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ABSTRACT: A simple element with an embedded strong discontinuity for modeling cohesive cracking of 
concrete is presented. The element differs from previous elements of the embedded type, in that a consistent 
stress field is obtained by direct enforcement of stress continuity across the crack. The displacement disconti-
nuity is modeled in an XFEM fashion; however, the discontinuous displacement field is special, allowing for 
the direct enforcement of stress continuity. This in turn allows for elimination of extra degrees of freedom 
necessary for describing the crack deformations, thus the element has the same number of freedoms as its 
continuous basis: CST. The good performance of the element is demonstrated by its ability to simulate three-
point bending of a notched concrete beam. The advantage of the element is its simplicity and the straightfor-
ward implementation of it. Handling situations with multiple cracks will not require further developments, al-
though this is not demonstrated here. 

1 INTRODUCTION 

The 2D modeling of concrete cracking in the 
framework of FEM has already reached an advanced 
level, and developments in this field over the past 
decade have been characterized as XFEM, the eX-
tended Finite Element Method, see (Belytschko & 
Black 1999), (Moës et al. 1999)  and (Moës & Be-
lytschko 2002). For refinements of the method ap-
plied to cohesive cracking allowing for partly 
cracked elements, see (Asferg et al. 2007) and 
(Mougaard et al. 2009). Although these methods are 
very effective, the drawback, however, is that it 
takes a lot of bookkeeping, at the system level as 
well as at the element level, to ensure conformity 
and to model separation of the discontinuous parts of 
an element accurately, i.e. in such a way that it al-
lows for fully independent deformations of the two 
separated parts.  

The element which is proposed here is a 2D ele-
ment of the embedded discontinuity type with a 
strong discontinuity; this embedded discontinuity 
type was originally introduced by (Dvorkin, E.N. et 
al. 1990). Further developments were presented by 
(Oliver 1996); this work is based on the assumed 
enhanced strain approach and differs from the pre-
sent work in that it does not enforce stress continuity 
directly, but in a variational manner.  

The advantage of the embedded element type is 
that it is simple to implement and that it does not 
complicate the building of the FE system Equation. 
The drawbacks of it is that it lacks the ability to cre-
ate completely independent element separations and 
that displacement continuity is violated on element 

sides crossed by a crack; however, in many cases 
these deficiencies might be considered to be of mi-
nor importance.  

The present element takes advantage of the sys-
tematic construction of displacement fields in 
XFEM, except that the discontinuous shape func-
tions are not the same as the continuous. Besides 
from being of the embedded type the present ele-
ment is characterized by having a consistent stress 
field which is continuous across the discontinuity. 
Enforcing this stress continuity in the element we 
obtain the possibility of eliminating the extra de-
grees of freedom (DOF) necessary for describing the 
discontinuity; hereby an element is realized with no 
extra DOF’s compared to the continuous version of 
the element.  

The present element allows for cohesive cracking 
with a stress criterion for crack initiation, i.e. a crack 
initiates if the uni-axial tensile strength is exceeded 
by the first principle stress and no stress intensity is 
assumed at the crack tip, assuming smooth crack 
closure.  

2 KINEMATICS 

The modeling of a strong discontinuity, such as a 
crack, is based on the strategy of the extended finite 
element method for the approximation of a dis-
placement fields with a discontinuity. Thus, the dis-
placement field approximation in an element with a 
discontinuity is established by combining the dis-
placement field corresponding to the continuous 
element with the displacement field corresponding 



to the discontinuity. 
For the linear interpolation of the continuous dis-

placement field we consider a three-node triangular 
element, the CST. The element is given the possibil-
ity of a strong discontinuity along a straight line 
crossing the element. The enforcement of stress 
compatibility between the stresses in the continuous 
parts of the element and the stresses bridging the 
discontinuity line is the essential idea of the present 
work. Stress compatibility is ensured by demanding 
that the order of variation of the discontinuous dis-
placement fields along the discontinuity line must 
match the order of variation of the continuous stress 
fields, and that the discontinuous displacement field 
produces equal stresses on opposite sides of the dis-
continuity. In the case of a CST this leads to a dis-
placement field with a constant jump in the dis-
placement along the discontinuity line, which will 
produce constant bridging stresses along the discon-
tinuity matching the constant stress field of the CST. 
Further, this displacement field must produce equal 
gradients on either side of the discontinuity. 

A shape function that allows for a constant jump 
across a straight line and at the same time only in-
troduces equal and constant strains on either side of 
the discontinuity line is shown in Figure 1. The 
shape function may be written in terms of the natural 
coordinate ζ  associated with the element vertex 
which is also a vertex of the triangular sub-domain 
e
−Ω : 
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This type of shape function has previously been 

applied by (Oliver 1996). Only two DOF’s are 
needed to describe the discontinuous deformations. 
We chose the global components of the discontinuity 
vector and collect these DOF’s in the vector 

[ , ]1 2
d TV VΔ Δ=V . Each DOF is associated with a dis-

continuous shape function as given in (1), and the 
discontinuous displacement field vector du  is in-
troduced as 
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By combining du  with the continuous displace-

ment field vector c c c=u N V  for the normal CST 
element we arrive at the total deformation field: 

 
c d c c d d= + = +u u u N V N V                (3) 

 
where cN  is the usual linear interpolation matrix 
and cV  the usual dof vector. 
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Figure 1. Top: Straight discontinuity line defining element sub-
domains, and the associated natural coordinate ζ .  

 
Bottom: Illustration of constant discontinuity 

shape function. 
Adopting the Voigt notation and assuming a lin-

ear strain measure, the strains in the continuous part 
of the element may be written as the vector 

 
c c d d= +ε BV B V                           (4) 

 
where cB  is the usual constant strain interpolation 
matrix and dB  is the constant strain interpolation 
matrix derived from the discontinuous shape func-
tion. Note that dB  is the same on both sides of the 
discontinuity.  

3 VARIATIONAL AND FEM FORMULATIONS 

Consider a linear elastic body in a state of plane 
stress or plane strain. The body is situated in a plane 
Cartesian coordinate system 1 2( , )x x . Assume that a 
crack has formed in the body, see Figure 2. The unit 
tangent vector to the curvilinear crack path is de-
noted by s , and the normal to the crack path is de-
noted by n . At any point along the crack ( , )n s  de-
fines a local right-hand coordinate system. The 
negative side of the crack is defined as the side 
where n  coincides with the outward normal to the 
crack face. The stress transfer over the crack is given 
as the normal and tangential tractions, nσ and nsτ , 
respectively. These are the generalized stresses in 
the crack, and their work-conjugate generalized strains 
are the normal opening of the crack, n n nu u u+ −Δ = − , 
and the tangential slip of the crack faces, 

s s su u u+ −Δ = − . The generalized stresses and strains 
in the crack are collected in vectors according to 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



where u signifies a jump in the displacement 
field u  related to the local ( )n,s  coordinate sys-
tem. 

The stresses bridging the crack are typically func-
tions of the crack opening and sliding as well as of 
the history of opening and sliding. At this point we 
assume that the bridging stresses may be written as a 
function of u :  

 
( )cr cr=σ σ u                            (6) 

 
The internal virtual work IWδ and the external 

virtual work EWδ  may be stated as 
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where σ  and ε  are the work conjugate stress and 
strain vectors, f  is the domain load vector, t  is 
the prescribed boundary traction vector, and the pre-
fix δ  denotes the variation of the subsequent field. 

The un-cracked bulk material is assumed to be li-
near elastic and constitutive Equation is written in 
the form  

 
=σ εD                   (9) 
 

where D  is the appropriate material stiffness ma-
trix.  

Stress compatibility across the discontinuity is 
ensured by demanding the traction crt  on the crack 
faces to equal the bridging stresses 

 
cr cr cr=T t σ                               (10) 
 

where crT  is a transformation matrix depending on 
the orientation of the crack. The traction may be de-
termined from 
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where m  is a matrix based on the elements of the 
normal vector of the crack face 1 2,n n= ( )n . Intro-
ducing into (6), (10) and (11) the element field ap-
proximations (4) and (9), and utilizing that 

cr d=u T V  the stress compatibility requirement 
may be expressed at the element level as 

 
( )cr c c d d cr cr d⎡ ⎤+ =⎣ ⎦T mD B V B V T Vσ           (12) 

 
The nature of this Equation depends on (6), and 

in general it is nonlinear in dV . However, it may be 
solved for dV  at the element level, thus allowing 

for the elimination of the DOF’s describing the dis-
continuity. The variation of dV  may be established 
by taking the variation of (12): 

 

 
Figure 2. Global coordinate system 1 2( , )x x and local crack co-
ordinate system ( , )n s . 
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We introduce crD  as the generalized tangential 

stiffness of the crack bridging, i.e. 
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Realizing that d cr∂ ∂ =u V T , the variation of 
dV  may be isolated from (13) in the form 
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where 
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The approximation to the internal virtual work in 

an element may now be expressed by 
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where all quantities now relate to an element. The 
stresses that enter into this expression are deter-
mined as: 
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Equation (17) constitutes the element nodal force 

vector q  such that we may write =I cTWδ δV q . 
The differential form of the internal virtual work 

reads 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
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relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



In an element this may be expressed solely in 
terms of the usual (continuous) DOF vector cV : 
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This Equation constitutes the element stiffness 

matrix Tk such that we may write =I cT c
TWδ δd dV k V . 

The tangent stiffness matrix is only symmetric if the 
matrix crD  is symmetric, which is not necessarily 
the case. However, for iterative purposes crD  may 
be replaced by the symmetric matrix ½ cr crTD D⎡ ⎤+⎣ ⎦ . 

4 NUMERICS 

On the global level the virtual work Equation fur-
nishes the discrete equilibrium Equation: 

 
( )=Q V R                               (22) 
 

where Q  is the sum of element nodal forces estab-
lished through Equations (17)-(19), V  is the global 
DOF vector and R  is the global nodal load vector 
determined from (8). Equation (22) is a set of 
nonlinear Equation which are solved iteratively ap-
plying the linear incremental relation 

 
T =d dK V R                             (23) 
 

where TK  is the global tangent stiffness matrix as-
sembled from element matrices established through 
(21), dV  is the global incremental DOF vector and 
dR  is global incremental load vector. 

The element presented in the previous section is 
based on the CST, however, it allows for the forma-
tion of a displacement discontinuity or a crack. Thus 
we have named the element “dCST”. The dCST has 
three nodes and six DOF’s, two at each node describ-
ing the displacement vector. The actual value of the 
discontinuity vector is calculated at the element level 
and no global DOF’s are needed to represent these 
vector elements. 

A crack is formed if the principle stress in an 
element exceeds the uni-axial tensile strength, and 
the normal to the discontinuity line is parallel to the 
principle stress vector. If a neighboring element is in 
the cracked state, the crack in the actual element is 
forced to connect to the neighboring crack; other-
wise it is forced to pass through the center of the 
element. 

The nonlinear equilibrium Equation may be 
solved by standard FEM procedures; here we have 
applied the orthogonal residual algorithm (Krenk 
1995). Convergence is ensured at every load step in 

terms of an energy criterion related to the elastic en-
ergy of the initial elastic load step. 

5 EXAMPLE 

The capabilities of the dCST element are demon-
strated through the modeling of the RILEM three-
point bending test (Vandervalle 2000) for determin-
ing fracture mechanical properties of concrete, 
which has become a benchmark test also for the nu-
merical modeling of cohesive fracture propagation. 
A side view of the test setup is shown in Figure 3. 
The beam has a square cross-section and a 25 mm 
deep notch cut perpendicular to the bottom face in 
the mid-section plane; it is simply supported at the 
ends and loaded by a load acting vertically down-
wards at mid-span.  

 

 
Figure 3. Geometry of the RILEM test beam with a 25 mm 
notch. 

 
The beam is assumed to be cast in concrete with 

characteristics according to Table 1. The tensile sof-
tening of the concrete is assumed to obey a linear 
cohesive law as depicted in Figure 4. The crack 
propagation in this test is dominated by the opening 
of the crack, hence the mixed mode characteristics 
of the concrete are not considered. However, sliding 
of the crack faces must produce some stress in order 
to avoid unrestricted rigid body motion of the 
cracked element part which is only attached to one 
node. Therefore, sliding is modeled elastically with 
an inferior stiffness. No interaction between the two 
crack deformations is considered. 

 
Table 1. Concrete material parameters. 

Parameter Value 

Young’s modulus, Ec 37.4 GPa 

Poisson’s ratio, νc 0.2 

Tensile strength, ft 3.5 MPa 

Fracture energy, Gf 160 J/m2 
 
The dCST element is tested against the perform-

ance of an interface element supplied with the com-
mercially available FEM code DIANA (Diana 
2003). In the DIANA reference model the bulk of 
the beam is modeled with CST elements, and inter-
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of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
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volume of concrete (water content w) be equal to the 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



face elements are pre-located to model a crack path 
confined to the mid-span section of the beam.  

 

 
Figure 4. Linear tension softening curve. 

 

 
Figure 5. Load-deflection curves of the RILEM test beam with 
a 25 mm notch. Comparison between a DIANA model with 48 
interface elements over the ligament height, and two dCST 
models with unstructured meshes having 14 and 28 elements 
over the ligament height, respectively. 

 
To make a fair comparison between the dCST 

model and the reference model, the dCST model is 
allowed to develop one crack only, although it has 
the capability of modeling multi crack development. 
The one-crack restricttion is obtained by only allow-
ing an element to crack if it has a neighbor which is 
cracked. However, to get starting, the first element 
to crack is exempted from this rule.  

The reference beam was modeled in a regular 
mesh with 48 elements over the height of the beam. 
Unstructured meshes were used for the dCST-
models with two densities furnishing 14 and 28 ele-
ments over the ligament height, respectively.  

Simulated load-deflection curves are shown in 
Figure 5. The deflection is measured at mid-span 
relative to the mean value of the deformations of the 
beam mid-plane at the supports. Results for both 
meshes compare nicely with the results for the refer-
ence model, although the dCST model slightly over-
estimates the peak load. It should be emphasized, 
though, that the crack path has not been predefined 
in the dCST models. In Figure 6 the element meshes 
close to the notch and crack paths at peak load are 
shown, respectively for the two mesh densities ap-
plied. Only the middle part of the beam (±25mm  

 
Figure 6. Element mesh for dCST model close to the notch, 
and crack path at peak load. The middle part of the beam 
(±25mm from the mid-section) is shown for two mesh densi-
ties. 

 
from the mid-section) is shown. The winding of the 
dCST cracks is of course a consequence of the 
coarse constant strain fields of the elements. How-
ever, the overall direction of the cracks is in line 
with the mid-section plane.   

6 CONCLUSION 

A simple element called dCST with an embedded 
discontinuity for modeling concrete cracking has 
been presented. The element differs from previous 
strong discontinuity elements of the embedded or 
XFEM type, in that the stress field is consistent 
within the element ensuring stress continuity across 
the crack. The direct enforcement of stress compati-
bility has allowed for the elimination of extra DOF’s 
for describing the crack opening and sliding, thus the 
dCST has the same number of DOF’s as the CST. 

The good performance of the dCST has been 
demonstrated in the Mode I benchmark test: the 
three-point bending of a notched concrete beam.  

The advantage of the dCST element is the sim-
plicity of it. Implementation is straightforward and 
the handling of a multiple crack situation will not 
require further developments.  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



REFERENCES 

Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. 2007. A consis-
tent partly cracked XFEM element for cohesive crack 
growth. Int. J. Numer. Meth. Engng. Vol. 72: 464-485. 

Belytschko, T. and Black, T. 1999. Elastic crack growth in fi-
nite elements with minimal remeshing. Int. J. Numer. Meth. 
Engng. Vol. 45: 601-620. 

Diana User Manual 2003. DIANA User Manual, Element Li-
brary, (Edition 8.1). TNO Building and Construction Re-
search, Delft, The Netherlands. 

Dvorkin, E.N., Cuitiño, A.M. and Gioia, G. 1990. Finite ele-
ments with displacement interpolated embedded localiza-
tion lines insensitive to mesh size and distortions. Comp. 
Meth. in Appl. Mech. and Engng. Vol. 90: 829-844. 

Krenk, S. 1995. An orthogonal residual procedure for nonlinear 
finite element equations. Int. J. Numer. Meth. Engng. Vol. 
38: 823-839. 

Moës, N., Dolbow, J. and Belytschko, T. 1999. A finite ele-
ment method for crack growth without remeshing. Int. J. 
Numer. Meth. Engng. Vol. 46: 131-150. 

Moës, N., and Belytschko, T. 2002. Extended finite element 
method for cohesive crack growth. Engng. Fract. Mech.  
Vol. 63: 276-289. 

Mougaard, J.F., Poulsen, P.N. and Nilesen, L.O. 2009. A partly 
and fully cracked XFEM element based on higher order 
polynomial shape functions for modeling cohesive fracture. 
Submitted for publication. 

Oliver, J. 1996. Modelling strong discontinuities in solid me-
chanics via strain softening constitutive equations. Part 1: 
Fundamentals. Part 2: Numerical simulation. Int. J. Numer. 
Meth. Engng. Vol. 39: 3575-3623. 

Vandervalle, L. 2000. Test and design methods for fiber rein-
forced concrete. Recommendations for bending test. Mater. 
& Struct. Vol. 33: 3-5. 

Proceedings of FraMCoS-7, May 23-28, 2010

hThD ∇−= ),(J                             (1) 
 

The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  

 

J•∇=
∂

∂
−

t

w
                              (2) 

 
The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 

 

nsc
w

s

e
w

c

e
w

h
h

D
t

h

h

e
w

&&& ++
∂

∂

∂

∂

=∇•∇+
∂

∂

∂

∂

− αα

αα

)(

    

(3)

 
 

where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k
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vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 


	Main
	Return

