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ABSTRACT: Evaluation of construction load is a critical issue for the design and construction of flat plates 
which are susceptible to excessive deflections and concrete cracking. Underestimated construction load may 
cause structural and construction problems to flat plate slabs. The present study focused on the effects of 
shore stiffness and concrete cracking on the distribution and magnitude of construction load. Slabs connected 
by shores were idealized with a simple frame model. Based on the frame model, we developed a simplified 
method for the evaluation of construction load, addressing the effects of various design parameters including 
shore stiffness and concrete cracking. The proposed method was used to predict construction load in an ex-
ample model. 

1 INTRODUCTION 

Recently, the use of flat-plate system for high-rise 
buildings has been increased due to the advantages 
of reduced floor height and improved constructabil-
ity. However, the low slab stiffness of long-span 
flat-plates frequently causes excessive deflection 
and cracking in the slabs (Gardner & Fu 1987). 

Grundy & Kabaila (1963) developed a simplified 
method for the evaluation of construction load. In 
the Grundy’s method, newly superimposed construc-
tion load is distributed to the slabs, according to the 
ratio of the concrete stiffness of the slabs. In con-
trast, Mosallam and Chen (1991) developed a differ-
ent method, in which total construction load is re-
distributed to the slabs according to the ratio of the 
concrete stiffness whenever the construction load is 
updated. However, in the existing methods, shores 
assumed to have infinite rigidity. The effect of con-
crete cracking was not considered. 

In the present study, a simplified method for the 
evaluation of construction load was developed. To 
accurately evaluate construction load, the effects of  
the shores’ stiffness and concrete cracking were con-
sidered. 

2 INFLUENCE PARAMETERS 

2.1 shores’ stiffness 

First, the effect of shores’ stiffness was investigated. 
For this purpose, a beam model that is supported by 
continuous vertical springs and simple supports at 
the ends was considered (Fig. 1). Here, a slab and 
shores were idealized as a beam and springs, respec-
tively. The governing equation for the deflection of 
the beam can be expressed as  
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s
k  is the spring stiffness, which can be defined by 
the properties of the shore as follows 
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where As = cross-sectional area of a shore, Es = elas-
tic modulus of the material used for the shore, Sl = 
spacing of the shores, and H = height of the shores. 
Defining 

4 4
s

k EIβ =  and considering the support con-
ditions, the deflection of the beam is be calculated as 
follows.  
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Figure 1. Beam model supported by continuous springs. 

 
The deflection of each spring can be estimated 

from Equation (3). The force of each spring is ex-
pressed as S1ksν. Thus, the sum of the spring forces 
LDsp can be defined as 
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where ns = the number of springs. The load resisted 
by the beam, LDsl, can be calculated as 
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In Equations (4) and (5), the loads that are trans-

ferred to the beam and springs are determined ac-
cording to the parameters ks, β , and L . The ratio 
of the loads that are resisted by the beam and the 
springs can be written as  
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This ratio K  can be regarded as the ratio of the 

beam stiffness and the spring stiffness. The equiva-
lent stiffness ratio K  determines the load distribu-
tion between the slab and shores. 

Figure 2 shows the arrangement of shores sup-
porting a slab. In the figure, S2 is the shore’s space 
perpendicular to the span L, and h  is the slab’s 
thickness. I used for the calculation of 4 4

s
k EIβ =  in 

Equation (3) can be defined as the moment of inertia 
of the slab (=

3

2
12S h ). 

Figure 3 shows a simplified discrete model that 
replaces the continuum beam-spring model. In the 
model, the continuous springs representing shores is 
replaced with a concentrated spring. In the figure, ksl 
is the equivalent stiffness of each slab, and ksp is the 
equivalent stiffness of the concentrated spring, 

which represents the sum of the stiffness of all 
shores in a story. For the idealized discrete system in  

 
S1

Height : H

Slab’s thickness : h

shore
S2

S1

Shore

L

A
s
: Section area of shore

E
s
: Elastic modulus of shore

 
Figure 2. Shoring system for flat plate under construction. 
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Figure 3. Idealized discrete model for slabs supported by 
shores. 
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Figure 4. Effective length factor ψ  for slabs with various 
boundary restraints. 

 

Figure 3(b), the stiffness matrix Kff can be written as  
 

1 1 1

1 2 1 2 2

2 3 2

0

0

sl sp sp

ff sp sl sp sp sp

sp sl sp

k k k

K k k k k k

k k k

⎛ ⎞+ −
⎜ ⎟

= − + + −⎜ ⎟
⎜ ⎟− +⎝ ⎠

     (7) 

 
Using the equivalent stiffness ratio K = ksl / ksp 

which is defined as the value in Equation (6), Equa-
tion (7) can be redefined as  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



Though Equation (8) was developed for a simply 
supported slab, the slab stiffness can vary with the 
boundary conditions. Figure 4 shows the effective 
length factor ψ  for addressing various boundary 
conditions. Using the effective length Lψ  instead 
of L  in Equations (3) through (8), the stiffness ma-
trix Kff for various boundary conditions can be esti-
mated (see 4. application of proposed method).  

2.2 effective stiffness of slab 

In the present study, Bischoff’s equation (Bischoff 
& Scanlon 2007) was used to calculate the effective 
moment of inertia(Ie) of slabs. The Bischoff’s equa-
tion gives good predictions for flexural members 
with low reinforcement ratios less than 1%, which is 
typical for slabs. In the Bischoff’s equation, the ef-
fective moment of inertia(Ie) is defined as 
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where Ig is the moment of inertia of the gross sec-
tion, and Icr is the moment of inertia of the cracked 
section. Mcr is the cracking moment of the slab de-
fined with fc(t) (concrete strength at age t). Ma is the 
maximum moment applied to the slab, which can be 
expressed with the construction load. Using the 
definitions of Mcr and Ma, 
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where the slab’s unit weight w  is 23.5kN/㎥, and 
LR  is the ratio of the construction load to the slab’s 
self-weight.  

Icr varies with various design parameters. Gener-

ally, the reinforcement ratios in flat-plates range 

0.5%~1.0%, concrete’s elastic modulus 15000MPa~ 

35000MPa, and concrete cover 20mm~30mm. With 

the parameters of this range, Icr is 12%~35% of Ig. In 

the present study, Icr is assumed to be 25% of Ig for 

simplicity in calculations. 

Inserting Equation (10) and 
cr g
I 0.25I= , Equa-

tion (9) can be simplified as 
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compression strength at 28 day, and βcc = 

{ }0 25 1 28exp . t⎡ ⎤−⎣ ⎦
. In Equation (11), the effective 

moment 

of inertia can be defined as the function of 
cc

LR β . 
Figure 5 shows the variations of the effective mo-
ment of inertia with 

cc
LR β  for a slab.   

( )cc

cr

LR β  indicates the critical load correspond-
ing to initial concrete cracking, which can be de-
fined as ( )cc

cr

LR C 3β = . 
The average effective stiffness of a slab varies 

with the boundary conditions. Ie in Equation (11) 
can be used for simply supported beams. By apply-
ing the effective length factor Lψ , the variations of 
the slab’s effective stiffness can be approximately 
addressed. ACI committee 435 (1978) reported that 
the deflection of cracked member depends largely on 
the effective stiffness at the center of the span. Thus, 
the average effective stiffness of continuous slabs as 
well as simply supported slabs can be approximately 
determined by the effective stiffness at the mid-span.  

3 PROPOSED METHOD FOR CALCULATING 
CONSTRUCTION LOAD 

In the multi-story slabs connected by shores, gener-
ally, additional construction load is newly superim-
posed at the time when new concrete is cast at the 
top floor, and at the time when shores are removed 
at the bottom floor. Generally, the construction live 
load excluding the slab’s self weight account for 50 
percent of the slab’s self weight D  (ACI 347, 
2005). Thus, the total superimposed load at the top 
floor becomes 1.5D , which indicates that the load 
ratio LR  at this construction stage is 1.5.  
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Figure 5. Relationship between load ratio and effective mo-
ment of inertia. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 

 

( ) s
s

s

vg
kc

c

c

vg
k

sc
G αααα +=,
1

                 (5) 

 
where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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Figure 6. Slab-shore model at the time when new concrete is 
cast at the top floor.  

3.1 Concrete casting at top floor 

Figure 6 shows three floor slabs supported by 
shores. In the figure, concrete is cast at the top floor 
(4F). The floors from 3F to 1F resist the newly su-
perimposed load. The number of the slabs resisting 
the superimposed load n =3. Variable i  indicates 
the order of the floors resisting the construction 
load, from the top to the bottom: for the 3F slab, 
i =1. As mentioned, the magnitude of the newly su-
perimposed load (Loadc) at the top floor is assumed 
to be 1.5D .  

From Equation (8), the stiffness matrix for the 
slab-shore system can be expressed as 
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Ec and Ie of each slab are used to calculate ksli and Ki 
where Ec is the slab’s elastic modulus at its age, and 
Ie is the slab’s effective moment of inertia. 

With the stiffness in Equation (12), the equilib-
rium equation for the slab-shore system can be de-
fined as  
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where 
i

ν  is the deflection increment developed by 
the superimposed load (Loadc). It should be noted 
that 

i
ν  is not the deflection of actual slabs, but the 

deflection of the equivalent discrete model in Figure 
3. The deflections of actual slabs can be calculated 
using Equation (3) and (13). Using 

i
ν  resulting 

from Equation (13), the construction loads distrib-
uted to the slabs can be calculated. 
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When the effective moment of inertia Ie is con-

sidered, the construction load varies with the values 
of Ie, and thus, iterative calculations are required. In 
the present study, to avoid iterative calculations, the 

e
I  values calculated at the previous construction 
stage were used.  

3.2 Removal of shores at bottom floor 

When shores are removed at the bottom floor, the 
load, which is transmitted to the bottom floor 
through the shores, is redistributed to the upper 
slabs. This procedure is the same as that described in 
“3.1 Concrete casting at top floor.” 

Figure 7 shows the slab-shore model at the time 
when shores are removed at the bottom floor. The 
order i  of the slabs resisting the redistributed load 
is shown in Figure 7. In this construction stage, the 
top floor can provide resistance to the construction 
load. Designating the superimposed load caused by 
the removal of shores as Loadsh, the load distributed 
to the upper slabs can be calculated as follows. 
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where 

i
ν  is the deflection increments developed by 

the load Loadsh. 
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Figure 7. Slab-shore model at the time when shores are re-
moved at the bottom floor. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



4 APPLICATION OF PROPOSED METHOD 

The proposed method was used to evaluate the con-
struction load of an example structure shown in Fig-
ure 8. The construction period per floor was 6 days. 
The bottom slab’s shores were removed 3 days after 
concrete casting of the top floor. The slab span was 
10000mm in the X- and Y-directions. Construction 
load was calculated for the middle strip. ψ =0.8 was 
used for the slab’s effective length factor, consider-
ing the boundary condition of the middle strip. The 
material properties and other conditions are pre-
sented in Table 1. Construction load was calculated 
at the time when new wet concrete was cast at the 
level 13. Figure 8(b) shows the construction load 
right before the concrete casting at level 13.  
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(b) Slab construction load before concrete casting of level 13 

Figure 8. Example structure for application of proposed me-
thod. 

 
Table 1. Geometry and material properties of example structure. 

Slab 

28day 
Strength 

Span length  Thickness    
 

Number of  
shored slabs 

36MPa 10000mm 300mm 3 

Shore 

Elastic 
modulus 

Section area 
 

Spacing Height 

200000MPa 576㎟ 1000mm 3000mm 

 

At this construction stage, the concrete’s age of 

the slabs were 15, 9, and 3 days for the levels 10, 11 

and 12, respectively. Using the time-dependent con-

crete strength ( ) ( ){ }c cu
f t exp 0.25 1 28 t f= −  for normal 

weight concrete, the critical load for concrete crack-

ing can be calculated as follows. 
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At floor 12, the slab construction load was 

0.15D   in Figure 8 (b). Since the construction load 
was less than the critical load 

cr ,12
LR  in Equation 

(17), concrete cracking did not occur. At the floors 
10 and 11, on the other hand, concrete cracking oc-
curred because of the greater construction loads. The 
shore's spring coefficient can be calculated as fol-
lows. 
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Using Equation (11), 

e
I  for the floor 10 can be 

calculated as follows( MPa
c

E 31949= , t 18= day). 
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In Equation (19), the concrete' age should corre-

spond to the time when concrete cracking occurred. 
For the floor 10, concrete cracking occurred at con-
crete age of 15 days. Thus, Ie was calculated for the 
concrete age of 15days.  

i
β  was calculated using Ie for the floor 10. 
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 v  is calculated in Equation (3), considering 

L =8000mm and shores’ positions x =-3000mm,    
-2000mm, -1000mm, 0mm, 1000mm, 2000mm, and 
3000mm. In Equation (4), the shore force is calcu-
lated as follows. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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of the evaporable water we (capillary water, water 
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(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



The shore's stiffness and load at floor 11 is calcu-
lated in the same manner ( MPa

c
E 30849= , t 12= ). 
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The shore's stiffness and force at the floor 12 is 

calculated as follows( MPa
c

E 28503= , t 6= ). 
i

β  is 

calculated using 
e g

I I=  for the floor 12 without 

concrete cracking. 
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Using Equation (6), the equivalent stiffness ratio 

i
K  of each slab is calculated as follows. 

 

1 1 1

1

1 1

8 6 314
0 267

6 314

−

= = =

sl ,

sp ,

L S q . S q
K .

L . S q
        (27) 

 

2 1 1

2

2 1

8 6 534
0 224

6 534

−

= = =

sl ,

sp ,

L S q . S q
K .

L . S q
            (28) 

 
The stiffness matrix of the slabs connected by 

shores is calculated using Equation (12)~(15). 
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Finally, using Equation (14), the load distribution 

of each slab can be calculated as follows. 
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In order to calculate the total construction load 

for each slab, this construction load increment is 
added to the existing construction load. When the 
bottom slab’s shores are removed, the construction 
load distribution can be calculated in the similar 
manner. 

5 CONCLUSIONS 

In the present study, a simplified method for the 
evaluation of construction load in flat-plates was de-
veloped. In the proposed method, unlike existing 
methods, the effects of concrete cracking and flexi-
ble shores were addressed.  
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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