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ABSTRACT: The history of the application of computational fracture mechanics to concrete structures, now
5 decades old, is interesting from many perspectives. In this paper, a retrospective of computational fracture
mechanics in concrete structures (ComFraMCoS) is presented through five lenses. These lenses clarify research
trends through an historical overview. We intend to interlace the views through these lenses to sometimes
offer admittedly slanted insights, to question the status quo and to provoke thought and discussion about future
directions of ComFraMCoS.

1 INTRODUCTION

One can easily support the argument that the distinct
field of computational fracture mechanics itself arose
from concerns about cracking in concrete structures,
both plain (e.g. dams, Clough 1962) and reinforced
(e.g. beams, Ngo & Scordelis 1967). In past publica-
tions there have been many well-written reviews of
the work in computational fracture mechanics in con-
crete structures (ComFraMCoS). Therefore, the goal
of this paper is not to serve as a complete summary
or technical report, but to extrapolate from the history
and suggest future directions for ComFraMCoS re-
search. To do this, we choose a retrospective through
5 lenses: computational resources, software, physics,
practice and dimensionality.

The Lens of Computational Resources – George
Irwin was doing his best thinking at the same time
that electronic computation was being invented. So it
was serendipity that the field of fracture mechanics
could hop on and ride the still growing wave of com-
putational resources our generation has been lucky
to have. But, with teraflops of power, petabytes of
storage, and amazing visualization capabilities avail-
able for the taking, why has ComFraMCoS appeared
mostly to languish on the fringes of this digital rev-
olution? What is inhibiting our field from unleashing
all that power on our most fundamental problems?

The Lens of Software – How many distinct Com-
FraMCoS programs have been written by graduate
students worldwide? How many of these programs
have broken new ground in numerical methods for so-
lution of boundary value problems, as opposed to re-

vealing new insights into the physical processes they
seek to simulate? We see improvements in software
as quite different from enhanced understanding of the
physics driving fracture processes. The ComFraM-
CoS community can take pride in contributing signif-
icantly to the invention/evolution of smeared crack-
ing, damage mechanics, cohesive constitutive mod-
els, meshfree methods, and enriched element meth-
ods. But, have we perhaps been a bit too distracted
by the novelty of variations in such numerical meth-
ods for software implementation rather than finding
ways of applying it to answer fundamental questions
heretofore intractable?

The Lens of Physics – How much more about in-
cubation, nucleation, microscopically small and large
propagation of cracks in reinforced concrete (RC) do
we really understand from first principles now com-
pared to 40 years ago? Can the surrogates for physics
such as stress intensity factors, damage measures,
critical energy release rates, cohesive strengths, what-
ever your favorite flavor of fracture mechanics, ever
capture sufficiently well what is actually happening in
a real concrete structure? Our answer is no. What will
be required to focus the current generation of grad-
uate students on multidisciplinary approaches, com-
bining computational science and materials science,
condensed matter physics and chemistry, and struc-
tural mechanics, needed for breakthrough discoveries
that will lead to fundamental knowledge in the analy-
sis and design of RC structures?

The Lens of Practice – Is it amazing or embarrass-
ing that after 5 decades, a period during which any



number of other fields of engineering have been born,
matured, and completely remade themselves multi-
ple times (e.g., biomedical engineering, MEMS engi-
neering) ComFraMCoS has had so little tangible ef-
fect on everyday practice in the analysis and design
of concrete structures? It was perhaps naive to think
that practice in the field of concrete structures would
quickly adopt the more physics-based rules of behav-
ior that have evolved from academic research into
the fracture mechanics of concrete. Witness the two-
decade struggle to modify the ACI code for size ef-
fect in shear. Why haven’t full-field, non-linear mod-
eling approaches evolved from ComFraMCoS been
adopted?

The Lens of Dimensionality – This lens has two
foci: the dimension of the scale of investigation, con-
tinuum, meso, micro and atomistic; and the dimen-
sion of the space of inquiry, 2D or 3D. More than
20 years ago, truly exciting work began to appear in
the ComFraMCoS literature in which the constituents
of concrete and small but important details of re-
inforcement were explicitly represented in both ge-
ometry and mesh models. We view these early ef-
forts as precursors to what is now recognized as mul-
tiscale modeling. Why, however, in 2007 does the
majority of the new ComFraMCoS journal literature
have an exclusively continuum focus? Allied fields
of composites and even metals have turned their foci
downscale towards an integration of condensed mat-
ter physics, materials science, and structural mechan-
ics, purposely injecting as much geometrical realism
at each length scale as possible into their simulations.
Why is the same approach not being taken, for the
most part, in ComFraMCoS? And, why, in 2007, with
all those teraflops and petabytes lying around, and
with uncertainty of planar behavior ever really exist-
ing anywhere, is the vast majority of the work in Com-
FraMCoS still 2D?

It is common to assume at least four distinct length
scales comprising concrete: structural, mesoscale, mi-
croscale and nanoscale. At the structural length scale,
concrete is treated as homogeneous and elastic or
elasto-plastic, and linear elastic fracture mechanics is
considered applicable for some geometries.

At the mesoscale it is common to include three
material phases: aggregate, mortar, and the interfa-
cial transition zone (ITZ) between them. The consen-
sus is that models of this length scale span volumes
with edge length O(102mm). The microscale is con-
sidered to be the hardened cement paste with char-
acteristic edge length O(10−1mm). The discontinu-
ities at the microstructural length scale are capillary
pores. Finally, the nanoscale describes hardened ce-
ment gel containing nano-pores (Zaitsev & Wittmann
1981, Cusatis et al. 2006).

We will attempt to show that these lenses are not

separate, but rather align, like the multiple lenses in
a telescope, each with its own function designed to
contribute to a clear and bright image. Carrying this
analogy forward, in the last part of the paper we will
attempt to rotate this telescope around so that we are
peering into the future of ComFraMCoS.

2 LENS OF COMPUTATIONAL RESOURCES
The field of ComFraMCoS has been relatively lim-
ited in its scope of investigation due to the perceived
computational demands, viewed broadly, of the mod-
els developed. Unlike some of our sister disciplines,
we seem to have been more self-saddled by an appar-
ent lack of, or lack of will to use, computer power.
It is our opinion that this inexplicable malaise can be
traced back even to the introduction of smeared crack-
ing to avoid the perceived cumbersome and computa-
tional demanding geometrical representation of even
a single crack.

Indeed, the most detailed, 3D, mesoscale simu-
lations, which include the most elaborate material
models with the best available physics, are still in-
tractable in any material system, but at least in-
vestigators in many other material systems are try-
ing (McDowell et al. 2003, Attinger & Koumout-
sakos 2004)! It is the responsibility of the Com-
FraMCoS research community to underpin the prac-
tice community with ever-increasing understanding
of fracture processes and ever-improving means of
injecting this understanding into analysis, design,
repair, and forensic efforts. “Ever-increasing un-
derstanding” means more science and less guess-
ing/simplification/approximation/empiricism. There-
fore, we cannot allow our vision to be limited by the
PC on one’s desk. In the U.S., for example, the Na-
tional Science Foundation (NSF) has established the
TeraGrid (www.teragrid.org), a computing grid with
near-petaflop scale computers, high-bandwidth con-
nectivity, petabyte storage, and exotic visualization
capabilities, all on a relatively low-traffic 10 Gbps
network. Why are ComFraMCoS researchers not us-
ing the TeraGrid? Possible answers include:

1. We have never built models that need such awe-
some capability. But at one end of the length
scale spectrum, surely we have concrete struc-
tures with high geometric complexity, dynamic
and stochastic boundary conditions, and com-
plex cracking events to demand such capability.
At the other end of the spectrum, surely we have
concrete material which, at the mesoscale and
below, has high geometric complexity, stochastic
properties, coupled-physics phenomena at work,
and exquisitely exciting cracking processes to
also demand such simulation capability.

2. A perception that there is overwhelming over-



head in creating and deploying the software com-
ponents that can use such capability advanta-
geously: the risk is too high compared to the
possible reward. But, our community need not
be overwhelmed by such fantastic capabilities.
There is a huge and ever-widening gap between
what’s on the desktop and what is on the Tera-
Grid, and there is plenty of opportunity in be-
tween to begin to grow the software and in-
crease model complexity to use cyberinfrastruc-
ture more effectively.

3. A perception that our current models are “good
enough” for practice. But, this answer begs the
question, because it cuts off the principal respon-
sibility of the research community cited above.

It is important to remember that what once was in-
tractable is now commonplace; what once took days
on massive supercomputers can now be done in a few
seconds on one’s laptop. This trend is destined to con-
tinue, and the field of computational mechanics will
be able to perform elaborate, multiscale, multiphysics
simulations previously only imagined. Why not Com-
FraMCoS?

3 LENS OF SOFTWARE
Our ComFraMCoS community has been a wellspring
of innovation in software and algorithms for rep-
resentation of cracking, and for constitutive mod-
els for cracking. In the former category, we have
given, or significantly aided the computational frac-
ture community in the development of the follow-
ing, in roughly chronological order: smeared crack-
ing; discrete cracking with adaptive remeshing; parti-
cle and lattice models for cracking; meshfree crack-
ing; and enriched element cracking.

In the latter category of achievements, ComFraM-
CoS researchers have made vital contributions to: fic-
titious cracking concept and cohesive zone models;
non-local plasticity; and damage mechanics.

However, with all these sterling innovations to our
credit, what have they added to our fundamental un-
derstanding of cracking processes in concrete? For
example, what new physical insights at the micro or
meso length scales have arisen from application of
meshfree or enriched element methods?

Surely, these approaches have made model genera-
tion easier, and they should be setting the stage for
development of multiscale, multiphysics simulation
systems that themselves can perform within TeraGrid-
like environments. In our opinion, the principal rea-
son for creating and applying multiscale simulation
systems is to expose the sources of variability origi-
nating with the material structure at the lower length
scale, and to carry this variability upwards to discover

its effect on variability of strength at the upper, struc-
ture scale. When such a process starts at the micro or
meso scale, there will likely be a requirement to rep-
resent multiple 3D cracks, to propagate these under
as-yet-undiscovered rules of rate and shape change,
and to investigate the effects of variability of the ge-
ometry and material properties on the resulting evolu-
tion of the cracks at such a scale, using, for example,
Monte Carlo-like approaches. Feedback to the struc-
ture scale would then ensue, and this iterative process
would be continued to a desirable termination state.
Figure 1 shows the qualitative process for such a mul-
tiscale simulation where the major steps are separated
into A, B, C, D and E. In Step A, the structural model
is analyzed and a critical region identified. In Step B,
local boundary conditions are extracted for placement
on the model to undergo higher resolution analysis.
In Step C, the local model is analyzed to produce the
needed fields. In Step D, the cracking criterion is en-
forced. In Step E, the continuum constitutive model is
updated to reflect the response of the local model. The
system outlined in this flowchart begs for a TeraGrid-
class environment.

Figure 1. Flowchart describing a multiscale simulation
with information flow between length scales

4 LENS OF PHYSICS
In general, the appearance of a crack in a structure
and its growth through loading spans multiple time
and length scales. A major focus of past research
has been to observe the mechanisms of crack growth
across some length scales and use these observations
to develop more accurate models of structural be-
havior. However, because of difficulties in observ-
ing and simulating phenomena at lower length scales,
we often resort to simplified mechanics, rather than
purely physics-based models. For example, Figure 2
shows two distinct length scale views of concrete, mi-
croscale (top) and mesoscale (bottom). The cracking
processes in Figure 2 (bottom) have been simulated
using continuum mechanics-based models for consti-



tutive behavior and limit states in the hardened ce-
ment paste, aggregate and the interface zone. How-
ever, this is clearly not a best physics-based approach.
Figure 2 (top) shows the lower scale at which, even
more fundamentally, the cracking process takes place
amidst C-S-H rods and other microstructural features.
While researchers in other materials systems are anal-
ogously creating simulation capability at both of these
scales, to the best our knowledge the CoMFraMCoS
community is not yet at work at the lower length scale
of Figure 2 (top). It is important to consistently seek
the most fundamental understanding of the phenom-
ena in a material system in question so that compre-
hensible, physics-based models can eventually be de-
veloped.

Figure 2. Two distinct length scales of concrete: microscale
(top, Stutzman 2001) and mesoscale (bottom, Roels et al.
2002).

As will become clear through the next section, the
Lens of Practice, size effect on the nominal tensile
strength of concrete is crucially important to con-
crete structure design. Size effect, like any other ob-
served phenomenon, can be explained through mod-
eling and simulating the fundamental processes of
concrete cracking. However, before the discussion of
current size effect models, important understanding
gained through experimental observation is discussed.
This will give a good perspective of how knowledge
gained from observation is incorporated within cur-
rent models and design practice. The following sec-
tion describes briefly the driving mechanisms of con-
crete fracture incubation, nucleation, and localization
of dominant cracks.

4.1 Important experimental observations
As summarized by Slate & Hover (1984), concrete
material response is largely dependent on cracks, even
under multiaxial compression loading, that incubate,
nucleate and propagate during curing and loading.
The mesoscale, Figure 2 (bottom), is the focus of the
following discussion since most experimental obser-
vation and computational modeling have occurred at
this scale. As described in our introduction, it has
been observed that the ITZ is the main crack initia-
tion site for curing concrete and the “dominant mech-
anism in concrete fracture” (Vervuurt & van Mier
1995). Each of the constituents in the mesoscale un-
doubtedly affects the response to loading; but, what
exactly are those effects and how are their individual
responses coupled? From past observation, it is well-
known that crack incubation, nucleation and propaga-
tion play a dominant role in concrete response to load-
ing (Kotsovos 1979, Ditomasso 1984, Vervuurt & van
Mier 1995, van Mier 1997).

Cracks begin at the lowest length scales and grow
through loading, residual or applied. Depending on
the material system, these cracks may nucleate in par-
ticles, composite constituents, or among many other
possibilities along naturally arising interfaces. Often,
cracks are introduced before loading takes place; such
cracks are termed preloading cracks. One example of
a preloading crack location is at the aggregate-matrix
interface on the mesoscale. Estimates from numeri-
cal techniques suggest that tensile stresses as high as
1800 psi can exist at these interfaces due to shrinkage
strains alone (Slate & Hover 1984) and cause crack
formation along interfaces before loading. Since these
cracks develop on the aggregate length scale, they are
termed here as mesoscale cracks.

Such initial mesoscale cracks are the traditionally
observed beginning of cracking in concrete. Upon
loading, existing interface cracks start to grow and
new cracks are incubated and nucleated in the aggre-
gate and cement matrix. A typical stress-strain plot of
concrete shows that the response remains relatively
linear up to approximately 30% of the ultimate ap-
plied load. This linear behavior implies that crack
formation and growth during this period is minimal.
As inherent cracks propagate and new cracks are in-
cubated and nucleated, the available load paths are
reduced; as a result, stress on the intact load paths
is increased and the concrete begins nonlinear, in-
elastic response. Overall, it is evident from experi-
mental observation that cracking during curing and
loading dominates the shape of the concrete response
curve. Therefore, the many mechanisms by which
mesoscale cracks incubate, nucleate and propagate
can and should be incorporated in models to simulate
the bulk material and structural behavior.

From past observations of the mesostructure, it has



become clear that the nonlinear response of concrete
is due to the strain localization caused by microcrack-
ing (Bažant et al. 1998). From linear elastic fracture
mechanics (LEFM) much of the ability to predict the
fracture process comes from the assumption that the
fracture process zone (FPZ) is much smaller than a
characteristic structural length. The FPZ, in concrete,
is characterized by a softened zone near a structural-
scale crack tip where tensile stress has exceeded the
nominal tensile strength and significant localization
of mesoscale cracking has occurred (van Mier 1997,
Bažant et al. 1998). The cracks causing softening in
the FPZ coalesce with the structural-scale crack as
it propagates through the FPZ. If a significant FPZ
is present, i.e. the FPZ is not negligible when com-
pared with the structural dimensions, there will exist
a size effect on the structural response characteristics
that must be considered (Bažant 1992). By size ef-
fect, it is meant that structures that are different in size
will exhibit different material properties even when
the structures are fabricated using the same material
and are geometrically similar (Atkins 1999). From ex-
perimental observations of fundamental mechanics of
concrete, the size effect can be modeled, in full detail,
to both increase understanding of these fundamental
mechanisms and to improve structural reliability and
efficiency. Currently, we resort to empirical methods
as outlined in the following section.

5 LENS OF PRACTICE
In general, research in the form of detailed analy-
ses and simulations is directed at improving design
codes and overall understanding, which are of ut-
most importance to structural engineering of con-
crete structures. Usually, because of a time constraint,
completely detailed analyses are not feasible and the
general code equations guide the engineer along a
quicker, more conservative path to a safe design. Con-
sidering the application of fracture mechanics to the
design of concrete structures, here are two key ques-
tions:

1. Why is detailed analysis/simulation of cracking
in concrete necessary? If a concrete structure has
developed cracks that are subject to forensics or
repair (Ingraffea et al. 1995), then it is unclear
how overarching code equations could possibly
be developed. In such cases, detailed analysis
must be carried out where a code would only be
sensible as a guideline for acceptable methods;
and

2. Why are simplified, fracture mechanics-based,
design equations necessary? For design of con-
crete structures, a globally accepted size effect
theory would provide a more exact means to ex-
trapolate strength characteristics to large scale

structures that are too costly or impossible to test.
The size effect causes structures to act less duc-
tile as size increases. Currently, a simple linear
extrapolation based on the compressive fracture
strength of laboratory-sized specimens exists in
the ACI code, possibly resulting in unconserva-
tive designs (Bažant et al. 2005). Because of this
potentially dangerous situation, the inclusion of
the size-effect concept in the design of concrete
structures would be beneficial.

For the range of possible applications of fracture
mechanics in concrete structure design codes it is
postulated that: for cracked structures, usually in the
arena of forensics or repair, detailed analysis should
be required where the crack(s) are represented so that
stress and strain fields can be correctly computed;
and for more typical design of large concrete struc-
tures, general code equations accounting for the size
effect should be utilized. By not accounting for the
size effect, crude estimates for the nominal tensile
strength of very large concrete structures, by a sim-
ple extrapolation of gathered data from smaller con-
crete specimens, overestimates the nominal tensile
strength for concrete by up to 80% (Bažant et al.
2005). The inclusion of a size effect equation to more
correctly predict structural strength would effectively
introduce some knowledge of fracture mechanics into
concrete design, improving structural reliabilty and
efficiency (Hillerborg 1989).

The well-known weakest link model, which as-
sumes that failure occurs at the onset of a macroscopic
crack in an element, is the classical explanation of the
size effect. The model is problematic since, among
many other reasons, it does not account for the local-
ization of mesoscale cracking in the FPZ. However,
size effect on structures failing at the nucleation of a
macroscopic crack, with a negligible FPZ, can be ex-
plained well by the weakest link model (Bažant 1992,
Bažant 1995). Since the ratio of FPZ size to structural
dimension is important to crack growth, there needs
to be consideration of this influence on size effect.
The following theories account for this ratio through
a modified cohesive zone model, which is ignored in
the weakest link model.

Currently, there are many theories correlating the
size effect with fracture mechanics. In the modeling
of size effect, three models are attractive: energetic-
statistical; multifractal scaling; and the two-parameter
cohesive crack model. These theories, although com-
parable for structural scales that are at or near the gen-
erally tested domain (Planas et al. 1995), differ at very
large structural scales, the scales which are subject to
representation through a size effect model. Because of
their differences at these critical length scales, knowl-
edge of the concepts and assumptions that define the
three models is important.



5.1 Energetic-statistical theory for size effect
The energetic-statistical theory for the size effect
on material characteristics, such as nominal tensile
strength, is a combination of both a Weibull (weakest-
link) statistical distribution and a deterministic, ener-
getic approach (Bažant et al. 2005). This approach
has its origin in the cohesive crack model of Hiller-
borg (Hillerborg et al. 1976). The combination of the
two theories provides the ability to match asymp-
totic behavior of very large and very small struc-
tural scales. For this theory, there are two separate
equations modeling the size effect in a SEN(B) beam
specimen that represent three major cases: structures
having large fatigue cracks or notches with signifi-
cant FPZ; structures failing immediately after crack
and FPZ formation; and structures experiencing sta-
ble crack growth with nonzero stresses in the FPZ.
The first and third cases are represented by:

σN = Bft

[
1 +

D

D0

]− 1
2

(1)

where σN is the nominal strength of the beam, B is a
constant depending on the cracked structural geome-
try, ft is the tensile strength, D is the beam depth and
D0 is dependent on, among other things, beam depth,
width and initial crack length (Bažant et al. 2005). It is
assumed in the derivation of this equation that the ra-
tio of crack length, a, to beam depth, D, is a constant,
which enforces a geometric similarity condition for
tested structures and design components that depend
on the size effect rule. This means that, in order to
make a sensical prediction of the nominal strength of
a beam that is too large to test, one must test a geomet-
rically similiar specimen in the lab. To support the as-
sumption that a test specimen is geometrically similar
to the large-scale structure, verification using a com-
putational model is suggested (Bažant et al. 2005).

For the case of failure at crack formation, the size
effect is represented by:

σN = σα

[(
Db

ηDb + D

) rnd
m

+
rDb

ηDb + D

] 1
r

(2)

where r, η,nd, and m are empirical constants, Db is
the thickness of the cracked layer of the tension face
of the beam and σα is dependent on, among other
things, beam depth and width (Bažant et al. 2005).
This case is not dependent on a crack size since it is
assumed that the structure is failing at the first appear-
ance of a crack.

5.2 Fractal theory for size effect
The fractal theory for the size effect of material
strength is based on the hypothesis that fractal fea-
tures of a fractured material can be linked to ma-
terial characteristics (Carpinteri 1994, Carpinteri &

Ferro 1994). Consequently, by using the fractal the-
ory, the material characteristics are scale-invariant
and are expressed in noninteger dimensions. The frac-
tal dimension is a nondimensional quantification of
the tortuosity of the cracked surface at various res-
olutions (Carpinteri 1994, Carpinteri & Ferro 1994).
It is the contention of supporters of this theory that
the constraints imposed by formulating the size ef-
fect within Eulerian space, namely that of integer di-
mensions, must be lifted. By utilizing fractal theory,
the integer dimension constraint is lifted and material-
dependent constants can be expressed in terms of non-
integer spaces (Carpinteri et al. 1999).

The fractal theory also builds on the cohesive crack
model proposed by Hillerborg to account for the FPZ
and produces a scale invariant, cohesive crack model.
Classically, self-similar fractals were the widely uti-
lized fractal sets; however, self similar fractal patterns
are not able to capture the size effect at large length
scales (Carpinteri et al. 2006). Consequently, theory
for self-affine fractal sets has been used to extend the
cohesive crack model, which enables the fractal the-
ory to capture the size effect at large length scales.

The three material parameters that are included in
the cohesive crack model are nominal tensile strength,
fracture energy and critical displacement or strain. In
the fractal theory, the size effect on each of these pa-
rameters is initially considered separately and then
coupled in a final step (Carpinteri et al. 2006). For
an intuitive, specific example of the fractal theory
for size effect on fracture energy, consider a cracked
concrete block loaded in simple tension (Carpinteri
et al. 2006). As the crack grows the work of fracture
is, based on the cohesive crack model, calculated as
Gf × b2 where Gf is fracture energy and b is the block
width and depth. This is obviously an idealization for
the case of concrete, since the crack surface is not ac-
tually flat. The fractal theory represents a crack face
tortuosity by employing a fractal pattern, determined
from experiment, to obtain the crack surface fractal
dimension (sometimes called the crack face rough-
ness). From the observation of fractal features on a
fractured surface, the fractal dimension is found and
the fractal work of fracture is expressed as G∗f × b∗,
where G∗f is the fractal fracture energy now scale-
invariant, unlike Gf , and b∗ is the fractal area, which
is approximately b2+fdim , where fdim is the fractal di-
mension of the fractal pattern. In the fractal theory,
the size effect on nominal tensile strength, fracture
energy and critical strain are interdependent; there-
fore, in order to achieve a model for all three, any
two must be computed independently and the third
is found through their relationship. (Carpinteri et al.
2006).

To provide qualitative comparison with the other
theories, the multifractal scaling law can be written



as:

σN = ft

[
1 +

lch
D

] 1
2

(3)

where lch is a constant, characteristic length of the
material and D again is a typical structural dimen-
sion (Carpinteri et al. 2006). The characteristic length,
lch, is a representation of the microstructural disorder
for the material and defines the transition scale be-
tween the fractal scale to the Euclidean scale.

Comparing Equation 3 with 1, it is seen that both of
the theories use a power law to express the size effect.
In fact, these theories, although fundamentally very
different, produce very similar predictions of size ef-
fects. This similarity especially holds for structural
sizes below the aforementioned lch transition scale of
the fractal theory (Planas et al. 1999).

5.3 Two-parameter theory for size effect
The two-parameter theory for size effect is built en-
tirely on the concept of a cohesive crack (Planas et al.
1995, Planas et al. 1999). The cohesive zone con-
cept represents the processes occuring in the FPZ as
a fictitious crack surface with a representative stress
transfer between crack faces still occurring within the
FPZ. Initially proposed by Dugdale and Barrenblatt,
Hillerborg extended the concept of a cohesive crack
to concrete without the restriction that a structural-
scale crack had to exist. Since this model represents
the softening due to cracking in the FPZ, the soften-
ing regime of the loading response for concrete must
be parameterized. It turns out that using two parame-
ters, namely the nominal tensile strength and w1, both
shown in Figure 3, a size effect equation can be de-
duced by composing two separate laboratory experi-
ments (Bažant et al. 1998).

The two-parameter theory, detailed by Bažant et al.
(1998) and Planas et al. (1999), is an iterative, inverse
method that can be reduced to the simple procedure
given as:

1. The mean splitting tensile strength, f̄st, is ini-
tially approximated using results of a Brazilian
splitting tensile test.

2. The mean flexural strength, f̄f , is measured from
SEN(B) specimens with an initial notch length,
a0, and typical structural dimension D.

3. The characteristic material length, l1, is calcu-
lated from a cohesive zone model as:

l1 = κD

[
13.11

(x2 − 1)2
+

2.68

x

]
(4)

where κ = 1− α1.45
0 , α0 = a0

D
, x = (η0

ft

ff
)2 and

η0 = 3(1− α0)
2.

Figure 3. Linear approximation of softening made by two-
parameter model (Planas et al. 1999).

4. From the results of the previous step, calculate
D
l1

and use the closed-form expression for size
effect based on the cohesive zone model:

ρ =
fst

ft

=
1

c1 + c2
D
l1

+ c3 (5)

which was developed by Rocco et al. (1999). Op-
timum values for c1, c2 and c3 are given therein
for D/l1 on the interval [0.4,10] and various ra-
tios of bearing strip width to structural dimen-
sion, D. It was found that the width of the bear-
ing strips had a large effect on the splitting ten-
sile strength, f̄st (Rocco et al. 1995, Rocco et al.
1999).

5. The value for nominal tensile strength is now up-
dated by f i+1

t = f i
t/ρ where i is the current iter-

ation and f i=0
t = f̄st.

With an updated value of ft, a new characteristic
material length, l1 must be recomputed and, conse-
quently, an iteration of steps 3 - 5 is required for in-
creased accuracy. As noted in (Planas et al. 1999),
when f i+1

t − f i
t > 2% further iterations are fruitless

because of the accuracy of the closed-form solutions
utilized in step 3.

6 LENS OF DIMENSIONALITY
The Lens of Dimensionality incorporates both the
length scale of the simulation, as well as the spatial
dimension of the simulation, 2D or 3D. In this sec-
tion, we review the contributions of other researchers
as they have begun to burrow down scale from the
structural scale. It so happens that the spatial dimen-
sion of investigation becomes interspersed in the dis-
cussion about length scale.



The mesoscale is where the largest body of liter-
ature for the Lens of Dimensionality can be found.
Consequently, this length scale will be the focus
of this section. Discretization in these models con-
tributed to the largest variety in the literature, and,
thus, the largest discrepancy of the treatment of frac-
ture, as will be discussed. Typically, if the micro- and
nanoscales are included, it is only phenomenologi-
cally through effective material models.

6.1 The mesoscale
As indicated, the majority of work done in computa-
tional fracture mechanics of concrete, at length scales
other than the structural, has been focused on the
mesoscale. The efforts have only recently turned to
three-dimensional representations of the mesoscale.
To model the mesoscale, a geometry must be gener-
ated, the domain of that geometry must be meshed,
the elements of that mesh must be given rules govern-
ing their constitutive behavior, and boundary/initial
conditions must be assigned.

6.1.1 Geometry of the mesoscale
Generation of realistic mesostructural geometry re-
quires considerable discussion. Typically, generating
the geometry is a two-step process. First, a represen-
tative aggregate geometry is generated independent of
location. In the second step, the aggregate is placed in
the study volume in a random location. This process is
commonly referred to as the take-and-place method.

The aggregate size is described by a cumulative dis-
tribution known as the Fuller curve, and given by

F (d) =

(
d

dmax

)α

(6)

where d is a characteristic dimension (eg. diameter
for a sphere), dmax is the largest value of d (eg. sieve
size), and α is an exponent that controls the degree of
fineness (for concrete α ≈ 1

2
). There are a number of

schemes in the literature that use the Fuller curve to
guide the gradation of the set of aggregates (e.g. Zait-
sev & Wittmann 1981, Cusatis et al. 2006). In partic-
ular, Häfner et al. (2006) give the number of spherical
aggregate within the size range [d1, d2] in a 3D model
as

N [d1, d2] =

(
α

α− 3

)(
6(dα−3

1 − dα−3
2 )

π (dmax)
α

)
Vagg (7)

where d1 and d2 are bounds on the characteristic di-
mension, and Vagg is the total volume of aggregate in
the specimen. Furthermore, the characteristic dimen-
sion in the range [d1, d2] is randomly generated by

d =
(
X1

(
dα−3

2 − dα−3
1

)
+ dα−3

1

) 1
(α−3) (8)

where X1 is a uniformly distributed random num-
ber on the interval [0,1]. For two-dimensional studies,
special care must be taken to adjust the Fuller curve
to give aggregate diameter (Wittmann et al. 1985).

An algorithm to generate the mesostructure using
Equations 7 and 8 would first determine Vagg based
on the percentage of aggregate content in the mix de-
sign. Then the a minimum aggregate size, dmin, would
be chosen based on the fidelity of the model desired,
and a maximum aggregate size, dmax, would be deter-
mined based on the sieve size. Next, a suitable num-
ber of discrete intervals on [dmin, dmax] would be cho-
sen and for each interval the following operations per-
formed:

1. use Equation 7 to determine the number of
aggregates in this interval, N

2. take a random characteristic aggregate using
Equation 8

3. place the aggregate at a randomly generated
position and check for overlapping

4. repeat steps 2 and 3, N times

Up to this point in the discussion, the morphology
of the individual aggregate has been assumed spher-
ical. Gravel aggregates are characterized by smooth
surfaces, and can be closely approximated with spher-
ical or ellipsoidal geometries. Crushed gravel aggre-
gates, on the other hand, have more complex geom-
etry with sharp corners that, when embedded in a
heterogeneous structure, create stress concentrations.
There is no hope of reproducing accurate fields with
a computational model that does not realistically rep-
resent the geometry. Hence, an attempt to account for
aggregate morphology is important in the model.

An analytical expression to modify the morphology
of the sphere is given by∣∣∣∣ x

r1

∣∣∣∣n +

∣∣∣∣ y

r2

∣∣∣∣n +

∣∣∣∣ z

r3

∣∣∣∣n = 1 (9)

where, if n = 2, the ri are the semiaxes of an ellip-
soid (Häfner et al. 2003). Figure 4 shows the conse-
quence of different values of n, and shows that Equa-
tion 9 could work well to represent the geometry of
gravel aggregate. However, additional methods must
be considered to obtain the sharper corners present in
crushed-stone.

In two-dimensions, a Fourier series can be
used to represent the surface of roughened aggre-
gates (Wittmann et al. 1985). In this approach, the
boundary of the aggregate is represented by a set of
vertices given in polar coordinates originating at the
center of mass of the aggregate. The polar coordinates
of each vertex are then described based on measure-
ments of actual aggregate used in the mix. A three-
dimensional analog to this is proposed in which spher-
ical harmonics are used to extend the Fourier series



Figure 4. Variations on ellipsoids using Equation 9 with
n = 5,2 and 0.7 (Häfner et al. 2003).

idea (Garboczi 2002). In this reference, x-ray com-
puted tomography is used to obtain voxelated descrip-
tions of aggregates from an actual cured specimen.
Then, the voxels are used to obtain spherical coordi-
nates of a set of surface vertices. Figure 5 shows the
voxelated description of one aggregate (top) and the
representation based on its spherical expansion (bot-
tom).

Figure 5. A digital image obtained through x-ray tomogra-
phy of an aggregate (top). The spherical harmonic expan-
sion of the aggregate (bottom) (Garboczi 2002).

It should be noted that the digital image in the top
of Figure 5 could easily have been taken at higher
resolution. Also, we would like to point out that x-
ray tomography is unnecessary if a statistical analy-
sis of the aggregates were performed prior to pouring.
Other, less costly, digital imagery could be used, and a
database of aggregate sources from different geologi-
cal regions could be maintained.

6.1.2 Discretization of the mesoscale
The vast majority of computational modeling of con-
crete at the mesoscale has been done using the finite
element method to solve the boundary value prob-
lem. Thus, a discretization of the domain is neces-
sary. There are two general approaches used to dis-
cretize the domain: a digitized discretization, and a
domain conforming discretization. In the digitized
discretization the mesh is created independently of the
mesostructural geometry and then superposed onto

the mesostructure. Thus, elements could overlap the
domain of multiple phases. In the domain conforming
discretization, the mesh is chosen so that the geometry
of the mesostructure is preserved. For this discretiza-
tion, the geometry of the mesostructure necessarily
has to be generated before meshing, and individual
elements belong to the domain of only one material
phase.

There are also two general classes of elements used
to connect the spacial discretization: one-dimensional
elements, and continuum elements. When one-
dimensional elements are used, the nodes in the mesh
are connected with spring, truss or beam elements.
The continuum elements are 2D or 3D elements cho-
sen to match the dimension of the space of their do-
main. For example, in a two-dimensional mesostruc-
ture model, triangular or quadrilateral elements are
used to discretize aggregate or mortar, while 1D in-
terface elements are used at the ITZ.

To completely describe the connectivity of the fi-
nite element model, a discretization method must
be coupled with a choice of elements. There are
mesostructural models in the literature that use all
four of the possible combinations: a digitized domain
with one-dimensional elements (DD1D); a domain
conforming discretization with one-dimensional ele-
ments (DC1D); a domain conforming discretization
with continuum elements (DCnD); and a digitized do-
main with continuum elements (DDnD). Discussion
of the combination of choices is left to the following
section where the results of some of the models are
also discussed.

6.1.3 Mesoscale results from the literature
Much work has been done in two-dimensions with
the DD1D approach. The most popular choice of el-
ement, in this case, is the Euler-Bernoulli beam ele-
ment (Schlangen 1993). In these models, known as
lattice models, the domain is arbitrarily discretized
into a grid of beams. Subsequently, the mesostructural
geometry is projected onto the grid and element prop-
erties are assigned depending on the mesostructural
feature that projects onto them. Figure 6 shows the
projection of the mesostructure onto the grid of ele-
ments.

Studies were performed to determine the optimum
characteristic beam length (mesh size) and orienta-
tion. A pseudo-fracture criterion was used, whereby
an element in the lattice was removed when the ax-
ial stress exceeded a specified tensile strength. Beams
were linear elastic until fracture. The use of beam el-
ements versus, say, truss elements assisted in the sta-
bility of the structure upon element removal, and gave
more realistic predicted crack shapes. Finally, the im-
pact of including the rotational degrees of freedom of
the beams, i.e. bending, was studied. It was concluded



Figure 6. Mesostructure projected onto a lattice of
beams (Lilliu & van Mier 2003).

that the bending degrees of freedom were required for
the best results (Chang et al. 2002).

With the simple axial stress fracture criterion, the
uniform grid was shown to bias the fracture pat-
tern (Schlangen & Garboczi 1996). An attempt to
eliminate the mesh bias using a randomly generated
lattice showed improvement, but was not totally suc-
cessful. Consequently, an effective nodal stress was
determined based on the sum of the axial and shear
forces at a node (Schlangen & Garboczi 1997). With
the sum of forces, a plane which maximized its nor-
mal force was determined and the area of the con-
necting beams projected onto that plane. The effec-
tive nodal stress was then determined as this normal
force divided by this projected area and used in the
fracture criteria for each beam. The same study used
a scanning electron micrograph and image process-
ing to model an actual specimen. The results showed
good qualitative agreement with observed crack pat-
terns; however, the mesostructural models reacted in
a more brittle manner than the experiments.

In one interesting DD1D study, the lattice model
was used to answer some important modeling
questions about the inherent stochasticity of the
mesostructure. The consequence of explicitly mod-
eling the mesostructure versus using a uniform lat-
tice with randomly distributed strength was investi-
gated. Two random distributions were investigated,
Gaussian and Weibull. The result showed that the cor-
rect cracking response could not be reproduced with
Gaussian distribution of strength; the Weibull distri-
bution did better; but, neither was as accurate as ex-
plicitly representing the mesostructure (van Mier et al.
2002).

Finally, lattice models have been recently extended
to 3D mesostructures in uni-axial tension (Lilliu &
van Mier 2003). In general, the 2D methods were eas-
ily extended; however, the effective nodal stress was
not used. Rather, for 3D they returned to the com-
parison of beam axial stress to strength. A parallel
processing algorithm was used to accommodate the

size of the problem. Here again, qualitative agreement
was found for crack paths and peak load. However,
the load-displacement curve shows an unrealistically
large, unstable energy release immediately following
the peak load.

There is also a body of work which uses the DD1C
approach. The original effort, for two-dimensional
mesostructures, linked the center of the aggregates
with truss elements and used tributary areas and a
springs-in-series model for the stiffness (Bažant et al.
1990). In this work, known as a particle model, a bi-
linear stress/strain law was used to model fracture in
a similar fashion to the well-known fictitious crack
model. The fracture energy Gf and element length
were used to tune the softening branch of the curve.
The model worked quite well. For a set of virtual
uniaxial tension specimens, the results conformed to
Bažant’s size effect model (refer to Eqn. 1). Similar
agreement was found for a set of virtual SEN(B) spec-
imens. This agreement is to be expected since both
the numerical model and the size effect model are
based on the fictitious crack model. Consequently, al-
though the numerical data closely reflected the predic-
tions of the size effect model, they did not closely re-
produce experimental results. This discrepancy could
be a result of idealizing the mesostructure as two-
dimensional, or perhaps more care was necessary in
generating the mesostructure and assigning material
properties to the truss elements.

The DC1D particle model has evolved into a three-
dimensional model of spring members which include
shear, major axis bending, and mid-length trans-
lational degrees of freedom (Cusatis et al. 2003a,
Cusatis et al. 2003b). In this model, the stiffness
properties are assigned based on the tributary volume
of a lattice member. A recent improvement uses a
Voronoi-type tessellation to assign stiffness properties
that more closely reflect the mesostructure (Cusatis
et al. 2006). Additionally, fracture, friction and deco-
hesion are now included in the constitutive relations.
With these improvements, the validation of the parti-
cle model reveals close agreement with observed ex-
periments.

A two-dimensional digitized domain with two-
dimensional elements (DDnD) has been investigated.
In this investigation, the multigrid method is used to
allow a fine grid that could represent the mesostruc-
ture (Häfner et al. 2006).

Finally, some of the original computational inves-
tigations into the mesostructure of concrete used do-
main conforming, two-dimensional elements (DCnD)
to compute the effective elastic modulus and the ef-
fective diffusion coefficient (Wittmann et al. 1985).
The same approach was extended later to predict
fracture in direct tension specimens (Sadouki &
Wittmann 1988). In these investigations, the fictitious



crack model was used in the mortar phase and in-
terface elements, with a softening rule and friction
implemented on the interface between phases. The
load-displacement response was reasonably predicted
with this model, and cracking patterns qualitatively
matched experimental data. More recently, this inves-
tigation was carried further with the implementation
of an advancing front meshing algorithm and an addi-
tional fracture criterion (Wang et al. 1999, Kwan et al.
1999). This is interesting work, but needs to be further
developed and validated.

The implementation of DCnD models to study
physical behavior of the mesoscale has fallen into dis-
favor. This is largely because of the perceived diffi-
culty in meshing and threat of exorbitant computa-
tional expense. However, the successful 20-year-old
works cited above seem to suggest that mesoscale
modeling of concrete with domain conforming dis-
cretization and continuum finite elements is quite fea-
sible. In fact, Figure 7 shows the computational model
of a polycrystalline microstructure.

Figure 7. A geometry model of a two-phase polycrystal
including 134 grains and 28 second-phase particles (top).
The meshed model (bottom).

The dimensions of the model in Figure 7 are 76µm
x 152µm x 380µm and it has 134 separate grains with
28 second-phase particles. The finite element model
contains 3.6 million quadratic tetrahedra. The mesh-
ing was performed automatically in serial in a little
over an hour. One can compute the stress and strain
fields within this polycrystal using a polycrystalline
plasticity constitutive rule (Matous & Maniatty 2004)
in parallel with 240 Intel Xeon 3.6 GHz processors in
about 64 hours up to 1.0% strain.

6.2 Multiscale simulation
Multiscale simulation can mean many things to many
people. At a bare minimum, it means incorporating
the physical phenomena of lower length scales into
a higher length scale model (Lackner et al. 2004).
A most robust multiscale procedure would allow in-
formation to flow from the continuum scale down to
the lower scales, and the evolving material response
would percolate back up. Currently, there does not
appear to be any work being done using such an ap-
proach in concrete materials. We hope we are wrong
on this observation. However, one of the original in-
vestigations into lower length scale analysis of frac-
ture in concrete considered it to be “a multi-level
hierarchy-system” (Zaitsev & Wittmann 1981). In this
model, analytical stress intensity factors were used
with the geometrical features of multiple length scales
to determine realistic cracking patterns in concrete
compression specimens.

This novel concept should inspire us today. Where
could we go if a hierarchical multiscale scheme could
determine, with a fast, first-order tool, where strain
localization would most likely occur? What if, then,
in those locations, a computational tool could burrow
down scale and simulate the mechanics and physics
of the meso-, micro- and even nano-length scales to
determine the patterns of microcracking and predict
the consequence? What if this system could be auto-
mated to allow engineers with solid practical skills to
use such tools?

7 CONCLUSION
Fundamentally, fracture is the development of new
surface area. Clearly, in the limit, this means the
separation of the bonds between previously attracted
atoms. To accurately simulate crack incubation, nu-
cleation and growth, then, it is reasonable to assume
the best place to start would be at the atomistic length
scale. Obviously, this would lead to a great deal of
practical difficulty; we cannot, at present, model ev-
ery atom in an entire reinforced concrete structure.
However, we can begin to reduce the length scale of
investigation, as many researchers have done in other
material systems.

The Lens of Physics observed the physical phe-
nomena responsible for size effect by focusing on
substructural length scales, down to the microscale.
This cracking is a direct result of the stochastic nature
of the meso- and microstructure; this cracking is dif-
fuse and is virtually guaranteed, often occurring as a
result of curing even before mechanical loading.

The Lens of Practice described several empirical
approaches to capturing size effect. The approaches
require the use of computational models as guidance.
Specifically, the computational models should be used
to validate the assumption of geometric similarity be-



tween the design structure and the test specimens sup-
porting the equations. Also, size effect models ideal-
ize all structures as beams or columns and assume
structural analysis is the result of Euler-Bernoulli
beam theory; stresses are the result of shears and mo-
ments. Currently, the size effect is restricted to bend-
ing stress and does not include arbitrary stress in arbi-
trary geometry. Furthermore, there is some disagree-
ment in the literature as to which of these is the most
fundamentally justifiable. However, it is clear that no
empirically-based approach can ever capture the fun-
damental physical behavior.

Through the Lens of Dimensionality, it seems
promising that the true nature of the physical phenom-
ena known as size effect can be captured and simu-
lated using a multiscale approach. Size effect is, af-
ter all, a result of strain localization due to distributed
microcracking. A multiscale framework that explic-
itly reproduces the stochasticity of the sub-continuum
length scales, which includes the best known phys-
ical models of damage at those length scales, and
which allows information to flow freely between
those length scales would necessarily capture the mi-
crocracking process. The skeptic says, “It cannot be
done”. The brave scientist says, “Watch me try”.

This is not to suggest that well developed, under-
stood and meaningful empirical formulae that provide
reliable estimates for design are obsolete. To be sure,
they are indispensable. However, 40 years ago when
the crew of the Star Ship Voyager used their hand-
held, portable communicators to talk to anyone in the
galaxy, who would have believed that today every stu-
dent roaming a college campus would be carrying a
wireless telephone? Will we be able to model every
atom in a concrete structure 40 years from now? Def-
initely not, if we don’t try.
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