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ABSTRACT: Reinforcement corrosion leads into several damage types which influence the structural load-
bearing capacity, among which can be mentioned the cracking of concrete cover. This work presents results 
of crack width generated in concrete elements fabricated in 1990 with chlorides added in the mix and exposed 
to the natural atmosphere of Madrid-Spain climate. These elements, one T beam and one column. Two 
expressions have been fitted to the results: w = k Px / (c/φ) and w = k Px / Ro, where w is a crack width in the 
time, k is a proportional factor, Px  is the corrosion penetration in the time, c/φ is the concrete cover/diameter 
relation and Ro is the original radius of the bar. The expressions were also fitted to results taken from the 
literature made applying a current. The beam shows larger crack widths than the beam and the accelerated 
tests give intermediate results. Based in all the results, although the scatter is important, it has been calculated 
the k and k’ slopes which resulted respectively in values of 9.5 and 35.5. 
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1 INTRODUCTION 

Corrosion of reinforcement produces iron oxides that 
induce cracking of concrete cover due the traction 
efforts induced by the generation of the rust. The 
cracks generate parallel to the direction of the bars 
(Beeby 1983, Reinhardt 1984). Three steps have been 
identified: 1) Period of initiation of cracking, during 
when the cracks are developed from the bar up to 
reaching the surface of the concrete, 2) Period of 
spread of the cracking, during which the width of 
crack grows, and 3) this spread progress coalescence 
several cracks may give place to the detachment of 
entire chunks of the concrete cover ending up in 
delaminations and spalling. 

The relation between the crack opening and the 
quantity of oxide generated by the corrosion, 
expressed as penetration of the corrosion or loss of 
diameter of the bars, has been the subject of  

previous works by the authors by means of 
different tests (both accelerated and not accelerated) 
(Andrade 1993, Torres-Acosta 1999). Furthermore, 
some models (Pantazopoulou 2001, Liu 1995) analyze 
cracking time as function of concrete cover, concrete 
and rust properties controlled by the rate of rust 
accumulation, while that other models (Andrade 

1993, Martín-Perez 1998) assume constant rate of 
rust production. Another model (Leung 2001) 
obtain one upper and lower bound assuming the 
steel / concrete interface to be perfectly smooth or 
perfectly bonded. Various numerical approaches 
use a finite element method analyzing cracking 
with the fixed smear crack model, assuming linear 
softening of the concrete (Andrade 1993), assuming 
linear elastic fracture mechanics and movable 
mesh placed around the crack tip to capture the 
local stress concentration (Padovan 1997) and 
with boundary element approach (Ohtsu 1997). 
Another papers develop models based on a critical 
corrosion attack penetration to initiate cracking 
and they relate it to the rebar radius (Torres-
Acosta 1998), steel cross section loss due to 
corrosion (Vidal 2004) and cover / diameter ratio 
and concrete characteristics (Andrade 1995, 
Rasheeduzzufar 1992). In all investigations the 
calculations an the simulated cracking patterns are 
compared to experimental observations. One has 
concluded that the beginning of the cracking 
depends principally on the relation concrete cover 
/ diameter of the bars, the quality of the concrete 
and his tensile strength. 



Also the porosity plays a role, as has been reported 
(Alonso 1998) that the voids around the bars can 
allocate the corrosion products after corrosion 
initiation. Then, the porosity around the bars initially 
may delay the pressure transmission. The oxides may 
later diffuse out of the steel/concrete interface 
throughout the pore network.  

The majority of the mentioned studies were made by 
applying an external current. This procedure needs the 
gravimetric calibration because the electrochemical loss 
results in general smaller than the real ones (Alonso 
1998). Also the crack width opening is smaller when 
the test is accelerated (Alonso 1998). Low corrosion 
rates produce wider cracks. 

In present paper the study is made on elements 
exposed from 1990 to the action of a natural 
atmosphere in Madrid climate (Rodríguez 1993, 
Rodriguez 1996). These elements are a beam and a 
column fabricated with chlorides added to the mix in 
which the corrosion rate has been monitored together 
with the crack opening. The authors of present work 
have used the simplified formula used by Torres-
Acosta (Torres-Acosta 1999) considering only the 
bar diameter and not the concrete cover depth and 
compare it to a similar one but including the cover 
depth. The comparison of previous formula for the 
crack with growing developed using accelerated 
corrosion, to the values registered in natural condi-
tions during almost 15 years has enabled to calculate 
closer to reality fitting factors. 

2 EXPERIMENTAL 

2.1 Concrete elements 
The studied elements are a column and a T beam that 
were made to study the evolution of the corrosion 
rate and the corrosion induce cracks when exposed to 
the atmosphere non protected from the sun and rain. 

The column was of 200 x 200 mm in area and 2 m 
in length (Fig. 1). The reinforcement consists of two 
sections with different quantities. The first section 
has two top bars and two low ones of 12 mm in 
diameter and stirrups of 6 mm in diameter each 200 
mm in length. The second section has six bars of 12 
mm in diameter and stirrups of 6 mm each 100 mm 
in length. The cover is the same for the whole 
element being 30 mm. 

The section of the T beam consists of a base of 
300 x 100 mm a web of 200 x 100 mm. The 
reinforcement of the web are two bars of 16 mm in 
diameter and in the top part of the base there are four 
bars of 12 mm in diameter and in the low part, in the 
central part, two bars of 16 mm in diameter and, in 
the ends, two bars of 12 mm in diameter. The stirrups 
are 6 mm of diameter to each 200 mm. The cover of 
the element is also of 30 mm. 

 
Figure 1. Detail of the sections of the studied elements. 

 
Both elements were fabricated in 1990 and the 

nominal dosage of the concrete used was of: 360 
kg/m3 of cement, 1080 kg/m3 of aggregate 5-12 
mm and 840 kg/m3 of sand 0-5 mm. The w/c 
relation was of 0.7. In order to induce corrosion 
3% of CaCl2*2H2O was added to the concrete 
mix. The curing was made during 7 days by 
means of the placement of plastic cover to avoid 
the desiccation with intermittent watering. 

A view of the set of beams and columns fabricated 
and the disposition of the elements is so that a face of 
the elements remains in shade and the other facing 
the sun (Fig. 2). Madrid has a continental weather 
reaching temperatures around 0-5ºC in winter and 35-
40ºC in summer. The RH evolves from around 10% 
in summer to 60-70% in winter as average values. 
Raining may appear around 75-100 days per year 
with around 3155 hours/year of TOW and around 
600-700ml/m2 collected annually. Snow may occur 
one to two times per year (Andrade, 2002).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Exposition of elements to the atmosphere. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



2.2 Measurement of corrosion rate 
Since elements fabrication until now, temperature 
and humidity, inside and outside of the concrete, 
have been measured by means of a hygrometer 
Vaisala (see Fig. 3). The relative humidity, RH, and 
temperature, T, are measured at the open atmosphere 
and inside a hole made in the beam (Fig. 3). The 
readings are taken after few minutes when the values 
show stability. 

The measures are taken with the portable corro-
sion rate meter Gecor in its version 6 and 8 (Feliú 
1990), which have modulated confinement of the 
current. That is the current is confined in a certain 
area and the corrosion rate is referred to that area. 
The corrosion rate values are calculated from the 
ratio between current applied and shift in potential 
removing mathematically the ohmic drop. 

 

 
Figure 3. Corrosion rate meter measuring the internal relative 
humidity in the beam. 

2.3 Measurement of cracking 
From the manufacture of the elements the crack 
widths were measured in 11 dates for the T beam and 
7 measurements for the column. The dates are given 
in the following table. 

 
Table 1. Dates of measurements of the crack width. 
T Beam  Column 
Measure Date  Measure Date 
0 15/02/1990   0 15/02/1990 
1 1/07/1993  1 25/08/1995 
2 17/11/1993  2 28/05/1997 
3 21/06/1994  3 26/03/1998 
4 4/05/1995  4 1/07/1998 
5 9/07/1996  5 18/03/2004 
6 9/07/1997  6 13/09/2004 
7 27/03/1998  7 14/09/2005 
8 22/06/1998  8 16.09.2006 
9 18/03/2004    
10 13/09/2004    
11 14/09/2005    
12 16.09.2006    

From all the measurements they have been 
obtained about 170 values for the T beam and 87 
for the column. 

In order to make a statistical analysis the meas-
urements was always taken in the same position. All 
the data where considered: 33 points in the T beam 
and 24 in the column that are sown in Figure 4. 
Regarding the C/φ parameter, for the case of the T 
beam, there are different diameters of bars that in-
fluence the cracks and for each crack width detected, 
according to the zone and the form of the crack, there 
was assigned a value of the diameter of the bar, 
existing three different ones: 6 (stirrups), 12 (bottom 
bars) and 16 mm (top bars). For the case of the column, 
the diameters were 6 and 12 mm, and also they were 
considered in the calculation of k. In the formula, the 
cover was taken the actual in each case. The time 
used in the calculations, was that corresponding to the 
moment of measurement of the crack width. 

2.4 Formulas used in the analysis 
The main goal of present paper is to verify the 
accuracy of simple formulae to predict the average 
crack width produced in elements corroding in 
natural conditions, in function of the accumulated 
corrosion, Px. In previous papers they have been 
proposed (Andrade 1993): 
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where w is the crack opening in the time t, k is a factor 
of proportionality without dimensions, c/φ is the relation 
cover/diameter of the bar and Px is the penetration of the 
corrosion in time t, where Px  is equal to: 
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Replacing Px in the equation and rearranging 

the terms: 
 

( ) ( )

( ) ( ) ( )mma?a?/mm
rep

corr

mmmm

tI.

Cw
k

φ01150
=                   (2) 

 
For the second formula the same procedure 

followed, only that used Ro that is the original 
radius of the bar instead of c/φ (Torres-Acosta 
1999, Torres-Acosta 1999, Torres-Acosta 1998).  

For what ultimately stays: 
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k’ has the dimensions of millimeters. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



For the calculation of the factor of proportionality 
they have been taken as average annual values of 
corrosion rate Icorr

rep = 1,5 as said is the mean 
recorded in the T beam throughout 14 years of life of 
the elements, however for the sake of a sensitivity 
analysis also a value of 2,0 µm/year will be tried. 

3 RESULTS 

Figure 4 shows the results of corrosion rate Icorr 
obtained in the beam throughout the time. The 
average value is 0.128 µA/cm2 (1.5 µm/year). On the 
pillar only isolated measurements were made. The 
results indicated in it a higher value of the corrosion 
rate, then a value of 2 µm/year was also considered in 
the calculations. 

 

 
Figure 3. Icorr evolution measured in the beam during test time. 

 
Regarding the crack widths, Table 3 shows the 

averaged values obtained in the tested elements at 
each date  

 
Table 3. Mean and Standard deviation of the average crack 
width in the beam and the pillar shown in Figure 4. 
  Waver  (mm) Desv. Est. 

1-Jul-93 0.31 0.34 
17-Nov-93 0.43 0.42 
21-Jun-94 0.48 0.46 
4-May-95 0.63 0.62 
9-Jul-96 1.07 1.02 
9-Jul-97 1.49 1.26 
27-Mar-98 0.86 1.11 
22-Jun-98 0.87 1.00 
18-Mar-04 2.38 1.86 
13-Sep-04 2.68 2.33 
14-Sep-05 3.41 2.78 

T Beam 

16-Oct-06 3.94 3.14 
25-Aug-95 0.20 0.21 
28-May-97 0.26 0.28 
26-Mar-98 0.28 0.26 
1-Jul-98 0.30 0.31 
18-Mar-04 0.36 0.16 
13-Sep-04 0.39 0.12 
14-Sep-05 0.43 0.14 

Column 

16-Oct-06 0.51 0.15 
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Figure 4. Position of the points of measurement of crack 
width and slopes with time. 

 
The Figure 4 shows the evolution of crack 

width in the different locations selected in the 
beam and in the column. The cracks grow at 
different rates (the slopes of the trends) depending 
of the place. It has to be stressed that there is not a 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



unique value of the crack width The reasons for this 
behaviour can be several: a) the bars have different 
sizes and the stirrups different cover depths, b) there 
are noticed pre-existing drying shrinkage cracks and 
c) the corrosion rate has likely been uneven along the 
bars in spite that the chloride was added in the mix. 

The statistical distribution found is given for each 
element in Figure 5. The distribution is log normal 
and the crack widths are larger in the beam than in 
the pillar perhaps due to the reinforcement detailing, 

 

 

 

 
   a) Beam T   b) Pillar 

Figure 5. Statistical distribution of crack widths found under 
natural corrosion. 

4 DISCUSSION 

In order to make later a comparison, the equations 
proposed were first fitted to the experimental data in 
existing literature (Rodriguez 1996, Andrade 2002, 
Feliú 1990, Andrade 1993, Torres-Acosta 1999 
Torres-Acosta 1998, Cabrera 1996). Table 2 shows 
the results obtained using the values of crack width 
and corrosion given by the authors mentioned in it. 

In Figure 6 it has been analyzed present results 
plotting the crack width versus the C/φ (equation 2) 
or versus the bar radius Ro (equation 3). From the 
figure it can be deduced the linear trend in both cases 
but the relative value depends on the type of element 
in the case of the natural corrosion being higher the 
values of crack widths found in the beam than in the 
pillar. 

With respect to the values obtained in accelerated 
tests in the laboratory, they show intermediate values 
between those of the beam and the pillar. This is an 
interesting fact as it enables to use accelerated tests to 
predict evolutions in real conditions. 

 
Table 2. Results of the value of k for different authors calculated 
with the formulas (2) and (3). 
 k = w C / Px  k' = w Ro / Px 
Average of all 4.79 28.44 
Torres 2.10 27.99 
Castro 11.60 26.22 
Andrade 3.41 30.52 
Cabrera 0.61 18.67 
Rodríguez 1 8.53 24.70 
Rodríguez 2 8.58 41.23 

 
In Figure 7 an averaged trend has been fitted to all 

results which enables in an averaged value for the 
slopes k y k’ of 9.5 y 35.5 respectively which are 50 
y 40% higher than those proposed before (Muñoz 

2006). Although a more detailed analysis has to be 
made the slope values here calculated seems to 
reflect better an averaged behaviour. 

 

 
a) Ec. 2  b) Ec. 3 

Figure 6. Representation of equations (2) and (3) plotting 
crack width versus corrosion penetration divided by c/φ or 
by the bar radius Ro. 

 

 
a) Ec. 2  b) Ec. 3 

Figure 7. Fitting o fan averaged trend in the data of natural 
and accelerated corrosion tests. 

5 CONCLUSIONS 

There has been studied the evolution of the cracks 
generated by the corrosion of two reinforced 
elements, a T beam and a column that contained 
chlorides from the mixing and have been exposed 
from 1990 to the atmosphere of Madrid. The 
conclusions that have been drawn up are: 

 
1. The crack width evolution has been first fitted 

to two simple equations  
 

  (2)                            (3) 
 

 
2. These expressions seem both to represent well 

the evolution of the crack width in time in 
natural conditions. 

3. The values of crack widths have been larger in 
the T beam than in the pillar. The values of the 
accelerated tests published in the literature 
show intermediate values which indicate that 
the accelerated tests may be used for pre-
dictions in real conditions provided he applied 
currents are limited. 

4. As for the values of the proportionality factors 
k and k’, that appears in the formula, they have 
been averaged with results obtained in accelerated 
tests. The values obtained have been 9.5 for 
equation 2 and 35.5 for equation 3. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 
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