Fracture Mechanics of Concrete and Concrete Structures -

Recent Advances in Fracture Mechanics of Concrete - B. H. Oh, et al.(eds)

(©) 20170 Korea Concrete Institute, Seoul, ISBN 978-89-5708-180-8

Stress-compatible embedded cohesive crack in CST element

J.F. Olesen & P.N. Poulsen

Technical University of Denmark, Denmark

ABSTRACT: A simple element with an embedded strong discontinuity for modeling cohesive cracking of
concrete is presented. The element differs from previous elements of the embedded type, in that a consistent
stress field is obtained by direct enforcement of stress continuity across the crack. The displacement disconti-
nuity is modeled in an XFEM fashion; however, the discontinuous displacement field is special, allowing for
the direct enforcement of stress continuity. This in turn allows for elimination of extra degrees of freedom
necessary for describing the crack deformations, thus the element has the same number of freedoms as its
continuous basis. CST. The good performance of the element is demonstrated by its ability to simulate three-
point bending of a notched concrete beam. The advantage of the element is its simplicity and the straightfor-
ward implementation of it. Handling situations with multiple cracks will not require further developments, al-

though thisis not demonstrated here.

1 INTRODUCTION

The 2D modeling of concrete cracking in the
framework of FEM has already reached an advanced
level, and developments in this field over the past
decade have been characterized as XFEM, the eX-
tended Finite Element Method, see (Belytschko &
Black 1999), (Moés et a. 1999) and (Moés & Be-
lytschko 2002). For refinements of the method ap-
plied to cohesive cracking allowing for partly
cracked elements, see (Asferg et al. 2007) and
(Mougaard et a. 2009). Although these methods are
very effective, the drawback, however, is that it
takes a lot of bookkeeping, at the system level as
well as at the element level, to ensure conformity
and to model separation of the discontinuous parts of
an element accurately, i.e. in such a way that it al-
lows for fully independent deformations of the two
separated parts.

The element which is proposed here is a 2D ele-
ment of the embedded discontinuity type with a
strong discontinuity; this embedded discontinuity
type was originally introduced by (Dvorkin, E.N. et
al. 1990). Further developments were presented by
(Oliver 1996); this work is based on the assumed
enhanced strain approach and differs from the pre-
sent work in that it does not enforce stress continuity
directly, but in avariational manner.

The advantage of the embedded element type is
that it is ssmple to implement and that it does not
complicate the building of the FE system Equation.
The drawbacks of it is that it lacks the ability to cre-
ate completely independent element separations and
that displacement continuity is violated on element
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sides crossed by a crack; however, in many cases
these deficiencies might be considered to be of mi-
nor importance.

The present element takes advantage of the sys-
tematic construction of displacement fields in
XFEM, except that the discontinuous shape func-
tions are not the same as the continuous. Besides
from being of the embedded type the present ele-
ment is characterized by having a consistent stress
field which is continuous across the discontinuity.
Enforcing this stress continuity in the element we
obtain the possibility of eliminating the extra de-
grees of freedom (DOF) necessary for describing the
discontinuity; hereby an element is realized with no
extra DOF's compared to the continuous version of
the element.

The present element allows for cohesive cracking
with a stress criterion for crack initiation, i.e. a crack
initiates if the uni-axial tensile strength is exceeded
by the first principle stress and no stress intensity is
assumed at the crack tip, assuming smooth crack
closure.

2 KINEMATICS

The modeling of a strong discontinuity, such as a
crack, is based on the strategy of the extended finite
element method for the approximation of a dis
placement fields with a discontinuity. Thus, the dis-
placement field approximation in an element with a
discontinuity is established by combining the dis-
placement field corresponding to the continuous
element with the displacement field corresponding



to the discontinuity.

For the linear interpolation of the continuous dis-
placement field we consider a three-node triangular
element, the CST. The element is given the possibil-
ity of a strong discontinuity along a straight line
crossing the element. The enforcement of stress
compatibility between the stresses in the continuous
parts of the element and the stresses bridging the
discontinuity line is the essential idea of the present
work. Stress compatibility is ensured by demanding
that the order of variation of the discontinuous dis-
placement fields along the discontinuity line must
match the order of variation of the continuous stress
fields, and that the discontinuous displacement field
produces equal stresses on opposite sides of the dis-
continuity. In the case of a CST this leads to a dis-
placement field with a constant jump in the dis
placement along the discontinuity line, which will
produce constant bridging stresses along the discon-
tinuity matching the constant stress field of the CST.
Further, this displacement field must produce equal
gradients on either side of the discontinuity.

A shape function that allows for a constant jump
across a straight line and at the same time only in-
troduces equal and constant strains on either side of
the discontinuity line is shown in Figure 1. The
shape function may be written in terms of the natural
coordinate ¢ associated with the element vertex
which is also a vertex of the triangular sub-domain
Q:

¢—1 inQ;

N =
¢ inQf
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This type of shape function has previously been
applied by (Oliver 1996). Only two DOF'S are
needed to describe the discontinuous deformations.
We chose the global components of the discontinuity
vector and collect these DOF's in the vector
Vi =[AV;,AV,]". Each DOF is associated with a dis-
continuous shape function as given in (1), and the
discontinuous displacement field vector «? is in-
troduced as

Md:NdVd Nd: Nd 0
0 N

)

By combining »¢ with the continuous displace-
ment field vector ¢ = N<v¢ for the normal CST
element we arrive at the total deformation field:

u=u’+u! =NV NIV ©)]

where N¢ is the usua linear interpolation matrix
and v¢ theusual dof vector.

Figure 1. Top: Straight discontinuity line defining element sub-
domains, and the associated natural coordinate ( .

Bottom: lllustration of constant discontinuity
shape function.

Adopting the Voigt notation and assuming a lin-
ear strain measure, the strains in the continuous part
of the element may be written as the vector

e = BV¢® +ded (4)

where B¢ is the usua constant strain interpolation
matrix and B? is the constant strain interpolation
matrix derived from the discontinuous shape func-
tion. Note that B? is the same on both sides of the
discontinuity.

3 VARIATIONAL AND FEM FORMULATIONS

Consider a linear elastic body in a state of plane
stress or plane strain. The body is situated in a plane
Cartesian coordinate system (x,x,). Assume that a
crack has formed in the body, see Figure 2. The unit
tangent vector to the curvilinear crack path is de-
noted by s, and the normal to the crack path is de-
noted by = . At any point along the crack (n,s) de-
fines a local right-hand coordinate system. The
negative side of the crack is defined as the side
where n coincides with the outward normal to the
crack face. The stress transfer over the crack is given
as the normal and tangentia tractions, o,and 7,
respectively. These are the generalized stresses in
the crack, and their work-conjugate generalized strains
are the normal opening of the crack, Au, =u, —u, ,
and the tangential dlip of the crack faces,
Aug, =uf —u; . The generalized stresses and strains
in the crack are collected in vectors according to

T Y ®
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where [u] signifies a jump in the displacement
field » related to the local (n,s) coordinate sys-
tem.

The stresses bridging the crack are typically func-
tions of the crack opening and dliding as well as of
the history of opening and diding. At this point we
assume that the bridging stresses may be written as a
function of [u]:

o =0 ([u]) (6)

The interna virtua work &w’and the external
virtual work swt may be stated as

W= fqéeTUdQJr j; s[u]’ ods (7)

SwE= fQ sul FdQ + fr suTEdD (8)

where o and e are the work conjugate stress and
strain vectors, f is the domain load vector, ¢ is
the prescribed boundary traction vector, and the pre-
fix 6 denotesthe variation of the subsequent field.

The un-cracked bulk material is assumed to be li-
near elastic and constitutive Equation is written in
the form

o= De ©)

where D is the appropriate material stiffness ma-
trix.

Stress compatibility across the discontinuity is
ensured by demanding the traction ¢ on the crack
faces to equal the bridging stresses

(10)

TC}"tC}" — O.C}”
where 1< is atransformation matrix depending on
the orientation of the crack. The traction may be de-
termined from

n 0 m

(11)

t = mo, m=
0 n, nm

where m is a matrix based on the elements of the
normal vector of the crack face n = (m,n,). Intro-
ducing into (6), (10) and (11) the element field ap-
proximations (4) and (9), and utilizing that
[u]=T“V? the stress compatibility requirement
may be expressed at the element level as
T“mD|BV® +BV*|=o" (T"V) (12)

The nature of this Equation depends on (6), and
in general itisnonlinear in v¢. However, it may be
solved for v¢ at the element level, thus allowing
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for the elimination of the DoF’s describing the dis-
continuity. The variation of v¢ may be established
by taking the variation of (12):

Z1
Figure 2. Global coordinate system (x;,x,) and local crack co-
ordinate system (n,s) .

T“mD| BV + BV’ |= 00 Ou] yra
d[u]ov?

(13)

We introduce D as the generalized tangential
stiffness of the crack bridging, i.e.

80_CT

Olu]

Redlizing that a[«]/oVv? =T , the variation of
v? may beisolated from (13) in the form

D = (14)

SVIi=ZsV*© (25
where
Z=[D"T* —T"mDB'|  T“mDB* (16)

The approximation to the internal virtual work in
an element may now be expressed by

W=V (17)

[[BT+2"B"|od+ [ 27T"Taas |

where all guantities now relate to an element. The
stresses that enter into this expression are deter-
mined as.

o=D|[BV‘+B/V|
o =g <Tcrvd )

(18)
(19)

Equation (17) constitutes the element nodal force
vector ¢ such that we may write sw!=sv<’q.

The differential form of the internal virtual work
reads

dow! = fs b’ dad )+ fsé[[u]]T do* dS (20)



In an element this may be expressed solely in
terms of the usual (continuous) DOF vector V.

dsw'=ev| [ [BT + 27 BT |D| B + B'Z]a0
! (21)
+ fS ZTTc'rTDchchdS]dVL'

This Equation constitutes the element stiffness
matrix k; such that we may write dsw’ =6V kdve.
The tangent stiffness matrix is only symmetric if the
matrix D is symmetric, which is not necessarily
the case. However, for iterative purposes D may
be replaced by the symmetric matrix 4D + D" |,

4 NUMERICS

On the globa level the virtual work Equation fur-
nishes the discrete equilibrium Equation:

Q(V)=R (22)

where @ isthe sum of element nodal forces estab-
lished through Equations (17)-(19), v isthe global
DOF vector and R is the global noda load vector
determined from (8). Equation (22) is a set of
nonlinear Equation which are solved iteratively ap-
plying the linear incremental relation

K;dV =dR (23)

where K, isthe globa tangent stiffness matrix as-
sembled from element matrices established through
(21), dv isthe global incremental DOF vector and
dR isglobal incremental |oad vector.

The element presented in the previous section is
based on the CST, however, it alows for the forma-
tion of a displacement discontinuity or a crack. Thus
we have named the element “dCST”. The dCST has
three nodes and six DOF's, two at each node describ-
ing the displacement vector. The actual value of the
discontinuity vector is calculated at the element level
and no global DOF's are needed to represent these
vector elements,

A crack is formed if the principle stress in an
element exceeds the uni-axia tensile strength, and
the normal to the discontinuity line is parallel to the
principle stress vector. If a neighboring element isin
the cracked state, the crack in the actual element is
forced to connect to the neighboring crack; other-
wise it is forced to pass through the center of the
element.

The nonlinear equilibrium Equation may be
solved by standard FEM procedures; here we have
applied the orthogonal residual algorithm (Krenk
1995). Convergence is ensured at every load step in

terms of an energy criterion related to the elastic en-
ergy of theinitial elastic load step.

5 EXAMPLE

The capabilities of the dCST element are demon-
strated through the modeling of the RILEM three-
point bending test (Vandervalle 2000) for determin-
ing fracture mechanical properties of concrete,
which has become a benchmark test also for the nu-
merical modeling of cohesive fracture propagation.
A side view of the test setup is shown in Figure 3.
The beam has a square cross-section and a 25 mm
deep notch cut perpendicular to the bottom face in
the mid-section plane; it is smply supported at the
ends and loaded by a load acting vertically down-
wards at mid-span.
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Figure 3. Geometry of the RILEM test beam with a 25 mm

notch.
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The beam is assumed to be cast in concrete with
characteristics according to Table 1. The tensile sof-
tening of the concrete is assumed to obey a linear
cohesive law as depicted in Figure 4. The crack
propagation in this test is dominated by the opening
of the crack, hence the mixed mode characteristics
of the concrete are not considered. However, sliding
of the crack faces must produce some stress in order
to avoid unrestricted rigid body motion of the
cracked element part which is only attached to one
node. Therefore, diding is modeled elastically with
an inferior stiffness. No interaction between the two
crack deformationsis considered.

Table 1. Concrete material parameters.

Parameter Value
Young's modulus, E. 37.4 GPa
Poisson’sratio, v, 0.2
Tensile strength, f; 3.5MPa
Fracture energy, G, 160 Jm?

The dCST element is tested against the perform-
ance of an interface element supplied with the com-
mercialy available FEM code DIANA (Diana
2003). In the DIANA reference model the bulk of
the beam is modeled with CST elements, and inter-
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face elements are pre-located to model a crack path
confined to the mid-span section of the beam.
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Figure 4. Linear tension softening curve.
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Figure 5. Load-deflection curves of the RILEM test beam with
a 25 mm notch. Comparison between a DIANA model with 48
interface elements over the ligament height, and two dCST
models with unstructured meshes having 14 and 28 elements
over the ligament height, respectively.

To make a fair comparison between the dCST
model and the reference model, the dCST model is
allowed to develop one crack only, athough it has
the capability of modeling multi crack development.
The one-crack restricttion is obtained by only allow-
ing an element to crack if it has a neighbor which is
cracked. However, to get starting, the first element
to crack is exempted from thisrule.

The reference beam was modeled in a regular
mesh with 48 elements over the height of the beam.
Unstructured meshes were used for the dCST-
models with two densities furnishing 14 and 28 ele-
ments over the ligament height, respectively.

Simulated load-deflection curves are shown in
Figure 5. The deflection is measured at mid-span
relative to the mean value of the deformations of the
beam mid-plane at the supports. Results for both
meshes compare nicely with the results for the refer-
ence model, although the dCST model slightly over-
estimates the peak load. It should be emphasized,
though, that the crack path has not been predefined
in the dCST models. In Figure 6 the element meshes
close to the notch and crack paths at peak load are
shown, respectively for the two mesh densities ap-
plied. Only the middle part of the beam (x25mm
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Figure 6. Element mesh for dCST model close to the notch,
and crack path at peak load. The middle part of the beam
(£25mm from the mid-section) is shown for two mesh densi-
ties.

from the mid-section) is shown. The winding of the
dCST cracks is of course a consequence of the
coarse constant strain fields of the elements. How-
ever, the overall direction of the cracks is in line
with the mid-section plane.

6 CONCLUSION

A simple element called dCST with an embedded
discontinuity for modeling concrete cracking has
been presented. The element differs from previous
strong discontinuity elements of the embedded or
XFEM type, in that the stress field is consistent
within the element ensuring stress continuity across
the crack. The direct enforcement of stress compati-
bility has allowed for the elimination of extra DoF's
for describing the crack opening and dliding, thus the
dCST has the same number of DOF’ s asthe CST.

The good performance of the dCST has been
demonstrated in the Mode | benchmark test: the
three-point bending of a notched concrete beam.

The advantage of the dCST element is the sm-
plicity of it. Implementation is straightforward and
the handling of a multiple crack situation will not
require further developments.
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