
1 INTRODUCTION 
 
The use of fibre reinforced concrete (FRC) as con-
struction material has continuously grown over the 
last decades due to economical advantages in labour 
and material costs as compared to conventional rein-
forced concrete but also due to the enhanced me-
chanical characteristics of concrete. Randomly dis-
tributed fibres in concrete contribute to enhance 
concrete mechanical performance and durability 
when well proportioned and good quality FRC 
mixes used. Fibres significantly prevent shrinkage 
cracking, reduce brittleness due to impact loading, 
compression or in unreinforced members subjected 
to shear or tensile forces, control flexural cracking, 
improve water tightness, etc. For these reasons, FRC 
has been successfully used in shotcrete, precast con-
crete, elevated slabs, bridge decks, pavements, in-
dustrial floors, seismic resisting structures, repair, 
etc.  

The post-cracking behaviour of FRC has been ex-
perimentally investigated based on a variety of tests. 
Although the actual post-cracking response of FRC 
is better defined by the stress-crack width σ(w) rela-
tionship measured in a direct tension test, the vast 
majority of reported test results in the literature in-
volve beams due to the ease of performing bending 
tests.  Flexural tests have however two main disad-
vantages: the σ(w) relationship cannot be obtained 

directly whereas tests on small FRC elements en-
gender important scatters in results that are not rep-
resentative of actual in situ conditions.  The later has 
encouraged many investigators to propose tests on 
square or round panels of large dimension. Despite 
the better representation of concrete volumes in 
panel tests, the actual post-cracking behaviour of 
FRC in tension cannot be determined satisfactory 
using analytical approaches by any of the proposed 
tests in literature unless the softening mechanism is 
well understood, and the level of deformation and 
strain softening characteristics of the material are 
known. 

Contributions in literature dealing with the post-
cracking response determination of FRC panels us-
ing simple approaches are very limited. Marti et al. 
(1999) developed a simple theoretical approach that 
accounts for the random fibre distribution for the 
analysis of slabs. Their proposed model is based a 
priori on a predefined parabolic softening relation-
ship which simplifies considerably the derivation of 
load-deflection curves from yield line theory. Tran 
et al. (2005) proposed an interesting formulation for 
determining the nonlinear load-deflection response 
of the ASTM C-1550 round panel. Their formulation 
uses yield line theory based on the flexural capacity 
of beams of similar composition and thickness.  
For the case of FRC beams, Zhang and Stang (1998) 
proposed an analytical formulation which provides 
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with satisfying accuracy the load-displacement re-
sponse for an arbitrary inputted tension softening 
diagram. They use an additional relationship derived 
from fracture mechanics that links the crack mouth 
opening displacement (CMOD) to the external mo-
ment and a crack length parameter α (Figure 1). To 
the authors’ knowledge, similar analytical formula-
tion is either scarce or does not exist for the case of 
rectangular of round FRC panels, and such addi-
tional relationship is very difficult to derive analyti-
cally. 

This study is therefore aimed to propose a simple 
analytical formulation to investigate the post-
cracking behaviour of FRC panels of rectangular or 
circular geometry using an arbitrary tension soften-
ing diagram as input. The formulation assumes a 
symmetrical or axi-symmetrical crack pattern. In 
this situation, a relation that links the crack length 
parameter α to the deflection is missing. Due to the 
stochastic nature of material properties, the random 
fibre distribution, and others uncertainties involved 
in concrete mixes, deterministic approaches are not 
suitable for deriving that additional relationship for 
panels. The resort to probabilistic techniques enables 
modeling uncertainties and analyzing their disper-
sion effect. In this frame, the load deflection re-
sponse is predicted using yield line theory based on 
the crack length parameter-normalized deflection 
diagram developed from the analysis of beams hav-
ing the same thickness using Monte Carlo simula-
tion (MCS) technique. 

The proposed approach is applied in this paper to 
a square panel on four corners with a comparison to 
Marti’s model. The model performance is also 
checked using EPM3D constitutive model (Massi-
cotte et al, 2007) merged at Gauss integration point 
in FE computer program ABAQUS (2004). 

2 MODEL DERIVATION FOR FLEXURAL 
ANALYSIS OF FRC PANELS 
 
There is limited published information on analytical 
techniques suitable for predicting the complete flex-
ural history of panels in bending made of strain sof-
tening FRC. Classical yield line theory (Johansen, 
1972) can only predict the maximum load because it 
assumes that the level of resistance offered by the 
chosen collapse mechanism remains constant over 
the range of deformations associated with the intro-
duction of load. If the resistance of a component 
within an assumed mechanism changes as load is in-
troduced, the work done in resisting the external 
load is altered and the overall capacity changes. The 
magnitude of the change in load capacity can be de-

termined only if the level of deformation and strain 
softening characteristics of the material are known.  

The model adopted in the present study is based 
on the yield approach. In the initial stage the behav-
iour is assumed elastic until the maximum stresses 
reach concrete tensile strength. Beyond that point 
the model assumes that several fictitious cracks can 
develop depending on the failure pattern of the ana-
lyzed panel. Figure 1 depicts a typical stress distri-
bution at a cracked section. The fictitious crack de-
velops when the tensile stress reaches its ultimate 
value tf  and spreads along a part of the panel thick-
ness H. After the crack has initiated, the fictitious 
crack progresses and the material is softened by co-
hesive forces in the fracture process zone where a 
nonlinear σ(w) relationship is used. 
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Figure 1. Stress distribution at cracked panel section. 
 
When the crack opening displacement (COD) w 
reaches a critical value WC, the stress transfer be-
comes zero and real crack starts to grow freely. The 
same cracked section proposed by Zhang and Stang 
(1998) for beams is adopted in the present study 
where it is assumed that the crack has a linear pro-
file: 
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δ is the mean CMOD, nc is the number of cracks de-
pending on the chosen failure pattern. Therefore, w 
is the mean COD at location x, and αH is the mean 
crack length for which the crack length parameter 

]1,0[∈α . With these assumptions, σ(w) represents 
the mean softening diagram of the panel. From equi-
librium conditions, we have: 
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M is the resisting moment per unit length along the 
yield line; ( ))(xwσ  and )(xlσ  are the normal stress 
functions in the cracked (nonlinear) and the un-
cracked (linear) parts, respectively. ( ))(xwσ  is re-
lated to αH and δ using the σ-w relationship to-
gether with Eq. 1. )(xlσ  can be related to αH, βH 
and δ for which βH stands for the total depth of the 
tensile zone with ]1,5.0[∈β .  

According to the principle of virtual work, one 
can derive a relationship between the applied load F 
and the generated bending moment M as follow 
(Johansen, 1972): 

∑ ∑ ⋅⋅=Δ⋅ LMF θ  (4) 

Here Δ stands for the deflection, L is a characteristic 
length of the panel and θ is the corresponding crack 
angle of rotation (in radian) between the adjoining 
uncracked parts of the panel (Figure 1). By model-
ing the crack as a generalized plastic hinge, θ  can 
be estimated by: 
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This approach necessitates an additional relation 
linking the crack length parameter to the deflection 
to obtain the complete solution between the external 
load and the deflection. In the case of beams under 
three point bending, Zhang and Stang (1998) used 
for the required additional equation a relationship 
derived analytically from fracture mechanics in 
which δ is linked to the external moment M and the 
crack length parameter α. The additional relation-
ship would be difficult to derive analytically in the 
case of panels for which an arbitrary σ-w softening 
law is used. 

Marti et al. (1999) developed a theoretical ap-
proach based a priori on a well defined parabolic 
softening law. Such assumption simplifies consid-
erably the derivation of load-deflection curves from 
the yield line theory. Tran et al. (2005) performed a 
series of analysis using yield line theory to derive 
the nonlinear load-deflection response of the ASTM 
C-1550 round panels based on the flexural capacity 
of beams of similar composition and thickness. They 
did not explicitly use a σ-w softening relationship as 
an input in their approach. Instead they adopted the 

moment crack rotation angle diagrams (M-θ ) of 
beams as input. According to Eq. 4, the post-
cracking load-deflection curve can be determined by 
increasing the displacement at the centre of the 
panel and, using the resisting moment offered by 
beams for each corresponding crack rotation angle, 
find the load at equilibrium for these moments. 

This study proposes a simple analytical formula-
tion to investigate the post-cracking behaviour of 
FRC panels using an arbitrary σ-w diagram as input. 
The post-cracking behaviour of FRC panels is stud-
ied using yield line theory, where the load deflection 
response is predicted based on the crack length pa-
rameter-normalized deflection relationship devel-
oped from the analysis of beams having the same 
thickness using Monte Carlo simulation (MCS) 
technique. This issue is described in detail in the 
next section. 

3 CRACK LENGTH PARAMETER-
NORMALIZED DEFLECTION CURVE FOR 
BEAMS USING MCS TECHNIQUE 

3.1 Procedure 

To derive the additional relation relating the crack 
length parameter α to the deflection Δ, one follows 
the idea proposed by Tran et al. (2005) where the 
missing information is obtained from beams which 
is then used for analyzing panels. Because in our 
study any arbitrary σ-w relationship can be inputted 
in the numerical analysis, the α-Δ diagrams are de-
termined from the analysis of beams. However, 
since panel maximum deflections are larger than 
beams, the crack length parameter α  is obtained as a 
function of the normalized displacement Δ . Here, 

maxΔΔ=Δ  where maxΔ  is the maximum analytical 
beam deflection. In the beam analysis, the following 
σ-w relationship is chosen for its generality and ver-
satility: 
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N is the softening index. For a given value of N (0 < 
N < ∞), equation (6) covers all types of engineering 
materials. For instance, with N = 0, ( ) tfw =σ  which 
describes the behaviour of all elastic perfectly plas-
tic solids as it is used in Dugdale model. With 
N = ∞, ( ) 0=wσ , in which case Eq.(6) represents 
brittle materials without softening region. Expres-
sions obtained for 0 < N < 1, are typical of ductile 
metals and polymers in plane stress conditions char-
acterized by strain hardening behaviour (Roger et 
al., 1986). For the materials like steel fibre rein-



forced concretes (SFRC), the softening index range 
is 1 < N < ∞ (Ballarini and Shah, 1984). 

Due to the stochastic nature of the material prop-
erties, the random fibre distribution, and others un-
certainties involved in concrete mix, deterministic 
approaches are not suitable for deriving the α-Δ  
formula for panels. The resort to probabilistic tech-
niques enables modeling uncertainties and analyzing 
their dispersion effect. For this raison, a stochastic 
model that accounts for the randomness of the three 
variables ( tf , WC and N) defining the adopted σ-w 
law is used. In this study, α-Δ  diagrams for panels 
are obtained using the analytic formulation proposed 
by Zhang and Stang (1998) for beams combined 
with the MCS technique. 

3.2 Stochastic model for σ-w diagrams 

Tensile strength tf , critical crack opening dis-
placement WC and softening index N in Eq. 6 are 
modeled herein as random fields. For the random 
simulation of these properties, the chosen random 
variables are defined by their moments of order 1 
and 2, which are respectively the mean, and the 
variance supposed in accordance with laboratory 
samples. Let pT  standing for one typical random 
variable, defined as a function of the deterministic 
function pT0  describing the trend, taken in practice 
as the mean of measured values, and also function of 
zero mean, unit variance Gaussian random field 

pTΔ . One can write: 

[ ]pppp TTT Δ+ℜ= τ0  (7) 

ℜ  is a transformation taking the Gaussian process 
pTΔ , into the distribution appropriate for pT  and pτ  

is the standard deviation. Here p = 1 corresponds to 
softening index, p = 2 for tensile stress, and p = 3 for 
critical crack opening displacement. The zero mean, 
unit variance, three-variate Gaussian random field 

pTΔ , can be simulated as follow: 
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lΩ  is a random phase angle distributed uniformly 
over the interval [ ]π2 0, . K is a large enough integer. 
A stochastic independence between ft and the other 
random variables WC and N is assumed which is pre-
ferable than assuming any erroneous correlation. In 

practice, there is a direct correlation between N and 
WC. Small values of N are typical of high fibre dos-
age leading to large values of WC, whereas large val-
ues of N are more representative of materials with 
small fibre dosage and therefore more brittle mate-
rial, leading to small values of WC. For this reason, 
the stochastic correlation is considered between N 
and WC. The three properties are simulated using the 
stochastic formulation proposed by Nour et al. 
(2002). The tensile softening index is simulated us-
ing the beta distribution whereas the tensile stress 
and the crack opening displacement are modeled us-
ing the lognormal distribution. 

3.3 Numerical analysis for beams 

The above described procedure is used to derive the 
crack length parameter-normalized deflection α-Δ  
for beams to be used for panel analysis. Monte Carlo 
simulations are used to generate samples having 
characteristics close to specimens produced in labo-
ratory. It is reported in literature (MacGregor et al., 
1983) that the variability of tf  is roughly of the 
same order as for the compression strength, which is 
around ≈

tf
CV 0.15 to 0.25. However Bungey and 

Millard (1996) indicated that 
tfCV  could be greater 

than 0.4 for poor concrete and for this reason 
tfCV  

is varied in this study from 0.15 up to 0.5. For the 
critical crack opening displacement WC, Bazant et al. 
(2002) reported that the ratio between the areas un-
der the complete σ-w curve and under the initial tan-
gent of this curve is in the order of 2.5 with a varia-
tion coefficient around 40%. Because the complete 
area of the σ-w curve is controlled by WC, a variabil-
ity up to 40% for WC seems reasonable. For the sof-
tening index N, there is practically no available in-
formation about its variability. The variation 
coefficient NCV  is chosen to be equal to crNCV ,5.0 ⋅  
with crNcrN NCV ,0, τ= (Nour et al., 2002). crNCV ,  
stands for the critical variation coefficient for N, 0N  
for the mean value for N, and crN ,τ  for the critical 
standard deviation for N. Hence, the following data 
are used: 

• Mean tensile stress: 
tf

μ  = 3.5 MPa;  
• Mean crack opening displacement 

CWμ  = 8 
mm; 

• 1min =N  and 7max =N  with the mean value 
∈0N [ maxmin NN ]. 

• The ratio H/S = 4 (H stands for the beam 
height and S for the beam clean span).  



The softening index N is in direct correlation with 
the parameters influencing the shape of the post-
cracking load-deflection response such as the type of 
fibres, the dosage and the mix quality. For this rea-
son, three representative situations were considered. 
The first one represents specimens dominated by 
FRC mixes having high percentage of fibres, ideal-
ized here by samples of Monte Carlo simulations 
having 0N  close to minN  i.e. =0N  
( ) 43 maxmin NN + = 2.5. The second situation con-
siders specimens covering all possible percentage of 
fibres dosages, idealized here by samples of Monte 
Carlo simulations having 0N  equal to the central 
value i.e. ( ) 2maxmin0 NNN +=  = 4. Finally the 
third situation is the opposite of the first one with 
the majority of specimens made with low percentage 
of fibres, idealized here by samples of Monte Carlo 
simulations having 0N  close to maxN  i.e. 

( ) 43 maxmin0 NNN +=  = 5.5.  
Using Eq. 6, 1000 independent realizations of σ-w 
diagrams were randomly generated and were di-
rectly considered in Monte Carlo simulations of 
beam analysis. The result of this exercise is the re-
quired mean α-Δ  diagram to be used for panels. 
Figure 2 illustrates 25 typical realizations of σ-w 
diagrams for the case of 0N  = 4 for which a strong 
negative correlation between N and WC was consid-
ered, i.e. 75.0−=NWC
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Figure 2. Typical realizations of σ-w diagrams. 
 

In this study, for a given beam thickness H, the 
required α-Δ  diagrams are determined after achiev-
ing 1000 Monte Carlo simulations for each represen-
tative situation of N0 (N0= 2.5, 4 and 5.5). This al-
lows covering a maximum range of fibre dosage. In 
reality 3000 samples of Monte Carlo simulations are 
superimposed all together in Figure 3. As shown on 
this figure, the randomness in ft, WC and N produces 
a scatter in α-Δ  results with an interesting trend. 

This permits to easily fit the obtained results with an 
appropriate function. The function given by Eq. 10 
is chosen because it captures with fidelity the full 
trend observed in MCS results. Constants c1, c2 and 
c3 are estimated using a nonlinear fitting scheme 
from the ensemble of realizations, whereas the as-
sumed function satisfactory passed the Chi-square 
goodness of fit test. 
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Results reported in Figure 3 corresponds to H = 75 
mm. The same routine could be easily repeated for 
other thicknesses.  

 
Figure 3. Crack length parameter-normalized displacement dia-
gram for h = 75 mm. 

4 APPLICATION TO A SQUARE PANEL 
SUPPORTED ON FOUR CORNERS 

Equation 10 constitutes the additional relation that 
links the crack length parameter α to the deflection 
Δ. It is of worth to note that very limited contribu-
tions dealing with the post-cracking response for 
FRC panels via simple approaches are available in 
literature. The model proposed by Marti et al. (1999) 
belongs to this category; it is based on a fixed para-
bolic softening law and is used herein for compari-
son purposes. The next validations uses the follow-
ing data: H = 75 mm and ft = 3 MPa. 

4.1 Comparison with Marti’s model 

Khaloo and Afshari (2005) performed several tests 
to determine the flexural strength, load-deflection 
curve and energy absorption of small concrete slabs. 
Figure 4 shows the test principle and typical crack 
pattern for the adopted square panel supported on 



four corners under a central point loading. Using 
yield line theory, Khaloo and Afshari (2005) esti-
mated the resisting moment M according to Marti et 
al. (1999) model, and developed the equations defin-
ing the crack angle rotation θ and the load F func-
tion of the central displacement Δ and the moment 
M, respectively: 
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Figure 4. Failure mechanism and load displacement curves for 
a square panel on four corners. 
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For the numerical application, one considers b = 
680 mm, a = 80 and c = 70 mm, N = 2 (parabolic 
softening law) and WC = 15 mm. Figure 4.b illus-
trates the comparison between the proposed ap-
proach and the adopted Khaloo and Afshari (2005) 
theory. In the proposed approach, three regions de-
scribe the load–deflection curves. The first region 
has an ascending slope covers the response form the 

onset of concrete cracking up to the maximum load. 
Marti et al. (1999) neglected the contribution of the 
elastic part of the sound ligament in tension. There-
fore their theory predicts only the behaviour of FRC 
after ultimate. The second region begins at ultimate 
load and ends at a point where the tensile forces are 
resisted totally by bond between fibres and concrete. 
This corresponds to the steepest softening portion of 
the curve. In the third region, the slope of the curve 
reduces accompanied by an asymptotic residual 
load. One sees that both approaches predict practi-
cally the same ultimate value, but they exhibit dif-
ferent behaviour in the softening region. The results 
indicate that the theoretical predictions from Khaloo 
and Afshari (2005) are not conservative and present 
higher energy absorption compared to the proposed 
approach. Their model predicts also higher energy 
absorption than obtained experimentally. 

4.2 Comparison with finite element method 

In this section, the proposed approach is compared 
to the finite element method. To this end, EPM3D 
concrete model is used for the analysis. This model 
was originally developed by Bouzaiene and Massi-
cotte (1997) and was recently merged for standard 
and explicit computations in ABAQUS (2004) by 
Ben Ftima and Massicotte (2004). It was also used 
for modelling concrete structures reinforced with in-
ternal and external FRP (Nour et al., 2006). In com-
pression, the concrete model follows a three-
dimensional hypoelastic approach which accounts 
for anisotropy and inelastic volume expansion using 
a compression scalar damage parameter λ 
(Bouzaiene and Massicotte, 1997). Degradation of 
material properties due to cracks propagation is de-
scribed by means of a scalar parameter which en-
ables coupling the compressive and tension damage 
parameters for the tensile residual stress calculation. 
The model is based on smeared crack approach with 
cracks spread over the elements, so the analyses are 
performed without introducing to the finite element 
model any crack pattern. 

Finite element analyses of FRC panels involve 
modeling severe nonlinearities. Strategy solution us-
ing standard computations through ABAQUS leads 
to serious converging difficulties resulting in a large 
number of iterations, which complicates exploring 
the post-cracking behaviour of FRC panels. In this 
case, the analyses are more efficient using explicit 
computations. Whereas ABAQUS standard must it-
erate to determine the solution to a nonlinear prob-
lem, ABAQUS explicit determines the solution by 
explicitly advancing the kinematic state from the 
previous increment. The explicit procedure does not 



require any iteration and no global tangent stiffness 
matrix. For these reasons, the explicit solution strat-
egy is adopted in this study. However, a special cau-
tion is required for choosing the time duration of the 
analysis, because the explicit solution method is a 
truly dynamic procedure and the inertia forces 
should not in any case play a dominant role in the 
solution.  
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Figure 5. Load displacement curves for a square panel on four 
corners. a. bilinear softening diagram. b. tri-linear softening 
diagram. 

 
Furthermore, the energy balance check is employed 
to evaluate whether or not a simulation is in accor-
dance with a quasi-static response. For the numeri-
cal analysis, one considers b = 680 mm, a = 0 and 
c = 70 mm. The analyses are carried out considering 
the bilinear and the tri-linear softening laws shown 
in Figure 5. In EPM3D, any polylinear softening 
diagram defined by a series of points ( ii w,σ ; 

pNi ,,1…= ) can be used for the analysis according 
to the following expression:  
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Here pN  is the number of points in the softening 
diagram, ε  is the tensile strain and crL  is the critical 
length transforming the crack opening in tensile 
strain, assumed in this study equal to 0.5H. The 
comparison results are clearly illustrated in Figure 5.  
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Figure 6. Finite element model and residual tensile stress dis-
tribution. a. Finite element mesh. b. Predicted failure mode. c. 
Tensile stress distribution at the slab bottom surface. 

 
If one considers finite element solution as reference, 
one sees that the proposed method captures with fi-
delity the global trend in the load-deflection curve. 
With the proposed approach, the predicted maxi-
mum load is roughly 3 % less than finite element re-



sult for the bilinear softening law and is 8.5 % less 
for the tri-linear law; also the observed difference in 
post-peak is acceptable for both softening laws. The 
finite element model is shown in Figure 6.a along 
with the predicted failure mode (Figure 6.b). As 
shown in Figures 6.b and 6.c, the failure pattern 
takes the form of a straight line and a flexural hinge 
divides the slab into two rigid parts. In term of fail-
ure mode, EPM3D predictions are in accordance 
with experimental observations of Khaloo and Af-
shari (2005). One sees that the tensile stress de-
creases significantly in the vicinity of the middle 
straight line of the slab as well as around the applied 
load.  

Despite EPM3D is based on a smeared crack ap-
proach, it allows to determine the crack pattern for 
subsequent analysis of complicated slab geometries 
using yield line theory, and the complete load-
deflection response can be easily obtained via the 
proposed approach. 

5 CONCLUSIONS 

In this paper, a semi-analytical model aimed to in-
vestigate the post-cracking behaviour of FRC panels 
has been presented. The load deflection response is 
predicted using yield line theory based on the crack 
length parameter-normalized deflection diagram de-
veloped from the analysis of beams having the same 
thickness using Monte Carlo simulation (MCS) 
technique. The proposed model has been applied to 
a square panel supported on four corners with a 
comparison to an existing theory based on prede-
fined parabolic softening law. Also, a good agree-
ment has been obtained between the model predic-
tions and finite element calculations. This study 
indicates that it is possible to obtain satisfactory 
predictions of the post-cracking load-deflection re-
sponse for panels with independently obtained ex-
perimental/analytical data for the stress-crack width 
relationship using this present simple model. 
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