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ABSTRACT: We study the effect of discretization of lattice models. Two basic cases are examined: (i) ho-
mogeneous lattices, where all elements share the same strength and (ii) lattices in which the properties are as-
signed to the elements according to their correspondence to three phases of concrete, namely matrix, aggre-
gates, and the interfacial transitional zone. These dependencies are studied with both, notched and unnotched 
beams loaded in three point bending. We report the results for regular discretization and irregular networks 
obtained via Voronoi tessellation. The dependence of strength is compared to various size effect formulas, 
and we show that in the case of homogeneous lattices, the fineness of discretization of the specimens of the 
same size can mimic variations in the size of lattice models with the same discretization density. In the case 
of heterogeneity (ii), we report how both the peak force and fracture energy depend on the mesh resolution. 

1 INTRODUCTION 

Lattice models are well established tool for fracture 
modeling and they appear to be very helpful espe-
cially thanks to the increasing power of modern 
computers. In classical lattice models, the material is 
represented by a set of discrete elements intercon-
nected by springs. The combination of simple con-
stitutive models with a material structure incorpo-
rated from the meso-level (Lilliu & van Mier 2003, 
Bolander et al. 1998) or by randomness of material 
parameters which somehow mimics this structure 
(Grassl & Bažant 2009, Alava et al. 2008) makes it a 
powerful tool able to model quasibrittle structural 
response. It is an alternative to relatively complex 
constitutive laws applied in classical continuum 
models. The simplest models are those involving 
only elasto-brittle springs. This type of model is 
studied in this contribution.  

The weak point of using purely brittle springs is 
strong dependency of the results on a network den-
sity. Since the network does not represent any real 
underlying structure, this dependency is understood 
as a bias which should be removed. If one insists on 
keeping the brittleness of elements as we do (no sof-
tening of elements is incorporated), the mesh size 
dependency can be overcome e.g. by scaling the 
strength of elements according to their lengths and a 
chosen internal length parameter (Jagota & Benni-
son 1995) or, as is believed, by incorporating the 
material inhomogeneities (voids, grains, micro-
cracks) that introduces an internal length as well.  

In this paper, we study both homogeneous and 
heterogeneous lattice models. By homogeneous 
models, we mean a lattice in which all elements 

share the same deterministic material strength crite-
rion (and elastic modulus E). Otherwise, there are 
several ways to represent disorder or heterogeneity 
of material. This can be achieved e.g. (a) by spatial 
randomization of the properties of elements or, (b) 
by attributing element properties depending on their 
phase which is obtained by projecting a granular 
structure on the mesh. From here on, heterogeneous 
models are those obtained by alternative (b), i.e. by 
projecting the simulated meso-level material struc-
ture on the network and changing the properties 
based on the phase classification. 

Both types of models can be used with either 
regular (structured, REN) or irregular (IRN) ge-
ometry of the network (or mesh). In this paper, we 
use both types of discretization. If we speak of 
structured network (REN), we use unstructured 
meshes with a regular mesh in a certain small re-
gion of interest. 

In this work, we focus on the effect of varying the 
network density (or mesh density) on the overall 
structural response. We consider that varying the 
network density in homogeneous models corre-
sponds to changes in structural size of the structure 
modeled. In other words, by changing the network 
density, we might model different sizes of the 
specimen.  

Several papers concerning the effect of network 
density have been published but, according to au-
thors’ knowledge, two issues have not been studied 
yet: (i) the effect of size on the strength of the ho-
mogeneous model with a random network geometry 
(IRN) and, (ii) the effect of grain microstructure pro-
jected on the specimen with varying network densi-
ties (the grain layout properties to be used to classify 



 

elements is kept, but the network density – mesh – is 
varied). 

These mesh-density effects are studied for both: 
specimens that fail by crack initiated from a 
smooth surface and notched specimens. In particu-
lar, we have performed numerous simulations with 
either notched or unnotched three-point-bent 
specimens (denoted either nTPBT or uTPBT). The 
geometry of the specimens is illustrated in Figure 1 
top. The span S=3D is equal to three times the 
specimen depth D.  

We have found this topic interesting because the 
irregularity of the network influences the strength 
unexpectedly. Not all the sources of the observed 
behavior were identified and analytically analyzed, 
thus, the contribution predominantly present our 
(mostly numerical) observations. 

The first part of the contribution describes briefly 
the model adopted. The following sections (3 – 6) 
are devoted to the observed size effects in homoge-
neous lattice models with both REN and IRN. The 
last part presents a short study describing how 
(whether) the meso-level concrete structure pro-
jected onto the model reduces these size (or mesh 
density) effects. 

2 BRIEF DESCRIPTION OF THE MODEL 

2.1 Mechanics of discrete model 

Several lattice-type models can be found in literature. 
Here, the rigid-body-spring network developed by 
Kawai (1978) is used. In basics, the model is very 
similar to the one published by Bolander & Saito 
(1998). The fracture criteria are taken from the same 
article, i.e. Mohr-Coulomb surface with tension cut-
off is adopted. More detailed description can be 
found in Eliáš (2009). In this paper, we study models 
with missing rotational springs at the connection of 
adjacent facets. If so, only normal and shear springs 
transfer the internal forces.  

As mentioned above, in the case of homogeneous 
models, the strength criterion defined by the break-
ing stress is identical for all springs. Tensile strength 
of all elements is set to 5 MPa. Also the E-modulus 
is the same for all springs.  

Forces carried by springs are influenced by the 
corresponding cross-sectional area A, spring length l 
and Poisson ratio. The cross-sectional area is calcu-
lated from the contact area between the rigid bodies 
(Fig. 1). The springs representing the contact areas 
operate on the actual eccentricity coming from the 
discretization.  

 
 

 
Figure 1. Specimens with a central notch: nTPBT (relative 
notch depth α=1/3). Two types of meshes around a notch are 
presented: REN and IRN. The Delaunay triangulation corre-
sponding to the dual graph of the Voronoi tessellation is illus-
trated for a given mesh density. The configuration of uTBPT is 
identical except for the missing notch. 

2.2 Meshing algorithm 

It has been proven by several authors (e.g. Schlan-
gen & Garboczi 1997, Jirásek & Bažant 1995) that 
irregular geometry of the network helps to avoid di-
rectional preference of crack propagation. Thus, it 
has been chosen for the present model.  

The meshing algorithm is based on Voronoi tes-
sellation, which is performed on the set of pseudo-
randomly placed triangulation nodes within the do-
main. The only restriction is that their minimal mu-
tual distance equals to a predefined parameter l

min
.  

When a notch is to be modeled, it is included by 
mirroring nodes by the notch line in the notch vicin-
ity, see Figure 1 b and d. Voronoi tessellations then 
creates a straight line and all springs on that line are 
subsequently removed to model the notch. In order 
to place the notch tip exactly at the desired coordi-
nate, three points are placed with a prescribed dis-
tance from the tip. This procedure guarantees an ex-
act location of the shared vertex – the interface of 
the three corresponding rigid bodies at the notch tip.  

2.3 Deviations from the theory of elasticity 

The stiffness of springs is derived to represent an 
underlying imaginary isotropic, linearly elastic ho-
mogeneous continuum (Kawai 1978). 

However, the elastic behavior differs from the as-
sumed theory. The effect is clearly described by 
Schlangen & Garboczi (1996). Simply, the isotropic 
elastic material should exhibit uniform stress under 
uniform strain. Voronoi tessellation can satisfy this 
criterion for zero Poisson’s ratio ν. However, as 
showed by Bolander et al. (1999), for nonzero Pois-
son’s ratios, the stress distribution of a body under 
remote uniform uniaxial strain is not uniform any 
more. The greater the deviation from zero ratio ν, 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



the more fluctuation in stress occurs (see error bars 
in Fig. 2).   

We also observed that Poison’s ratio severely in-
fluences the stress in the surface layer of elements. 
The average values of stresses in the lowermost 
elements of uTPBT diverge from the linear stress 
profile approximately obtained for zero ratio ν (Fig. 
2). Elsewhere, the average stresses roughly corre-
spond to ν=0.  

That is why unnotched (uTPBT) specimens with 
a positive Poisson’s ratio tend to yield nominal 
strengths lower than the prescribed overall direct 
tensile strength. The explanation can be put in the 
following words: locally there is a greater stress σ

∞
 

at the bottom face compared to that of isotropic ho-
mogeneous continuum. This strength drop will be 
visible in results of our simulations (Fig. 8).  

There is no effect observed of Poisson’s ratio on 
strength in the case of notched specimens (nTPBT).   
 
 

 
Figure 2. Effect of poisons ration on stresses σ

xx
. Figure shows 

the lowermost part of stress profile of uTPBT with regular net 
geometry loaded by force 10 N. Error bars shows averages and 
sample standard deviations computed from 50 realizations.  

3 SIZE EFFECT SIMULATIONS  

The size of a concrete specimen typically affects the 
observed nominal strength. Several sources of this 
phenomenon are documented (Bažant & Planas 
1998), we name the statistical and deterministic ef-
fects. Two main types of the deterministic size ef-
fects are distinguished. Structures with preexisting 
notches (positive geometry exhibiting type II size ef-
fect) and structures without any notch or with a 
small notch with respect to material internal length 
(negative geometry exhibiting type I size effect).  

Notched (type II, nTPBT) and unnotched (type I, 
uTPBT) are used to study this size effect in homoge-
neous brittle-spring networks. The density of the 
network is denoted as l

min
. Since there is no internal 

length in our constitutive law/model, we can repre-
sent varying size by varying network density. The 
characteristic size (depth) D is kept constant at a ref-

erence size D0 = 0.1 m, whereas the network density 
l
min

 is varied; and we can mimic varying of the in-
trinsic size D by writing:  

 

min

min

0

0

l

l
DD =                               (1) 

 

where min

0
l =0.02 m is the selected reference mesh 

density.  
Since we deal, in fact, with models of the same 

size, it is not necessary to report the size dependence 
on nominal strength (nominal stress at peak load). It 
suffices to report the loading forces F (D). On the 
other hand, however, the lengths (e.g. crack length) 
must be recalculated in a similar fashion as we did 
for D (see Equation 1). Removal of one element of 
the same size is interpreted as a crack of different 
lengths in models of various mesh densities. 

In order to evaluate the effect of network irregu-
larity, all the results are computed for REN and IRN.  

Since the network in REN models is only regular 
in the vicinity of notch or midspan, the rest of the 
specimen (meshed by a lattice of irregular geometry) 
causes fluctuations of forces acting on the “crack 
faces”. Subsequently, the obtained nominal forces 
are scattered. This effect is emphasized in unnotched 
structures, see e.g. Figure 7. 

In the regular networks, the rupture of the first 
element (beam or spring) causes the collapse of the 
whole structure. This holds both in the nTPBT and 
uTPBT. Therefore, the measured peak loads F

p
 

equal the elastic limits F
e
 in the case of REN. 

4 SIZE EFFECT OF NOTCHED STRUCTURE 

In the case of regular mesh geometry (REN), the 
crack can only propagate along the axis of symmetry 
through regularly placed squared elements of exact 
size l

min
. The peak forces (that are the elastic limits 

at the same time) of REN plotted against the net 
density l

min
 (or size D) in loglog plot fall exactly on 

a line of slope –½ (see Fig. 3). This result is not new 
and corresponds to the remedy of size dependency 
of homogeneous regular lattice models proposed by 
Jagota & Bennison (1995).  

Network irregularity (IRN), however, brings a 
new effect. Since the element placed right above the 
notch tip is angled and has varying size, the external 
load F

e
 necessary to break it is affected. Usually, 

more than one element must be broken to reach the 
peak force F

p
, i.e. F

e
 <F

p
. 

The elastic F
e
 limit obeys LEFM slope of –½ and 

lies very close to the previous fit with regular net-
works (dotted line in Fig. 4). This is surprising be-
cause two effects working one against the other ap-
pears here. (i) The angle of the first element (devia-
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 

tion from horizontal direction) increases the elastic 
limit force, i.e. shifts the line upwards. (ii) The aver-
age area of the first broken element is lower in IRN 
than in REN where all broken elements have the 
area  l

min
×thickness. This leads to downward shift 

of the size effect line. Apparently, effects of those 
the upward and downward shifts cancel each other.  

 
 

 
Figure 3. Simulations of nTPBT beams with regular mesh 
REN. Each circle is an average of 30 simulations (except for 
size 6.4), error bars are not included as the standard deviation 
is extremely small. Fitted by LEFM prediction (a straight line 
of slope –½). 
 

 

 
Figure 4. Simulations of nTPBT beams with irregular mesh 
(IRN). Each circle is an average value of 50 simulations (ex-
cept for size 6.4, only 10).  

 
Looking at the peak force data, the best fit in 

loglog plot is a straight line of slope –0.424, see Fig-
ure 4. The source of observed deviation from the 
LEFM slope of –½ was found in the crack behavior. 
Figure 5 shows crack patterns at the peak load for all 
considered sizes. These crack length are recalculated 
into the intrinsic magnitudes (Equation 1). Appar-
ently, the larger the specimen, the longer the length 
at the peak load: the crack initiation from the notch 

is followed by an increase in peak crack length with 
size D. This increase can be fitted by a power law 
with exponent ½ (see Fig. 10). The slower declina-
tion of the fitted power law in Figure 4 (–0.424) can 
be attributed to the described growth in crack length 
with specimen size D. 

 

 
Figure 5. Crack patterns at the peak load for various sizes of 
the notched IRN beam (with irregular mesh geometry). 

5 SIZE EFFECT OF UNNOTCHED STRUCTURE 

A somewhat different situation appears when the 
beam fails by cracking initiating from the smooth 
surface (such as our uTPBT).  

In our numerical simulations, the unnotched 
specimens have similar features to the nTPBT. In the 
case of regular geometry (REN), the first rupture of 
the beam at the bottom surface leads to collapse of 
the whole beam. Figure 7 shows the maximal load 
depending on the density of the REN net (or, the 
size of the structure D).  

Let us now deliver a closed-form expression for 
the observed size effect. Consider the midspan rec-
tangular cross-section BD. The depth is discretized 
into 2N rigid bodies’ contacts of the same size, see 
Figure 6. Therefore the stress profile is a piecewise 
constant function along the depth D and approxi-
mates the actual (almost perfectly) linear profile. 
When the outermost spring reaches the extreme ten-
sile stress f 

∞
, the cross-section reaches its maximum 

bending moment M. Due to the symmetry along the 
neutral axis we can consider only the lower bottom 
of the depth (N elements) and calculate the bending 
moment as a doubled sum of force contributions 
times the corresponding arm. Each force contribu-
tion can be written as (Fig. 6): 
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= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



where B is the bar thickness [m], the second factor is 
the bin width l

min
=D/(2N) [m] and the third factor is 

the corresponding constant stress in that bin [N/m
2
]. 

Each such a force has the following arm from the 
neutral axis:  
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where again, the first factor is the bin width. The re-
sisting moment is a double of the sum (i=1,…,N):  
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Figure 6. On derivation of the peak moment in a bent speci-
men. 

 
Calculating the sum yields the following simple 

term in the parenthesis:  
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As N grows to infinity, the bending moment con-
verges to the well-known value: 
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The external moment equals the support reaction 
times the half span: M=F/2 

.
 3D/2. Putting this equal 

to Equation (5) yields: 
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Equation (7) can be transformed into the depend-
ence of peak force on bin width l

min
=D/(2N):  
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This equation is plotted in Figure 7 and compared 
to the computed data. We can introduce a new 
length constant Db = l

min
 = 20 mm to make it identi-

cal with Equation 10 introduced later. What remains 

to be clarified is the choice of the extreme stress f 
∞
. 

An obvious choice for would be the direct tensile 
strength (fl

∞
= 5 MPa) of the model. This is because 

very large specimens fail at initiation of crack right 
at the midspan bottom face, which must equal the 
tensile strength. It would yield the asymptotic force 
Fl

∞ 
= 11.11 kN. Unfortunately, the stress profile in 

not perfectly linear in reality. The real stress profile 
is affected by wall effects (the span of the beam is 
only 3D) and by the local compressive stress con-
centration around the point load. The nonzero Pois-
son’s ratio causes additional deviation from linear 
stress profile. As an approximation, we used nonlin-
ear square fitting procedure to determine both pa-
rameters Db and F

∞
. One can calculate the theoreti-

cal stress at the bottom layer for infinitely small 
mesh caused by load 10 N, see Sec. 2.3. This stress 
σ

∞
 is added into Figure 2 to show consistency with 

our fits. 
 

 
Figure 7. Dependency of peak load on the REN network den-
sity (structural size D). Comparison with the size effect formu-
las (Equations 8 and 10). 

 

 
Figure 8. Crack patterns at the peak load for various sizes of 
the unnotched beam with irregular network geometry. Left 
horizontal lines indicate the average height cf reached by the 
crack and its standard deviation.  
 

Is it worth pointing that another way exists to 
nicely fit the data – to consider the bent specimen 
being made of a quasibrittle material. One can as-
sume a linear stress profile along the depth except 
for the damaged zone in the bottom tensile part. If 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 

we consider that the boundary layer of cracking has 
a constant size cf irrespective the specimen size, the 
following size effect formula can be derived (see 
pages 41-43 of Bažant 2005) for scaling of nominal 
strength (modulus of rupture):  
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where f 
∞
 is the strength limit for infinitely large 

structures and Db = 2 cf , i.e. double of the thickness 
of the boundary layer of cracking. If we take r=1 
which is a special case derived by Bažant and Li 
(1995), and rewrite Equation 9 in forces:  
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When Db = l
min

, this formula is identical to Equa-
tion 8 derived here using different arguments.  

 

 
Figure 9. Elastic limits and peak loads of beams with IRN net-
work and smooth bottom surface. Average values and standard 
deviations are estimates from 50 realizations for every size.   

 
The irregularity of the network geometry (IRN) 

allows the model to choose the “weakest” area to 
initiate and propagate the crack. That is why the 
elastic limits are, on average, lower in IRN com-
pared to REN, see Figure 9. The load applied to 
break the first spring F

e

 in IRN model is, on average, 
also much lower than the peak forces.  

The peak forces in IRN models are greater than 
those of REN. The first crack appears at the weakest 
spring loaded by high forces: the crack prefers short 
springs (the minimum length of which is l

min
). Quali-

tatively, however, both force dependencies of IRN 
are similar to REN and follow the tendency pro-
posed by Equation (8). The deviations for larger spe-
cimens are caused again by local stress deviations 
described in Section 2.3. Namely, we mean the 
stress fluctuations caused by Poisson’s ratio in the 

lowermost layer. These cause earlier ruptures then 
expected in isotropic homogeneous media (tensile 
strength of 5 MPa). Both the elastic forces and peak 
forces can drop below this horizontal asymptote; see 
Figure 9. 

Instead of one crack, many small cracks are cre-
ated inside the bottom area of the specimen (Fig. 8) 
and the model allows for redistribution of forces af-
ter many such local ruptures. These cracks do not 
form a continuous line. 

On average, the thickness of the boundary zone 
of distributed cracking is > l

min
. The fact that the 

zone has approximately the same height for all sizes 
(Fig. 8), supports our claim that the data can be ap-
proximated reasonably well by Equations (8 and 10).  
 

 
Figure 10. Length of the crack at the peak load for notched and 
unnotched TPBT.  

6 DISCUSSION 

Some interesting points have been shown in the two 
preceding section and we now discuss some of the 
features in a more detail. 

It was mentioned previously that the length of a 
crack at the peak load seems to be increasing in the 
nTPBT IRN simulations while the average crack 
length at the peak load is about constant in uTPBT, 
see Figures 5 and 8.  

Surprisingly, the increase in the crack length of 
IRN nTPBT specimens obeys a power law with ex-
ponent ½ (see the thin angled line in Fig. 10).  

In the case of unnotched specimens, the constant 
peak crack length is dependent on reference network 
density l0

min
. This was checked numerically by addi-

tional simulations with various lengths l0
min

 (other-
wise kept constant here); see the thin horizontal lines 
in Figure 10 which shows that the average peak 
crack length roughly lies in the range of 1.1-1.3 l0

min
.  

In conclusion, scaling both the network size and the 
specimen size by the same positive scaling factor 
yields an identical result as for the original sizes. 
The peak force depends only on the quality of the 
stress profile approximation.  

We have performed a sensitivity analysis to iden-
tify the influence of various parameters on the elas-
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
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of the evaporable water we (capillary water, water 
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assume that the evaporable water is a function of 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  

 

( )
1

1
10

1
10

1
1

22.0188.0
0

,
1

−
⎟
⎠

⎞
⎜
⎝

⎛
−∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−∞

−−+−

=

h
cc

g
e

h
cc

g
eGs

s
s
c

w

sc
K

αα

αα

αα

αα

 

(6)

 
 
The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



tic limit load and the peak load. In particular, 
Spearman nonparametric correlation coefficient was 
used. The greatest absolute correlation to the peak 
load was found with the maximum vertical coordi-
nate of the crack – i.e. the thickness of the zone with 
distributed cracking cf. In the case of notched 
specimens, the elastic limit force F

e

 is sensitive to 
the initial crack length as well as to the inclination of 
the initial crack from vertical direction (corr. coeff. 
approx. 0.8). Unfortunately, no dominant variable 
which affects the peak load was identified. 

Let us also mention recent results of Alava et al 
(2008) who show, using random fuse model, that 
strength of notched beams of various sizes and notch 
depths is influenced by the amount of disorder. The 
strength dependence on notch depth deviates from 
LEFM power law with an increasing disorder. Spe-
cimen strength made of highly disordered material, 
with a small notch, is driven mainly by the disorder 
and not only by the stress concentration.  

7 REDUCTION OF SPURIOUS SIZE EFFECT 

The influence of network density has to be under-
stood as a spurious phenomenon, because the mesh 
is arbitrary, artificial and does not arise from any 
real material structure. Some authors believe that the 
network density dependency might be removed by 
projecting the material inhomogeneities onto the lat-
tice. This introduces the internal length, which de-
crease this dependency (van Mier & van Vliet 
2003). In the following, this expectation is subjected 
to critical study, which shows limits of such a pro-
cedure.  

7.1 Incorporating of grain structure 

The grain structure that is used here is generated by 
computer algorithm using the Fuller curve (see e.g. 
Cusatis et al. 2006). Typically, maximal grain di-
ameter dmax is chosen according to real batch con-
tents, and the minimal dmin according to the network 
density. The length of network elements should be at 
least three times smaller than dmin (van Mier 1997), 
otherwise the particles coalesce in the mesh.  

 

 
Figure 11. An example of crack patterns observed in a simula-
tion of notched TPBT with the model including concrete me-
soscopic grain structure of varying fineness.  

 

Grains smaller than dmin are ignored in the proce-
dure. The larger dmin, the coarser mesoscopic struc-
ture is incorporated; yet, the generated coarse grains 
still correspond to the requested content of coarse 
grains, i.e. reducing dmin has no effect on coarse 
grains – it only adds finer aggregates.  

Grains were projected onto the lattice to attribute 
springs with the three material phases – aggregate, 
matrix and ITZ. These are distinguished according 
to positions of nodes with respect to the mesostruc-
ture (see e.g. van Mier et al. 1997). Each phase has a 
different strength and Young’s modulus. Values from 
the article by Prado & van Mier (2003) were used. 

In the following part, we will test the hypotheses 
that the finer the mesoscopic structure is considered, 
the lower mesh sensitivity is observed. For this rea-
sons, six different grain contents were generated. 
The first one is the homogeneous case without any 
grain (studied above), the other differ by dmin (Fig-
. 11) whereas maximum grain diameter dmax is kept 
equal to 32 mm.  

Mesh varied from density 2.5 mm up to density 
0.625 mm. Note that not all the densities can be used 
for all the grain contents. The finer grains, the finer 
mesh is required. For all possible combinations, 50 
realizations of notched TPBT were simulated.  

 
 

 
Figure 12. Dependency of (a) maximum load and (b) area un-
der load-deflection curve on network density for various grain 
contents. 

 
 
In order to have an idea about the model behav-

ior, Figure 13 shows average load-deflection dia-
grams for some of considered densities and meso-
structures. 

The results for the peak loads are shown in Fig-
ure 12a. The homogeneous model follows a straight 
line of slope 0.424 (previously described in Fig. 4). 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



 

Models with grain contents seem to reduce this de-
pendency. The best results (almost a horizontal line) 
are achieved by the most detailed grain contents. 
The second monitored parameter is the area under 
load-deflection curves, which has meaning of en-
ergy. Unfortunately, no reduction in the dependence 
of this energy on mesh density was observed. Fig-
ure 12b documents that all the lines share approxi-
mately the same slope of 1. 
 
 

 
Figure 13. Average load-deflection diagrams of 50 nTPBT for 
some of considered densities and mesostructures. 

8 CONCLUSIONS 

The effect of discretization of lattice models was 
studied. The basic cases are examined: (a) homo-
geneous lattices, where all elements share the same 
strength and (b) lattices in which the properties are 
assigned to the elements according to their corre-
spondence to three phases of concrete, namely ma-
trix, aggregates, and the interfacial transitional zone 
(ITZ). These dependencies are studied with both, 
notched and un-notched beams loaded in three point 
bending. We report the results for regular discretiza-
tion and irregular networks obtained via Voronoi 
tessellation. The dependence of strength is compared 
to various size effect formulas and we show that in 
the case of homogeneous lattices, the fineness of 
discretization of the specimens of the same size can 
mimic variations in the size of lattice models with 
the same discretization. In the case of heterogeneity 
(b), we report that even though the peak force de-
pendence on the mesh resolution disappears, a 
strong dependence of the fracture energy remains. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
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that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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