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ABSTRACT: Evaluation of construction load is a critical issue for the design and construction of flat plates
which are susceptible to excessive deflections and concrete cracking. Underestimated construction load may
cause structural and construction problems to flat plate slabs. The present study focused on the effects of
shore stiffness and concrete cracking on the distribution and magnitude of construction load. Slabs connected
by shores were idealized with a simple frame model. Based on the frame model, we developed a simplified
method for the evaluation of construction load, addressing the effects of various design parameters including
shore stiffness and concrete cracking. The proposed method was used to predict construction load in an ex-

ample model.

1  INTRODUCTION

Recently, the use of flat-plate system for high-rise
buildings has been increased due to the advantages
of reduced floor height and improved constructabil-
ity. However, the low slab stiffness of long-span
flat-plates frequently causes excessive deflection
and cracking in the slabs (Gardner & Fu 1987).

Grundy & Kabaila (1963) developed a simplified
method for the evaluation of construction load. In
the Grundy’s method, newly superimposed construc-
tion load is distributed to the slabs, according to the
ratio of the concrete stiffness of the slabs. In con-
trast, Mosallam and Chen (1991) developed a differ-
ent method, in which total construction load is re-
distributed to the slabs according to the ratio of the
concrete stiffness whenever the construction load is
updated. However, in the existing methods, shores
assumed to have infinite rigidity. The effect of con-
crete cracking was not considered.

In the present study, a simplified method for the
evaluation of construction load was developed. To
accurately evaluate construction load, the effects of
the shores’ stiffness and concrete cracking were con-
sidered.
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2 INFLUENCE PARAMETERS

2.1 shores’ stiffness

First, the effect of shores’ stiffness was investigated.
For this purpose, a beam model that is supported by
continuous vertical springs and simple supports at
the ends was considered (Fig. 1). Here, a slab and
shores were idealized as a beam and springs, respec-
tively. The governing equation for the deflection of
the beam can be expressed as

d*v

El =q-k 1

A ()

k. 1is the spring stiffness, which can be defined by

the properties of the shore as follows

b=l @)
S,H

where A, = cross-sectional area of a shore, E; = elas-
tic modulus of the material used for the shore, S; =
spacing of the shores, and H = height of the shores.
Defining #=¥&/*E and considering the support con-
ditions, the deflection of the beam is be calculated as
follows.
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Figure 1. Beam model supported by continuous springs.

The deflection of each spring can be estimated
from Equation (3). The force of each spring is ex-
pressed as S;ksv. Thus, the sum of the spring forces
LDy, can be defined as

LD, =Sk >V, 4)
i=1

where n; = the number of springs. The load resisted
by the beam, LDy, can be calculated as

LD, )

=qL-LD,,

In Equations (4) and (5), the loads that are trans-
ferred to the beam and springs are determined ac-
cording to the parameters k;, £, and L. The ratio
of the loads that are resisted by the beam and the
springs can be written as

LD,
LD
sp

(6)

This ratio K can be regarded as the ratio of the
beam stiffness and the spring stiffness. The equiva-
lent stiffness ratio K determines the load distribu-
tion between the slab and shores.

Figure 2 shows the arrangement of shores sup-
porting a slab. In the figure, S, is the shore’s space
perpendicular to the span L, and 4 is the slab’s
thickness. / used for the calculation of A=k /4El in
Equation (3) can be defined as the moment of inertia
of the slab (=S./°/12).

Figure 3 shows a simplified discrete model that
replaces the continuum beam-spring model. In the
model, the continuous springs representing shores is
replaced with a concentrated spring. In the figure, kg
is the equivalent stiffness of each slab, and £k, is the
equivalent stiffness of the concentrated spring,
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which represents the sum of the stiffness of all
shores in a story. For the idealized discrete system in

|<—>| Slab’s thlckness h
—o
Igg shore Height : H
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A, : Section area of shore

E, : Elastic modulus of shore

Figure 2. Shoring system for flat plate under construction.
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(a) continuous shormg system (b) Idealized discrete system

Figure 3. Idealized discrete model for slabs supported by
shores.
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Figure 4. Effective length factor y for slabs with various
boundary restraints.

Figure 3(b), the stiffness matrix Kjcan be written as

ksl 1 + kspl _kspl 0 7
Ky=| —k,  kypthk,+k, —k,, (7
0 _kSPZ ksl 3 + kspZ

Using the equivalent stiffness ratio K = kg / kg,
which is defined as the value in Equation (6), Equa-
tion (7) can be redefined as

kg, + ut _& 0
K, K,
8
Ky = = kg, + b +—2 K )
K, K, 2 K,
2 2
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Though Equation (8) was developed for a simply
supported slab, the slab stiffness can vary with the
boundary conditions. Figure 4 shows the effective
length factor y for addressing various boundary
conditions. Using the effective length w L instead
of L in Equations (3) through (8), the stiffness ma-
trix Ky for various boundary conditions can be esti-
mated (see 4. application of proposed method).

2.2 effective stiffness of slab

In the present study, Bischoff’s equation (Bischoff
& Scanlon 2007) was used to calculate the effective
moment of inertia(/.) of slabs. The Bischoff’s equa-
tion gives good predictions for flexural members
with low reinforcement ratios less than 1%, which is
typical for slabs. In the Bischoff’s equation, the ef-
fective moment of inertia(Z,) is defined as

10 = CZr < Ig (9)
1_(Myr ] [1_ IL'I“ j
M, I,
where I, is the moment of inertia of the gross sec-
tion, and /., is the moment of inertia of the cracked
section. M., is the cracking moment of the slab de-
fined with f(t) (concrete strength at age 7). M, is the
maximum moment applied to the slab, which can be

expressed with the construction load. Using the
definitions of M., and M,,

M, 0.63/f -S,-h/[6
M, we(pL) /8
0.63\/1.-S,-h* /6

" 2355, -h-(LR)-(wL) /8/10°

=0.357-105‘/7"—'h22
(LR)-(wL)

(10)

where the slab’s unit weight W is 23.5kN/m’, and
LR s the ratio of the construction load to the slab’s
self-weight.

1., varies with various design parameters. Gener-
ally, the reinforcement ratios in flat-plates range
0.5%~1.0%, concrete’s elastic modulus 15000MPa~
35000MPa, and concrete cover 20mm~30mm. With
the parameters of this range, /., is 12%~35% of I,. In
the present study, /.. is assumed to be 25% of I, for
simplicity in calculations.

Inserting Equation (10) and /., =0.251,, Equa-

tion (9) can be simplified as

I 1
R (11)
f 4—C[V’B“}

LR
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where ¢=382x10° (fm -tz/(z//L)4) , Jeu 18 the concrete’s
compression strength at 28 day, and f. =

expig.zil_ /28/1‘}}- In Equation (11), the effective
momen

of inertia can be defined as the function of Lr/\/z. .
Figure 5 shows the variations of the effective mo-
ment of inertia with zz/\/z. for a slab.

(L’/VB.), indicates the critical load correspond-
ing to initial concrete cracking, which can be de-
fined as (t&/V5.), =VC/\3,

The average effective stiffness of a slab varies
with the boundary conditions. I, in Equation (11)
can be used for simply supported beams. By apply-
ing the effective length factor w L, the variations of
the slab’s effective stiffness can be approximately
addressed. ACI committee 435 (1978) reported that
the deflection of cracked member depends largely on
the effective stiffness at the center of the span. Thus,
the average effective stiffness of continuous slabs as
well as simply supported slabs can be approximately
determined by the effective stiffness at the mid-span.

3 PROPOSED METHOD FOR CALCULATING
CONSTRUCTION LOAD

In the multi-story slabs connected by shores, gener-
ally, additional construction load is newly superim-
posed at the time when new concrete is cast at the
top floor, and at the time when shores are removed
at the bottom floor. Generally, the construction live
load excluding the slab’s self weight account for 50
percent of the slab’s self weight D (ACI 347,
2005). Thus, the total superimposed load at the top
floor becomes 1.5, which indicates that the load
ratio LR at this construction stage is 1.5.
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Figure 5. Relationship between load ratio and effective mo-
ment of inertia.



Load = Load,, + Load,
Load,. = construction load

4F 5T T 7T 7 T2 ‘
LS, = slabs distributed load
n = the number of shored floors
3F : K1 ’FE—E—E—G—E—’Q‘ i=1
x = shored distance
1, = slab’s effective section stiffness
oF : K2 5-3—8—8—8—6—’9_ i=2
i > L = span length
X
h = height
1F : K3 ’;.a_e_n_e_a_’g i=3 e
— % n, = the number of shores into effective span
L

Figure 6. Slab-shore model at the time when new concrete is
cast at the top floor.

3.1 Concrete casting at top floor

Figure 6 shows three floor slabs supported by
shores. In the figure, concrete is cast at the top floor
(4F). The floors from 3F to 1F resist the newly su-
perimposed load. The number of the slabs resisting
the superimposed load »=3. Variable i indicates
the order of the floors resisting the construction
load, from the top to the bottom: for the 3F slab,
i =1. As mentioned, the magnitude of the newly su-
perimposed load (Load,) at the top floor is assumed
tobe 1.5D.

From Equation (8), the stiffness matrix for the
slab-shore system can be expressed as

k, k,
kg + K” —1‘(7” 0
1 1
_@ k +h+@ 0
K"K K (12)
Igﬁ” =
H _ sin-l
Kn—l
k
0 0 _];"'H ksln_léln—l
1 -1

n

E. and /, of each slab are used to calculate k,; and K;
where E. is the slab’s elastic modulus at its age, and
1., 1s the slab’s effective moment of inertia.

With the stiffness in Equation (12), the equilib-
rium equation for the slab-shore system can be de-
fined as

v, Load,
v, 0

K, '!|= E (13)
1% 0

where v, 1is the deflection increment developed by
the superimposed load (Load,.). It should be noted
that v, is not the deflection of actual slabs, but the
deflection of the equivalent discrete model in Figure
3. The deflections of actual slabs can be calculated
using Equation (3) and (13). Using v, resulting
from Equation (13), the construction loads distrib-
uted to the slabs can be calculated.
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LS, Vi Load,
Pk k| (14)
LS, v, 0
k, 0 0
where K = 0 ksgll ) g (15)
0 0 0 £k

When the effective moment of inertia /, is con-
sidered, the construction load varies with the values
of 1., and thus, iterative calculations are required. In
the present study, to avoid iterative calculations, the
I, values calculated at the previous construction
stage were used.

3.2 Removal of shores at bottom floor

When shores are removed at the bottom floor, the
load, which is transmitted to the bottom floor
through the shores, is redistributed to the upper
slabs. This procedure is the same as that described in
“3.1 Concrete casting at top floor.”

Figure 7 shows the slab-shore model at the time
when shores are removed at the bottom floor. The
order i of the slabs resisting the redistributed load
is shown in Figure 7. In this construction stage, the
top floor can provide resistance to the construction
load. Designating the superimposed load caused by
the removal of shores as Loady,, the load distributed
to the upper slabs can be calculated as follows.

LS, v,
LS v, -

| =Ka| =K Ky (16)
LS, v, Load ,

where v, is the deflection increments developed by
the load Loady,

4F:K3;F°_'_°_°_°_,9, i=1
3F:K2);8—H—%—8—)9_i

o @

Figure 7. Slab-shore model at the time when shores are re-
moved at the bottom floor.

2

i=3

Load,,
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4 APPLICATION OF PROPOSED METHOD

The proposed method was used to evaluate the con-
struction load of an example structure shown in Fig-
ure 8. The construction period per floor was 6 days.
The bottom slab’s shores were removed 3 days after
concrete casting of the top floor. The slab span was
10000mm in the X- and Y-directions. Construction
load was calculated for the middle strip. w =0.8 was
used for the slab’s effective length factor, consider-
ing the boundary condition of the middle strip. The
material properties and other conditions are pre-
sented in Table 1. Construction load was calculated
at the time when new wet concrete was cast at the
level 13. Figure 8(b) shows the construction load
right before the concrete casting at level 13.
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(a) Floor plan
Load,. = Load , + Load,
13F
i=1 12F 0.15D
i=2 11F 1.17D
i=3 10F 1.68D

(b) Slab construction load before concrete casting of level 13

Figure 8. Example structure for application of proposed me-
thod.

Table 1. Geometry and material properties of example structure.

Slab

28day Span length Thickness Number of
Strength shored slabs
36MPa 10000mm 300mm 3

Shore

Elastic Section area  Spacing Height
modulus

200000MPa  576mr 1000mm 3000mm

At this construction stage, the concrete’s age of
the slabs were 15, 9, and 3 days for the levels 10, 11
and 12, respectively. Using the time-dependent con-
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crete strength /(! )=ep{0.25(1-V2]1)| . for normal
weight concrete, the critical load for concrete crack-
ing can be calculated as follows.

=3.6x10* x Voa o

LRcr.IZ 2

(#L)
= 3.6x10¢ x Y 21OMPa - 300mm _, o0,
(8000mm) (17)

NV

LR, =3.6x10"x f‘-"z =0.91D
(4L)
Jfosh

LR, ,, =3.6x10 stzz 0.96D

At floor 12, the slab construction load was
0.15D in Figure 8 (b). Since the construction load
was less than the critical load Lr,,, in Equation
(17), concrete cracking did not occur. At the floors
10 and 11, on the other hand, concrete cracking oc-
curred because of the greater construction loads. The
shore's spring coefficient can be calculated as fol-
lows.

. _ AE, _ 576mm’ x200000MPa
* SH  1000mm x3000mm

(18)

=38.4N/mm*

Using Equation (11), 7, for the floor 10 can be
calculated as follows( £, =37949MpPa , t = 18 day).

1 1
I~ -300? -
£ 4—[0.38x10‘°x%]/1.682

In Equation (19), the concrete' age should corre-
spond to the time when concrete cracking occurred.
For the floor 10, concrete cracking occurred at con-
crete age of 15 days. Thus, /, was calculated for the
concrete age of 15days.

B was calculated using /, for the floor 10.

(20)

k
= s =0.00079 N/mm
P 4E 1 /

cre

v is calculated in Equation (3), considering
L =8000mm and shores’ positions x =-3000mm,
-2000mm, -1000mm, Omm, 1000mm, 2000mm, and
3000mm. In Equation (4), the shore force is calcu-
lated as follows.

21)

L, =Sk v =6614Sg
i=1



The shore's stifthess and load at floor 11 is calcu-
lated in the same manner ( £, = 30849MpPa , t=12).

je - 1 3002 =046 o
£ 4 0.38><10‘°><f='-°'74 1172

000
B, =0.00072N/mm (23)
L,,=Sk>v,=65348q (24)

i=1

The shore's stiffness and force at the floor 12 is
calculated as follows( E =28503MPa, t=6). B, 1is

calculated using 7,=7, for the floor 12 without

concrete cracking.
(25)
(26)

B, =0.00064 N/mm

L, =Sk v =6314Sq

i=l

Using Equation (6), the equivalent stiffness ratio
K. of each slab is calculated as follows.

L _

K =L 854-631489 _ ¢, 27)
L, 63145g
L _

K, =2 854765345q _ oy (28)
L,  65345g

The stiffness matrix of the slabs connected by
shores is calculated using Equation (12)~(15).

k., = 285031,
Ky, =30849(0.461,) (29)
k3 =31949(0.331, )
135210 106710 0
K, =1,/ -106710 184040 —63160 (30)
0 ~63160 73720
28503 0 0
Ky=1,] 0 14170 0 (31)
0 0 10560

Finally, using Equation (14), the load distribution
of each slab can be calculated as follows.
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LS, Load,
LS, |= I_(fsll_(;fl 0
LS, 0 (32)
0.5992 0.4921 0.4216\(1.5D 0.90D
=|0.2446 0.3100 0.2656 0 |=(037D
0.1562 0.1979 0.3128 0 0.23D

In order to calculate the total construction load
for each slab, this construction load increment is
added to the existing construction load. When the
bottom slab’s shores are removed, the construction
load distribution can be calculated in the similar
manner.

5 CONCLUSIONS

In the present study, a simplified method for the
evaluation of construction load in flat-plates was de-
veloped. In the proposed method, unlike existing
methods, the effects of concrete cracking and flexi-
ble shores were addressed.
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