
1 INTRODUCTION 
 
In the past decades, significant progress has been 
made in computational modeling of damage and 
fracture processes in quasi-brittle materials such as 
concrete and masonry. Most of the available models 
are continuum models which require very fine finite 
element meshes in the vicinity of a crack or localiza-
tion zone. Discrete models are consistent with the 
physical observation of a discrete crack as a dis-
placement jump across a discontinuity surface. The 
extended finite element approach belongs to this 
class of models (e.g. Moës et al. 1999; Belytschko et 
al. 1999; Dolbow et al. 2000; Wells et al. 2001). In 
this formulation, cracks are not restricted to the fi-
nite element boundaries; instead, they can freely run 
through the finite element mesh. As a result, coarser 
meshes can be used, rendering these models suitable 
for larger scale computations. However, an embed-
ded discontinuity in a coarse mesh cannot capture 
the actual tortuosity of the real crack surface and the 
resulting frictional and hooking resistance, nor can it 
accurately represent the energy consumed by micro-
crack branching prior to the formation of the macro-
crack. A better characterization of the whole failure 
process can be achieved by combining continuous 
and discontinuous theories into a global framework.  

This idea has been successfully pursued by many 
authors (e.g. Ren et al. 1997; Jirásek et al. 2001; 
Oliver et al. 2002; Simone et al. 2003), nevertheless 
some issues remain. It is for example not clear when 

a discrete crack should be introduced. Some authors 
introduce a traction-free discontinuity at the final 
stages of failure. In this case the continuum model 
governs the softening behavior (e.g. Simone et al. 
2003). Other authors make use of the cohesive zone 
assumption (Dugdale 1960; Barenblatt 1962). Here a 
traction-separation model governs the non-linear be-
havior in the fracture process zone and the contin-
uum can remain elastic at all times (e.g. Wells et al. 
2001). Both approaches have in common that a sin-
gle moment exists at which the continuous model is 
replaced by a discontinuous model. The distinct fea-
ture of the model proposed in the present paper is 
that this transition takes place gradually. A damage-
type cohesive law allows using the constitutive 
model for the continuum in the undamaged material 
bridges at the process zone, whereas the damaged 
part of the crack is traction-free. As damage grows, 
material bridges are broken and a macro-crack is 
formed. The cohesive zone model is formulated irre-
spective of the (continuum) material model.  

The paper starts with a review of the basic equa-
tions of the extended finite element approach. Next, 
the governing equations for the cohesive zone model 
are derived. Issues like damage growth and crack 
initiation and propagation are discussed and a return 
mapping algorithm is proposed. Next, a simple 
poromechanical continuum model is presented. Fi-
nally, simulations of four-point bending tests are 
conducted and compared to experimental results, 
and differences between both are discussed.  
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ABSTRACT: Performing accurate, large scale computations requires a model formulated on the macro-scale, 
but involving relevant physical phenomena taking place on the lower scales. In the present paper, a macro-
scopic framework for the simulation of the hygro-mechanical response of quasi-brittle porous materials is 
proposed. The model employs the partition of unity (PU) concept and introduces a new generic cohesive law. 
With the PU concept, crack growth can be studied on relatively coarse meshes. The new cohesive law allows 
extending most continuum models to a discontinuous framework, hereby adding the effect of macro-crack 
formation by the growth en coalescence of micro-defects. The capabilities of the model are illustrated by 
means of a simple poromechanical material model. It is shown that good correspondence with experimental 
results is already obtained based on linear elasticity and a perfectly brittle response. It can be expected that 
the use of more sophisticated material models will lead to better results.  



2 NUMERICAL MODEL 

2.1 Strong discontinuities 
Cracking is modeled using a discrete approach: 
strong (displacement) discontinuities are embedded 
in finite elements (Figure 1a).  

 
Figure 1: (a) Body Ω crossed by a displacement discontinuity. 
(b) Schematic representation of the displacement field and (c) 
the corresponding strain field of a crossed 1D element.  

 
The total displacement field (Figure 1b) of a body 
Ω  crossed by a displacement discontinuity is given 
by 

ˆ
d

HΓ= +u u u  (1) 

where û  and u  are smooth, continuous functions on 
Ω  and 

d
HΓ  is the Heaviside step function corre-

sponding to and centered at the discontinuity dΓ . 
The Heaviside function is equal to one for all points 
x +∈Ω  and zero for all other points x −∈Ω .  

The strain field (Figure 1c) can be found by tak-
ing the symmetric gradient of the displacement field:  

( )ˆ
d d

ss s sH δΓ Γ= ∇ = ∇ + ∇ + ⊗ε u u u u n  (2) 

where n  is the normal to the discontinuity and 
d

δΓ  
is the Dirac delta distribution, centered at the discon-
tinuity. The Dirac delta distribution is the derivative 
of the Heaviside step function and is nonzero only 
for the points on the discontinuity.  

2.2 Discrete constitutive model 

2.2.1 Cohesive zone assumption 
Dugdale (1960) and Barenblatt (1962) proposed to 
model the inelastic deformations ahead of a crack as 

cohesive forces acting on a fictitious extension of 
the crack (Figure 2). Moving along the fictional 
crack towards the actual crack tip, the traction forces 
on the crack faces reduce gradually from their maxi-
mal value to zero. As a result, the stress singularity 
at the crack tip, predicted by Linear Elastic Fracture 
Mechanics (LEFM), is removed.  

 
Figure 2: Schematic representation of the cohesive zone con-
cept: inelastic deformations ahead of the crack tip are modeled 
as cohesive forces acting on a fictitious extension of the crack.  

 
In the present paper, the cohesive zone will only ac-
count for the effects of damage. The proposed meth-
odology can easily be extended to incorporate other 
types of inelastic behavior as well (e.g. plasticity). 

2.2.2 Constitutive equation for the cohesive zone 

 
Figure 3: Schematic representation of an infinitesimal part of a 
plane with normal n  in a structure or structural component 
(left) and of the cohesive zone with approximately 60% in-
plane micro-damage (right).  
 
Consider an infinitesimal part of a plane with unit 
normal n  in a structure or structural component 
(Figure 3, left). The stresses or, more precisely, trac-
tions acting on this plane are obtained as 

=t σn  (3) 

where σ  is the second order continuum stress ten-
sor. Suppose that micro-cracks and -voids start to 
grow on this infinitesimal plane. In that case, we can 
quantify the ratio between the damaged and the total 
area with a scalar damage variable d , ranging from 
zero to one (Figure 3, right). Zero damage corre-
sponds to the bulk material, whereas d  equals one 
upon complete separation along the crack plane. The 
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bulk material will in general include pores, deficien-
cies and irregularities. All these ‘imperfections’ are 
randomly distributed in the material. As a result, 
they are not considered as ‘damage’ but rather as a 
characteristic of the continuum.  

Tractions can only be transferred through the un-
damaged material bonds. According to Saint-
Venant’s principle, the micro-voids and -cracks in-
fluence the stress field in the surrounding continuum 
material only locally. If the micro-voids and -cracks 
grow and coalesce into macro-cracks, the surround-
ing material will relax and all stresses will vanish. 
Hence, it is reasonable to assume that the effective 
tractions in the material bonds efft , integrated over 
the infinitesimal area dA , must equal the homoge-
nized stresses in the surrounding continuum, pro-
jected on the plane and integrated over the same area 
(Eq. 4). Herein, inertia-effects are disregarded for 
simplicity.  

( )1effdA d dA= −σn t  for 0 1d≤ ≤   (4) 

Before any damage occurs, the effective stresses 
equal the homogenized stresses (Eq. 4 with 0d = ). 
As damage grows, the active area decreases and the 
effective tractions increase. Hereby, the redistribu-
tion of the tractions causes additional deformations 
in the undamaged material bonds, a process often 
termed as localization. The corresponding strain 
field is given by equation (2), where the first two 
terms on the right hand side can be considered as 
continuum strains and where the third term describes 
the localization, here modeled as separation of the 
crack surfaces. Similarly, the effective stresses in the 
undamaged material bonds can be expressed as a 
sum of a continuum and a discrete contribution: 

eff = +t σn Q u  (5) 

where =Q nCn  is the acoustic tensor, with C  a 4th 
order constitutive tensor describing the constitutive 
behavior of the bulk material, and u  is the width 
of the discontinuity. The first term of equation (5) 
describes the tractions that act on the plane if dam-
age were absent. The second term corresponds to the 
redistributed tractions due to the actual damage.  

Combining equations (3-5) finally yields the con-
stitutive equation for the cohesive zone:  

( )1 d ⎡ ⎤= − +⎣ ⎦t σn Q u  (6) 
Equation (6) represents the gradual degradation 

from a continuum to a localized state. A graphical 
interpretation is given in Figure 4.  

Upon initiation of the crack, the crack width and 
the damage variable equal zero and Eq. (3) is recov-
ered: the material behaves as if no discontinuity 
were present.  

As damage grows, the relative contribution of the 
discrete component of the total traction gains impor-
tance over the continuum component. For softening 
materials, the total traction will generally decrease 
with increasing damage. The limit case is adequately 
illustrated by a force-driven (uni-axial) tensile test 
on a bar with limited cross-section. Here, additional 
damage will cause additional deformations, but will 
not cause stress relaxation. Hence the total load will 
be carried up to the moment that rupture occurs and 
the material suddenly relaxes. For hardening materi-
als the same scenario applies, but the total tractions 
progressively increase up to the point where failure 
occurs. At rupture, the damage variable becomes 
one, and the traction forces become zero (Eq. 6). 
This corresponds to a traction-free discontinuity.  

 
Figure 4: Schematic representation of the components of the 
traction force vector in a crossed 1D-body Ω.  

2.2.3 Damage evolution 
So far we have not discussed when and at which rate 
the damage should grow. The proposed discrete con-
stitutive equation needs to be supplemented with a 
proper damage criterion and a suitable damage evo-
lution law.  

Criteria for damage growth are either stress-based 
or strain-based (Simo et al. 1987) and require the 
definition of an effective stress or strain, respec-
tively. Considering that (1) the discrete law (Eq. 6) 
crucially depends on the equilibrium between the ef-
fective tractions in the undamaged material bridges 
and the homogenized stresses in the surrounding 
continuum matrix, and that (2) the corresponding 
strain field (Eq. 2) is unbounded due to the presence 
of the Dirac delta function, it is clear that a stress-
based damage criterion is preferred. A rankine-type 
equation is adopted:  

( ), 0eff eqf d t κ= − ≤t  (7) 

in which ( )eq efft t  is an equivalent traction, ex-
pressed in function of the effective tractions, and 
( )dκ  is the residual strength of the damaged mate-

rial. For mode I dominated failure, the following ex-
pression for the equivalent traction is found suitable:  

( )eq efft = ⋅ = + ⋅t n σn Q u n  (8) 

The simplest expression for κ  is given by 

( )1 d− σn

( )1 d− Q u

σn

( )1 d− Q

u

t



( ) ( )td f dκ = +Η  (9) 

with tf  the tensile strength of the bulk material and 

( )dΗ  a hardening (or softening) function.  
Damage evolution is governed by the Kuhn-

Tucker conditions: 

0d ≥ , 0f ≤ , 0d f =  (10) 

supplemented with the consistency condition  

0d f =  (11) 

Instead of determining the damage rate from the 
consistency condition, we propose to update the 
damage variable based on energy considerations. If 
the damage criterion is violated, the excess elastic 
energy stored in the system must be consumed by 
opening the crack. Equating (1) the elastic energy 
and (2) the work done by the traction forces and per-
forming some straightforward algebraic operations 
yields the following return mapping algorithm  

( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 1

2 1

t
t dt

t

d
d

d

κ

κ
+

⋅ + ⋅ − −
=

⋅ + ⋅ + −

σn σn σn Q u

σn σn σn Q u
 (12) 

If the obtained damage variable violates the 
Kuhn-Tucker conditions, the previous value should 
be kept. Upon convergence of the iterative proce-
dure, the damage variable, crack width and contin-
uum stress field are updated.  

2.2.4 The initiation and propagation rule 
Finally we need to define when a discontinuity 
should initiate or propagate. We have already shown 
that upon crack initiation, the discrete constitutive 
equation (Eq. 6) reduces to the traction equilibrium 
on the potential crack plane (Eq. 3). In the same line 
of reasoning, the discrete damage criterion (Eq. 7) 
corresponds to the following initiation criterion:  

0if σ κ= − ≤  (13) 

with iσ  the ith eigenstress and ( )0tf dκ = +Η = . If 
equation (13) is violated, a new crack segment must 
be introduced with the normal pointing in the (criti-
cal) principal stress direction.  

It is recommended to determine the direction of 
the discontinuity based on the non-local stress ten-
sor, calculated as a weighted average of stresses us-
ing a Gaussian weighting function (Jirasek 1998):  

w d

wd
Ω

Ω

Ω
=

Ω
∫
∫

σ
σ  with 

( )

2

3/ 2 23

1 exp
22
rw
llπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (14) 

where r  is the distance to the crack tip and l  the in-
fluence length, taken approximately equal to three 
times the element size (Wells et al. 2001). 

2.3 A simple hygro-mechanical material model 
The framework has been formulated irrespective of 
the constitutive model used for the continuum. To il-
lustrate the inherent capability of the model to ex-
tend the range of applicability of even the simplest 
constitutive equation, and to demonstrate that the 
framework can deal with arbitrary material models, 
it was chosen to study the hygro-mechanical re-
sponse of porous materials.  

The capillary pressures in the material matrix 
generate additional internal stresses of which the 
magnitude can be estimated based on the elastic ef-
fective stress concept (Coussy, 1995). 

The total stress tensor is defined as 

( )
,

c

c ref

p

c cp
b S p dp⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫σ Cε I  (15) 

where C  is the 4th order Cauchy stress tensor, ε  the 
2nd order strain tensor, 1 / sb K K= −  is the biot coef-
ficient (assumed to be constant), with K  the bulk 
modulus of the grain material and sK  the bulk 
modulus of the skeleton, I  the second order unity 
tensor and ( )cS p  the moisture retention curve. 
Since moisture saturation is hardly affected by strain 
for quasi brittle porous materials, we assume the de-
gree of moisture saturation S  to be only a function 
of the capillary pressure cp . For unsaturated condi-
tions, the capillary pressure is defined as  

0c l gp p p= − <  (16) 

with lp  the liquid pressure and gp  the gas pressure.  

The saturation curve ( )cS p  can experimentally 
be obtained by a combination of different techniques 
(Roels et al., 2001) and described in analytical form 
by a sum of power functions (Durner, 1994): 

( )( )
1

( )( ) 1
i

i
nps mnc

c i i c
isat

w pS p l c p
w

−

=

= = + −∑  (17) 

with ( )cw p  being the moisture content as a function 
of capillary pressure and satw  the moisture content at 
saturation, nps  is the number of pore systems in the 
material, il  are the weighting factors ( 0 1il< ≤ , 

1
1

nps

i
i

l
=

=∑ ) and ic , in  and 1 1/i im n= −  model parame-

ters related to the ith pore system. The integral of the 
moisture saturation curve is calculated from a refer-
ence capillary pressure ,c refp , theoretically equal to 
−∞ . In practice a sufficiently large negative value 
(e.g. -1012 Pa) is used. Note that the hygric stress 
contribution is assumed to be hydrostatic.  



3 EXPERIMENTAL VALIDATION 

3.1 Experimental set-up 
Four-point bending tests were performed on dry 
(S=0%) and wet (S=100%) notched samples of 
Meule sandstone. The beam had a length of 0.24 m 
and cross-sectional dimensions 0.048 m x 0.024 m 
(height x depth). Two different notch sizes were 
considered. Both had the same width of 0.004 m and 
a circular tip. The total notch depth was 0.008 m for 
the small notch and 0.016 m for the large notch. The 
distance between the two supports was 0.2 m and 
between the loading points 0.1 m. The tests were 
conducted under displacement control. To this end, 
an extensometer with measurement basis of 
0.0125 m was placed over the notch, on the bottom 
surface of the sample. The load was controlled as 
such that the crack mouth opening displacement 
(CMOD) would increase with a constant rate of 
0.1 mm/min. A sampling rate of 20 pts/s was chosen.  

3.2 Numerical simulations 
The tests were simulated with the model described 
in the previous sections. The simulations were per-
formed in 2D, using both the plane stress and the 
plane strain assumption. Due to the utilization of the 
partition of unity method, the fracturing process is, 
by definition, independent of the mesh size. Struc-
tured meshes were used (Figure 5). The mesh for the 
sample with the small notch consisted of 2666 bi-
linear 4-noded quadrilateral elements, resulting in 
2786 nodes. The sample with the large notch was 
meshed with 2626 elements, using 2754 nodes. A 
time step of 1 second was selected. The maximum 
number of new crack segments in a time step was 
restricted to 5, but with the selected mesh and time 
step, this limit was never reached. Crack path conti-
nuity was imposed.  
 

 
Figure 5: Representative mesh used in the simulations, with in-
dication of the boundary conditions.  
 
Carmeliet and Van Den Abeele (2004) showed that 
the elastic behavior of Berea Sandstone is strongly 
influenced by moisture saturation, especially in the 
lower saturation range. Meule sandstone exhibits a 
similar behavior. In Roels et al. (2006) a simplified 
expression is used to describe the dependency of the 
Young’s modulus on saturation: 

( ) 1/ 2
0 1 0( ) S S SE S E E E S= = == + −  (18) 

with 0SE =  being the Young’s modulus at dry state 
( 0S = ) and 1SE =  the Young’s modulus at vacuum 
saturation state ( 1S = ). If the critical strain crε  in 
the material is assumed to be independent of the 
saturation level, the dependency of the tensile 
strength on the degree of moisture content reads 

( ) ( )t crf S E S ε=  (19) 

which means that tensile strength varies in the po-
rous medium in the case of a non-uniform moisture 
distribution. Realistic moisture patterns can be ob-
tained by coupling the mechanical model to a mois-
ture transport model as described in Roels et al. 
2006.  

The mechanical and hygric material properties 
are summarized in Table 1. The hardening/softening 
parameter in equation (9) is not used in the simula-
tions to simplify the interpretation of the results.  
 
Table 1. Material properties used in the simulations.  ______________________________________________ 
Property Units   Value ______________________________________________ 
ES=0   (GPa)  14.0 
ES=1   (GPa)    6.3 
ν     (-)      0.3 
ft    (MPa)    3.0 ______________________________________________ 
b    (-)      0.6 
l1,2    (-)      0.30   0.70 
c1,2   (-)      1.25e-5  1.80e-5 
n1,2   (-)      1.65   6.00 ______________________________________________ 

3.3 Discussion of the results 

Figure 6 shows the load-strain diagram for the dry 
specimens ( cp  ≈ -1010 Pa) with the small notch. Ex-
perimental data are shown with solid grey lines and 
simulation results with dashed black lines. All loads 
have been divided by the width of the sample to ex-
clude the effect of sample thickness. The strain is 
obtained by dividing CMOD by the length of the 
measurement basis of the extensometer.  
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Figure 6: Load-strain curve of a notched dry beam (notch 
depth 8 mm) subjected to a four-point bending test. Experi-
mental data are indicated with solid grey lines, simulation re-
sults with dashed black lines.  

Plane stress 
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From Figure 6 it is clear that the proposed model 
captures the loading branch, the peak load and the 
softening branch well. The differences between 
plane stress and plane strain only become apparent 
in the descending branch. The plane stress model re-
sults in a larger cohesive zone and hence the residual 
strength of the model is higher.  

The experimental results and simulations for the 
dry samples with the large notch are shown in 
Figure 7. Already in the second part of the loading 
branch, the simulations start drifting away from the 
experimental curves. The relative difference in-
creases with increasing strain, both under the plane 
stress and the plane strain assumption. Nevertheless, 
the peak load is still reproduced well. The difference 
can partially be attributed to the boundary condi-
tions. In the simulations only the vertical displace-
ments at the supports have been prohibited. No lim-
its are imposed to the horizontal displacements. In 
the real test set up the sample is placed on two roll-
ing-supports. They augment the structural stiffness 
in two ways. On the one hand the supports hinder 
the bending of the beam due to their rotational ca-
pacity and introduce horizontal stresses in the sam-
ple. On the other hand their spacing is fixed in time, 
and does not grow like in the simulation. A third 
factor contributing to the difference between meas-
urements and simulations is related to the implemen-
tation of the crack initiation and propagation rule. 
When the initiation criterion (Eq. 13) is met in any 
of the integration points in an element, a discontinu-
ity segment is introduced through the entire element. 
As a result the discontinuity will grow in discrete 
steps. This is the reason for the “bumps” in the sof-
tening branches of all simulations. In general these 
bumps do not influence the structural behavior, 
however for a sample with a notch over 1/3 of the 
total height, the introduction of the first crack seg-
ment causes a noteworthy decrease of the cross-
sectional area, speeding up the damage process.  
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Figure 7: Load-strain curve of a notched dry beam (notch 
depth 16 mm) subjected to a four-point bending test. Experi-
mental data are indicated with solid grey lines, simulation re-
sults with dashed black lines. 
 

It should be noted that the observed softening branch 
results from an elasto-perfectly plastic Rankine cri-
terion since the softening variable (Eq. 9) is not 
used.  

Finally the four-point bending test on saturated 
samples ( cp  ≈ -10 Pa) with a small notch is studied 
(Figure 8). The presence of moisture manifests itself 
in a decrease in stiffness and a reduction of the ten-
sile strength. The poromechanical model overpre-
dicts the initial stiffness but the peak load and the 
softening branch show good agreement. Since ten-
sile strength and Young’s modulus are linked by 
equation (19), obtaining a better match for the initial 
stiffness will result in an inferior correspondence of 
the peak load. Consequently, the existence of a 
moisture-independent critical strain may be ques-
tionable.  
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Figure 8: Load-strain curve of a notched saturated beam (notch 
depth 8 mm) subjected to a four-point bending test. Experi-
mental data are indicated with solid grey lines, simulation re-
sults with dashed black lines. 

4 CONCLUSIONS 
 
A general strategy to model the hygro-mechanical 
behavior of quasi-brittle porous materials is pro-
posed. The new discrete constitutive equation allows 
for a smooth transition between the continuum state 
and the localized state and ensures equilibrium be-
tween the effective tractions in the undamaged mate-
rial bonds and the stresses in the continuum at every 
stage of the failure process. The discrete equation 
can be used in combination with any continuum con-
stitutive model, yielding a continuous-discontinuous 
material model that can describe the entire failure 
process. The predictive capabilities of the model 
crucially depend on the characteristics of the contin-
uum model and the appropriate choice of the dam-
age criterion. Comparison with experimental data 
shows that good agreement can already be obtained 
based on a simple mechanical model (linear elastic-
ity) and failure criterion (Rankine).  
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