective stress state of each beam; 

( ) 0=+− τσµ tbf  (3) 

where σ is the axial stress at the centroid of the 
beam, including the contribution from the centre 
span moment, τ is the shear stress, ftb is the rupture 
strength of the beam, and µ is the shear/normal 
strength ratio. 

Re-arranging equation (3) gives the following ex-
pression for the effective beam stress: 

µ
τσσ +=eff  (4) 

which is equal to ftb at beam failure. 

3 COMPUTATIONAL ASPECTS 

The lattice model presented in this paper is a small 
strain, infinitesimal displacement model. The solu-
tion process uses compressed row storage and a 
Jacobian preconditioned conjugate gradient tech-
nique. The pre-processor and main program are writ-
ten in Fortran 90 and the post-processor is written in 
Visual Basic 6. 

The global stiffness matrix K is only formed 
once, for the case of the pristine, undamaged lattice. 
Degradation of the system stiffness due to succes-
sive removal of fractured beams from the lattice, is 
achieved by simply removing the broken beams 
from the global stiffness matrix. 

Displacement control is considered in a quasi-
static manner; i.e. the displacement is increased until 
a single beam fails. The new stresses are then calcu-
lated and successive removals and re-analyses are 
performed until stability of the system is achieved, 
prior to the next displacement increment being ap-
plied. The stress state (σeff / ftb) of the worst case 
beam, coupled with the total system displacement, 
allows the next displacement increment, which will 
cause this current worst case beam to fail, to be cal-
culated accurately. The ability to automatically fine 
tune the displacement increment is important, both 
in ensuring computational efficiency, and maintain-
ing system stability during damage.  

4 MESH SIZE DEPENDENCY 

The influence of lattice resolution on the mechanical 
response of uniaxial tests is highlighted in figure 2, 
for notched 50mm square concrete specimens. The 
maximum and minimum aggregate diameters are 
8mm and 2mm, respectively, and Eagg = 87.5GPa, 
Emat = EITZ = 31.3GPa, ft,agg = 10MPa, ft,mat = 5MPa, 
ft,ITZ = 1.5MPa.  

It may be seen from figure 2 that both the peak 
force and the specific fracture energy decrease con-
siderably as the resolution length l decreases, and 
hence the non-dimensional lattice size λ increases 
(λ=L/l, where L represents the size of the lattice in 
the direction of uniaxial stress, and l represents the 
length of a link). It should also be noted that the me-
chanical response curve for l=0.25mm corresponds 
well with simulations completed recently by Prado 
& van Mier (2003) on 60mm square specimens with 
an aggregate content (Pk=51%) and similar phase 
properties.  

The reason for the observed trend is that the 
amount of fracture energy per unit area of crack de-
creases as the size of the lattice beam reduces. Thus, 



specific fracture energy (Gf), or energy release per 
unit area, is not preserved. 

It should be noted that even though the prescribed 
aggregate content (Pk=55%) is exactly the same for 
all three simulations in figure 2, the actual ‘mod-
elled’ content varies from 28% for l=1mm to 45% 
for l=0.25mm, since the thickness and thus area of 
the ITZ layer reduces with beam length, l.  

This is not believed to significantly influence the 
observed mesh size dependence trend, illustrated 
above, since Schlangen & Garboczi (1997) highlight 
the same trend for lattices whose heterogeneity is in-
troduced by randomly assigning a ‘high’ strength 
and ‘low’ strength value to beams in the constant ra-
tio of 3:1. 

The lack of uniqueness in the system macro pa-
rameters, such as peak strength, and specific fracture 
energy, is an issue which has been recognised for 
some time by physicists studying stress driven rup-
ture in central force lattice systems, as discussed by 
Krajcinovic (1996). Here the size effect has been re-
lated to the non-dimensional lattice size λ. Finite 
scaling laws whereby response curves for lattices of 
different size λ collapse onto a single master curve 
plotted in the (Fλ -β, uλ-γ) coordinate system have 
also been proposed. The exponents β and γ may then 

been determined as fitting parameters from multiple 
Monte-Carlo type numerical simulations. 

It should be noted that this ‘resolution’ length ef-
fect is consistent with that found in finite element 
solutions for fracturing materials, and it is the reason 
for the introduction of the Bazant & Oh crack band 
model (1983). Implementing this model within lat-
tice would require the introduction of a tension sof-
tening relationship for all beams. Solving for the in-
ternal displacements at every load step would then 
become a non-linear process. Whilst this is possible, 
and has been implemented for the mortar phase by  
Karihaloo et al. (2003), the method significantly re-
duces the computational efficiency of lattice model-
ling, which is one of its principle benefits, as indi-
cated in section 3. 

In addition, regularising in this manner compro-
mises the basic philosophy of lattice, as the authors’ 
perceive it; namely, that the individual lattice ele-
ments should be of such a size that they may be con-
sidered to be brittle. It is interesting to note that the 
systematic rupture of brittle elements during the dis-
solution of a lattice causes a discontinuous energy 
release which reflects the ‘energy jumps’ observed 
during cracking of actual experimental specimens. 

 

 

 
(a) l = 1mm (λ=50)  (b) l = 0.5mm (λ=100) 
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(c) l = 0.25mm (λ=200)  (d) P – δ curves for varying beam lengths 

Figure 2. Crack patterns and force displacement curves for 50mm square notched specimens, modelled using varying lattice 
beam lengths of 1mm, 0.5mm and 0.25mm. 



This is illustrated by the stepwise form of the soften-
ing tail in figure 3(c). 

It is also important to note that currently material 
inhomogenity is generally modelled solely by the 
random distribution of aggregate particles prior to 
superimposition onto the lattice grid. Any stochastic 
variation of material strength within phases is usu-
ally omitted, since all elements of a particular phase 
are assigned the same properties. van Mier et al. 
(2002) recently completed an interesting study, 
however, whereby they assigned both Weibull and 
Gaussian statistical distributions of properties to lat-
tice beams with the aim of simulating the effects of 
the mesostructure without explicitly modelling it. 

5 REGULARISATION THROUGH 
STATISTICAL SOFTENING 

The possibility of including a statistical distribution 
of beam strengths within the three mesostructure 
phases, or replacing the mesostructure with a single 
distribution, which is a function of the lattice resolu-
tion length, raises an interesting question; can regu-
larisation be achieved through statistical softening?  

5.1 1D parallel bar model 
Krajcinovic (1996) discusses, in some detail, the ap-
plication of a Weibull distribution of bar strengths to 
N bars in a loose bundle parallel bar model, as illus-
trated in figure 3(a). Interestingly, the macro me-
chanical response of such a system under uniaxial 
tension is similar to that obtained from experimental 
observations on concrete specimens; i.e. a linear 
elastic region followed by pre-peak hardening, and 
post-peak softening. The form of the response curve 
is governed by the Weibull shape parameter, m, 
which is an indication of the material’s strength 
variability; the larger the value of m the smaller the 
variability, and the more brittle the response of the 
parallel bar model. 

Alternatively, it is also possible to work from a 
given softening curve back to a statistical distribu-
tion of bar strengths. A standard exponential soften-
ing curve, as illustrated in figure 3(b), may be used 
to represent the stress-strain relationship in the dam-
age zone, which may also be expressed in terms of 
the damage variable ω; 
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where E is the Young’s modulus, ft is the average 
tensile strength, c1 is the softening curve constant, εi 
is the inelastic strain, and ε0 is the failure strain. 

Noting that εi = ωε and εt = ft /E, and approximat-
ing the implicit function in terms of the total strain; 
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The aim of the statistical softening model is to re-
place the softening curve in each bar by a series of 
bars, which break at different strains, such that the 
proportion of broken bars in the zone of interest ap-
proximates the damage variable ω. If there are N 
bars and at any point i bars are broken, and the strain 
at which a particular bar breaks is denoted by ζi, and 
noting that the current total strain on the damage sur-
face is that associated with the strain at which bar i 
breaks, then from equation (6); 
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which is a non-linear equation to be solved for ζi. A 
typical response curve for bars whose strengths are 
distributed according to (7) is shown in figure 3(c). 
In order for this response to be objective it should be 
independent of the bar length l. 

Figure 3. (a) Loose bundle parallel bar model. (b) Target ideal-
ised exponential softening curve. (c) Typical macro-
mechanical response from discrete parallel bar model. 

 
The key to achieving regularisation is maintain-

ing an average-stress (σav) v crack opening dis-
placement (u), at localisation, irrespective of the 
resolution length, l. If this criterion is to be satisfied, 
then ε0 must be a function of element length, as in 
the Bazant & Oh (1983) model; 

l
u0

0 =ε  (8) 

where l is the length of elements in the fracture zone.  
Assuming that u0 is an actual parameter, ε0 is 

therefore inversely proportional to the element 
length, l. Thus, by altering the softening curve from 
which the bar strengths are obtained, and therefore 
the distribution of these bar strengths, it is possible 
to maintain a global softening response from the 
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model irrespective of the element length, l. This has 
been confirmed in a 1D parallel bar model by the au-
thors, although the results are omitted here for brev-
ity. It should be noted that the authors have used a 
simple exponential decay function rather than a 
Weibull function, since the Weibull function does 
not allow the softening tail to be scaled whilst keep-
ing the peak the same. 

5.2 2D lattice model without mesostructure 
This theory may be applied directly to a 2D lattice 
model, as illustrated in figures 4 and 5, for notched 
100mm by 50mm specimens. The beam strengths 
are obtained from equations 7 & 8, for a crack width 
opening (u0) of 0.2mm, ft = 2MPa, and for resolution 
lengths of 2mm, 1mm, and 0.5mm. The beam 
strengths have been distributed randomly throughout 
the specimen. 

 
Figure 4. Enlarged crack patterns for 100mm x 50mm notched 
specimens. 
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Figure 5. Force displacement graph for 100mm x 50mm 
notched specimens with varying mesh resolution. 

 
The macro mechanical response of the system 

(fig. 5) remains unobjective, however, and a trend of 
diminishing fracture energy with decreasing beam 
length, similar to that found in figure 2, is still ob-
served. 

The reason for this is that the parallel bar model 
is a mean field artifice, which is incapable of captur-
ing the spatial stress concentrations and re-
distributions that are prevalent within the 2D lattice 
model. Adjusting the value of ε0 to account for the 
lattice beam length used in the discretisation (eqn.8), 
does increase the strength of the strongest beams 

significantly, as illustrated in figure 6. This does not, 
however, significantly influence the mechanical re-
sponse during failure, since the propagating macro-
crack tends to follow the path of ‘weakest resis-
tance’, rather than localising into a pre-defined sin-
gle layer of beams. As a result, only the lower por-
tion of relatively low strength beams, as encircled in 
figure 6, are actually broken. This means that the 
post-peak response for all three graphs in figure 5 is 
too brittle, and the final crack mouth opening is ap-
proximately 100 to 200 times too small. In addition, 
since the strength difference between beams of vary-
ing length is very small in the lower region of the 
exponential curves of figure 6, the trend of diminish-
ing fracture energy with element length has not been 
corrected by any significant degree. 

Figure 6. Illustration of beam strength variation with damage 
for varying lattice beam length. 

5.3  RME (Representative material element) 
In order to adjust the 1D statistical regularization 
theory for the case of a 2D lattice discretisation, we 
must first introduce the notion of an RME. An RME 
is defined here as the smallest region of a lattice dis-
cretisation, over which the full array of beam 
strengths may be found. Since the lattice beam 
strengths are considered to represent bond strengths 
within phases of the continuum (weak beams repre-
senting ITZ regions and strong beams representing 
aggregate regions), then the size of an RME is in-
trinsically linked to the size of an RVE (Representa-
tive volume element).  

 
Figure 7. Division of specimen domain into RME’s containing 
n beams. 

 
An RME size, in the order of 3-5 times the 

maximum aggregate size, as suggested for the case 
of the crack band model by Bazant & Oh (1983), has 
therefore been implemented in this model. The total 
discretised domain has therefore been segregated 
into RME regions as shown in figure 7, and the full 
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range of beam strengths have been distributed ran-
domly over each and every RME. It should be noted 
that since an RME is representative of a materials 
make-up rather than its constitutive behaviour, as in 
the case of an RVE, it is considered to exist post-
localisation, unlike an RVE (Gitman, 2006). 

5.4 Double strength distribution over an RME 
The problem of achieving objective results in the 2D 
lattice may now be considered as the need to regu-
larize the energy release during damage of any given 
RME.  

The number of beams that are fractured during 
complete failure of an RME is given by; 

nan ωω =                                for: 113.1
<< ωa

n
 (9) 

where aω is the proportion of total beams that are 
fractured. The lower limit on aω is derived from the 
case when a single horizontal row of diagonal ele-
ments break.     

If the damage is now considered to be complete 
(i.e. ω=1) when nω beams have broken, then; 
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where ζj is the beam strength for beam j. 
However, it is necessary to assign strengths to all 

beams (1 to n) within the RME, in such a way that 
the distribution for the weakest nω beams follows 
equation (10). This is achieved through generating a 
two-part probability function which matches ω in 
the range 1 to nω and then increases. It should be 
noted that since the function given in (10) has almost 
zero gradient at ζ = ε0 (fig. 8), it is not possible to 
extrapolate this function to produce a complete dis-
tribution for n beams. The second part of the curve is 
defined as a Weibull function, where the constant 
m=12, noting that the Weibull function form is 
adopted for convenience only.  
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The beam strengths derived from the double 
strength distribution retain a physical relevance to 
the underlying mesostructure, despite this not being 
modelled explicitly. The weaker beams from the 
first part of the distribution may be considered to 
represent the ITZ and weaker mortar elements that 
fracture during propagation of the macro crack. The 

stronger beams from the second part of the distribu-
tion have little numerical significance, since they 
should not break, however, physically they may be 
considered to represent the stronger mortar and ag-
gregate phases. 

Figure 8. Schematic representation of the two-part probability 
function. 

5.5 Percolation limit 
nω is defined as the number of beams that fracture 
during complete failure of an RME. nω should be of 
the order of n  for a predominantly one dimen-
sional crack propagation in a two dimensional do-
main. It should be noted that nω will increase for in-
creasing crack tortuosity and increasing pre-peak 
damage i.e. distributed beam breakages prior to 
crack localisation. 

Distribution of the nω beams drawn from the 
lower part of the double strength distribution is 
made in a completely random manner within an 
RME. The proportion of beams which therefore 
break during complete damage of an RME is there-
fore considerably less that the proportion of beams 
that are required to be distributed in order to achieve 
a percolation path of ‘low strength’ beams across an 
RME. For a random distribution of lower strength 
beams, nω must therefore be re-defined as;  

nan p=ω    (12) 

where pa  is the percolation limit expressed as a per-
centage of the total number of beams, n, in an RME.  

Percolation theory in relation to the conductance 
of lattice networks is discussed at some length by 
Herrmann & Roux (1990). It should be noted, how-
ever, that the stress concentration effects contained 
within structural lattice networks are omitted in con-
ductance networks. These effects serve to further 
complicate any theoretical determination of the per-
colation limit from the mechanical response of the 
system, since this is dependent on whether the crack 
path and percolation path coincide.  

Also, in contrast to conductance networks, struc-
tural lattices, as defined above, do not offer infinite 
resistance below some percolation limit (pc). Instead, 
the post peak response becomes increasingly ductile 
as a result of the need for an increasing proportion of 
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beams from the upper strength distribution to be 
broken for complete failure. This may be observed 
in figure 9, which shows the sensitivity of the post 
peak softening curve to the percolation limit for a 
notched 100mm x 50mm specimen with a lattice 
resolution, l = 0.5mm. Conversely, if the proportion 
of beams drawn from the lower strength distribution 
is too large, the post peak response becomes overly 
brittle, since too many percolation paths exist, and 
thus the stronger beams from the lower strength dis-
tribution, which control the softening tail, remain 
unbroken. 
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Figure 9. Sensitivity of the post-peak softening response to the 
percolation threshold ap. 

 
From figure 9 it is apparent that an ap of 0.7 pro-

duces a post peak response which is comparable to 
the chosen input curve parameters (ft=2MPa, 
u0=0.2mm), and which is representative of a typical 
cementitious material (van Mier, 1997). It should be 
noted that a peak load of 140N equates to a peak 
stress, over the unnotched area, of 1.6MPa. This is 
less than the peak target stress of 2MPa, due to the 
initial stress concentrations created by the notches. 

The regularisation effect of the double strength 
distribution method is examined in figure 10 for 
three different mesh resolutions. Only the length and 
height of the beams have been altered between lat-
tice resolutions in order to maintain a global Pois-
son’s ratio of 0.2, as given by equation 2.  

It may be seen from figure 10 that whilst there 
appears to be a small decrease in fracture energy in 
the initial post peak response, the results are largely 
objective, when allowing for statistical variation. In 
addition to producing vastly improved quantitative 
results, the method appears to maintain good qualita-
tive results in respect to predicting feasible crack 
evolution (fig. 11). 
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Figure 10. Three typical force displacement graphs for 100mm 
x 50mm notched specimens with varying mesh resolutions of 
2mm, 1mm, and 0.5mm. 

 

Figure 11. Enlarged views of typical fracture evolution for 
100mm x 50mm notched specimen with a 0.5mm mesh resolu-
tion (see figure 10 for respective mechanical response). 

 
 Figure 11 illustrates the typical evolution of a 

crack including initial post peak propagation, crack 
branching, and crack bridging at the end of the sof-
tening tail. The amplitude of the crack path is also 
found to agree well with the chosen size of the 
RME. 

6 SUMMARY AND CONCLUSIONS 

Lattice models have been recognised for some time 
as having the ability to disclose important informa-
tion about the physical processes occurring during 
the damage of cementitious materials. The quantita-
tive capabilities of the method, in particular, the 
pathological mesh size dependency, are issues which 
must be addressed if objective results are to be ob-
tained.  

Microstructural disorder is intrinsically linked to 
the chemical composition, topology and geometry of 
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the microstructure, as well as micro defects of arbi-
trary sizes, shapes and orientations. Since the micro-
structure and defects vary from specimen to speci-
men, any rational description of the disorder must be 
fundamentally statistical in nature. Disorder may be 
modelled within the lattice framework using statisti-
cal distributions of beam strengths. It has been 
shown that in one dimension such distributions may 
also be modified according to the lattice resolution 
in order to achieve objective macro parameters such 
as peak force and specific fracture energy.  

Initial results have indicated that the main issues 
to be considered when applying this theory to two 
dimensions are: (i) stress concentrations at crack 
tips; (ii) the existence of multiple cracking paths, 
and; (iii) the increase in ‘effective length’ of beams 
as damage progresses. 

These issues have been considered, in part, by the 
implementation of a two-part strength distribution, 
which physically represents the materials variability 
(i.e. weak ITZ bonds, weak-strong mortar bonds, 
and strong aggregate bonds). The concept of an 
RME has also been implemented to represent the 
area over which this entire variability would be ex-
pected to be found within the material.  

It is believed that by randomly distributing beams 
drawn from the lower strength distribution, up to the 
percolation limit, the issues of multiple cracking 
paths and stress concentrations affecting the choice 
of crack path, are effectively negated. This means 
that beams representing the entire lower strength dis-
tribution are believed to break during damage. Since 
the lower strength distribution is responsible for con-
trolling the post peak response, this may therefore be 
modified in accordance with the chosen lattice reso-
lution to ensure that an average stress - crack open-
ing relationship is maintained.  

Initial results obtained from uniaxial tensile tests 
on 100mm x 50mm notched specimens have indi-
cated that the double strength distribution method 
vastly improves the objectivity of the macro parame-
ters, such as peak force and specific fracture energy, 
between varying mesh resolutions. The nature of the 
post peak response has also been found to be sensi-
tive to the percolation limit. A percolation limit of 
0.7 (70% of all beams drawn from the lower strength 
distribution) has been determined to give an optimal 
post peak response for a lattice resolution of 0.5mm.  

The percolation path created by the random dis-
tribution of beam strengths, from the lower strength 
distribution, across an RME has also been found to 
give realistic crack patterns without explicit model-
ling of the mesostructure. 

7 FUTURE WORK 

As with any modelling technique which has an un-
derlying statistical basis, a significant number of 

simulations are required in order to draw definite 
conclusions in regards to the degree of objectivity 
achieved from the method. Future work will focus 
on completing these simulations and investigating 
the effect of lattice resolution on percolation limit. 

In addition, it may be observed from figure 11 
that during the later stages of damage, large amounts 
of material are drawn in, thereby releasing dispro-
portionately large amounts of energy on fracture. 
The nature of the relationship between damage and 
‘effective’ beam length therefore requires investiga-
tion. 

The model to date has focused on achieving regu-
larisation in respect to eradicating mesh size de-
pendency, however, it may be possible to capture 
statistical size effects by introducing a statistical dis-
tribution of mean RME strengths. 
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