
 

An analytical model for FRP-concrete debonding based on an 
exponential softening law 

P. Cornetti & Al. Carpinteri 
Politecnico di Torino, Torino, Italy 

 
 

ABSTRACT: Among rehabilitation strategies, bonding of Fiber Reinforced Polymers (FRP) sheets/plates is 
becoming more and more popular, especially for what concerns concrete structures. The performance of the 
interface between FRP and concrete is one of the key factors affecting the behavior of the strengthened struc-
ture. Up to now, closed-form analytical solutions exist only for the local bond-slip law with linear softening. 
Aim of the present paper is to show that analytical solutions can be achieved also assuming an exponential 
decaying softening law. Accordingly, the expressions for the interfacial shear stress distribution and the load-
displacement response are derived for the different loading stages. A full parametric analysis of the problem 
has been performed, highlighting the size effect on the structural behavior as well as the effects of the bond 
length, of the FRP stiffness and of the interface constitutive law. A comparison with other analytical models 
available in the literature concludes the paper. 

1 INTRODUCTION 

Bonding of FRP has emerged as a wide-spread 
method for retrofitting existing concrete structures. 
In this technique, the performance of the FRP-to-
concrete interface is of primary importance. The 
failure mode of FRP-reinforced beams is often di-
rectly related to the debonding of the FRP plate from 
the substrate. The debonding of the plate may take 
place either from the edge of the FRP strip or from 
an intermediate flexural crack. The former failure 
mode is named edge debonding, whereas the latter is 
usually referred to as intermediate crack induced 
debonding (IC-debonding) (Carpinteri et al. 2009a). 

In IC-debonding failure, the stress state is similar 
to that of a push-pull shear test (Fig. 1), where a 
plate is bonded to a concrete block and is subjected 
to tension. It is a kind of single lap joint. Because of 
its (relative) simplicity, several experiments as well 
as theoretical analyses have been concerned with 
such a test geometry. Experiments show that, in such 
joints, the principal failure mode is concrete failure 
under shear, leading to a main crack running few 
millimeters beneath the concrete-to-adhesive interface. 
Thus, the maximum transferable load of the joint 
strongly depends on concrete mechanical properties. 

Several works are available in the literature about 
the pull-push shear test (see, e.g., Wu et al. 2002, 
Yuan et al. 2004, Leung & Yang 2006, and refer-
ences herein). However, an analytical solution for 
the complete debonding process of the joint is avail-
able in closed-form only for a local bond-slip law 
with linear softening, sometimes referred to as bi-

linear law (Yuan et al. 2004). Aim of the present pa-
per is to provide an analytical solution for an expo-
nentially decaying softening of the interfacial stress-
displacement law. Up to now, the solution of such a 
problem has been achieved only numerically (see, 
e.g., Ferracuti et al. 2006). Finally observe that, al-
though attention is focused on FRP-to-concrete 
bonded joints, the present analysis is applicable also 
to other kind of reinforcements, e.g. steel plates. 

2 GOVERNING EQUATIONS 

Figure 1 shows a single-lap pull-push test of a plate-
to-concrete bonded joint, in which the width and 
thickness of each of the three components (plate, ad-
hesive layer and concrete prism) are constant along 
the length. The width and thickness of the rein-
forcement plate are denoted respectively by tr and hr, 
those of the concrete prism by tb and hb, and the 
bonded length of plate is denoted by l; x is the longi-
tudinal coordinate. The Young’s moduli of plate and 
concrete are Er and Eb respectively. In such a joint, 
the adhesive layer is mainly subjected to shear de-
formations, so that mode II interfacial fracture is the 
expected failure mode. Note that a rigorous elastic 
analysis of the problem show that also a mode I 
component (i.e. peeling stresses) is present (Suo & 
Hutchinson 1990), but we will neglect such a contri-
bution. A simple mechanical model for this joint can 
thus be established by treating the plate and the con-
crete prism (the two adherents) as being subject to 
axial deformations only, while the adhesive layer 
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can be assumed to be subject to shear deformations 
only. That is, both adherents are assumed to be sub-
ject to uniformly distributed axial stresses, with any 
bending effects neglected, while the adhesive layer 
is assumed to be subject to shear stresses which are 
also constant across the thickness of the adhesive 
layer. It should be noted that, in such a model, the 
adhesive layer represents not only the deformation 
of the actual adhesive layer, but also that of the ma-
terials adjacent to the adhesive. Based on these as-
sumptions, the equilibrium equations of the rein-
forcement and of the overall joint read respectively: 
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where τ is the shear stress in the adhesive layer, σr is 
the axial stress in the reinforcement plate and σb is 
the axial stress in the concrete prism. The constitu-
tive equations for the adhesive layer and the two ad-
herents are: 
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where ur and ub are the longitudinal displacements of 
the reinforcement and of the concrete, respectively. 
By means of Equations (1-5), it is possible to 
achieve the following second order differential equa-
tion in the interfacial slip δ, defined as the relative 
displacement between the two adherents (i.e. 
δ=ur−ub): 
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Figure 1. Pull-push shear test of a single lap bonded joint: (a) 
elevation; (b) plan. 
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where ρ is the mechanical fraction of reinforcement 
(i.e. ρ = Er tr hr / Eb tb hb). Observe that, by Equation 
(2) and by definition of slip, it is possible to express 
the stress in the FRP as a function of the first deriva-
tive of the slip: 
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Figure 2. Local bond-slip model: elastic-perfectly brittle model 
(thin line); bi-linear model (medium line); elastic-exponential 
softening model (thick line). The models are compared with the 
same elastic slope and fracture energy (i.e. the same area be-
neath each curve). 

3 COHESIVE LAW OF THE INTERFACE 

In Yuan et al. 2004, an analytical solution based on a 
linear softening bond-slip law was presented. How-
ever, this kind of law is often not realistic; further-
more, as it will be shown later, its use can lead to 
overestimate the mechanical properties of the joint. 
Among the different interfacial laws available in the 
literature, we will use the one (Fig. 2) recently pro-
posed by Neale et al. 2006 (on the basis of the 
analysis presented in Lu et al. 2005), characterized 
by a linear phase, with slope k, followed by an ex-
ponential softening branch. Let us denote by τp and 
δp the peak shear stress and the related slip, respec-
tively (k = τp/δp). Introducing the dimensionless rela-
tive displacement y = δ/δp, the interfacial cohesive 
law is expressed analytically as: 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



where α
2
 is a (positive) coefficient characterizing 

the exponential decay. The area beneath the curve 
represents the interface mode II fracture energy GIIc: 
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From Equation (9) it is evident that α

2 represents 
the ratio between the area beneath the elastic line 
and the area beneath the softening branch. For 
α→∞, the cohesive law (8) represents an elastic-
perfectly brittle interface, whereas for α→0, it repre-
sents an elastic perfectly-plastic interface. 

4 ANALYSIS OF THE DEBONDING PROCESS 

In order to solve Equation (6), it is more convenient 
to use a dimensionless formulation. The longitudinal co-
ordinate is normalized with respect to the bond 
length l, i.e. ξ = x/l. Hence, in Equation (6), δ and x 
may be replaced respectively by y and ξ, yielding: 
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where y(ξ) is the unknown function and: 
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Before starting to analyze the different stages of 

the debonding process, it is worth recalling that, for 
a given set of material and geometrical parameters, 
the failure load is a monotonically increasing func-
tion of the bond length l. However, for a bond length 
tending to infinity, it can be proved that the failure 
load tends to the following asymptotic value: 
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In other words, Fc

∞ represents the maximum force 
that the joint can transfer. Interestingly, it depends 
only on the fracture energy, i.e. it does not depend 
on the shape of the interfacial cohesive law. Observe 
that this behavior is peculiar of external reinforce-
ments. In fact, for internal reinforcing bars, there is 
always an anchorage length above which the full tensile 
strength of the reinforcement can be exploited. 

The single lap joint is characterized by the load 
vs. displacement curve. The displacement of the 
bonded joint is defined as the slip at the loaded end 
(i.e. the value of δ at x=l) and is denoted by ∆. Hence: 
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The force F at the loaded end of the reinforce-

ment may be evaluated by means of Equation (7) as 
F = tr hr σr(x=l). By normalizing the force with re-
spect to the maximum transferable force (12) and 
through analytical manipulations, we get: 
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Equations (13) and (14) define the parametric plot 

of the load vs. displacement curve. 

4.1 Elastic stage 

During the elastic stage, all the joint is in the elastic re-
gime, i.e. y<1 for any ξ. We may prescribe that, at the 
loaded end, the dimensionless displacement y(1) is 
equal to u, with 0<u<1. According to linear elasticity, 
this setting is equivalent to impose that the shear stress 
at the loaded end divided by the peak stress, i.e. τ/τp, is 
equal to u. The second boundary condition states that 
the other extreme of the reinforcement is unloaded, i.e. 
y′(0)=0 because of Equation (7). In formulae: 
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The general solution of the (linear) differential 

equation reads: 
 

( ) βξ−βξ +=ξ ee
21
ccy                        (16) 

 
The two arbitrary constants have to be determined 

by means of the boundary conditions. Hence: 
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Because of the elastic regime, the relative displace-

ment (17) represents also the shear stress. For u = 0.5 
(and β = 3), the stress field is represented by curve A in 
Figure 3. 

4.2 Elastic-softening stage 

At the end of the elastic stage, the shear stress 
reaches its peak at the loaded end of the joint. Al-
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
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relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 
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where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



though the structural behavior of the joint depends 
on the test control, we assume as the control parame-
ter the position of the stress peak in order to obtain 
all the possible solutions satisfying the governing 
equation (10). In other words, we make the assump-
tion that the stress peak travels from the loaded end 
to the unloaded extreme. Let us denote with ξ  that 
position. It divides the bonded joint into two regions: 
the former (0 ≤ ξ ≤ ξ ) is in the elastic regime, the 
latter is in the softening regime (ξ  ≤ ξ ≤ 1). Since, 
at the peak, y is equal to unity, the differential prob-
lem governing the solution of the elastic zone is: 
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The general solution is still given by Equation 

(16). However, because of the different boundary 
conditions, the solution now reads: 
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Between the point (ξ= ξ ) where the shear stress 

reaches its peak and the loaded end (ξ=1), the joint is in the 
softening regime: the differential equation changes accord-
ingly and it is not linear any more. On the other hand, the 
boundary conditions are given by the continuity conditions 
(respectively for the relative displacement and the tensile 
force in the reinforcement) with the zone in the elastic re-
gime and can therefore be obtained by evaluating Equa-
tions (20-21) at ξ=ξ : 
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Analytical details about how to achieve the solu-

tion of the differential problem (22) will be given 
elsewhere. The final solution reads: 
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with 2122 ]1)(tanh[ +ξβα=γ . The stress field is 
then obtained upon substitution of Equation (23) into 
the constitutive law (8): 
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For ξ  = 0.5 (and α=0.7, β=3), the stress field 

given by Equations (20) and (25) is represented by 
curve B in Figure 3. 

4.3 Softening stage 

When the peak of the shear stress reaches the unloaded 
side of the FRP strip, all the joint is in the softening 
regime. The maximum shear stress is now fixed at ξ 
= 0; its value is assumed to decrease from τp to 0, the 
latter value corresponding to final failure. Therefore, 
the stress field in the softening regime can be ob-
tained by imposing that the normalized shear stress, 
τ/τp, at the unloaded end is equal to the parameter v, 
with 0<v<1. The boundary condition on the stress 
may be converted into a displacement condition by 
means of the constitutive law (8). The related differ-
ential problem reads: 
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whose solution is: 
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The stress field is then obtained upon substitution 

of Equation (27) into the constitutive law (8): 
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v
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τ
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For v = 0.5 (and α=0.7, β=3), the stress field is 

represented by curve C in Figure 3. 

4.4 Load vs. displacement curve 

Upon evaluation of Equations (17-18), (23-24) and 
(27-28) at ξ=1, and by means of Equations (13-14), it 
is possible to achieve the load F vs. displacement ∆ 
characterizing the joint. It is interesting to point out 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



that the shape of the dimensionless plot, i.e. F/Fc
∞ vs. 

y(1), depends uniquely on the two dimensionless pa-
rameter α and β. The former is related to the parame-
ters of the cohesive law by the following relationship: 
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Which derives directly from Equation (9). The 

latter parameter is provided by Equation (11) and 
depends on the geometrical dimensions and on the 
stiffness of both the adherents and the adhesive. A 
typical load vs. displacement curve is plotted in Fig-
ure 4 (α=0.7 and β=3). The 01 line corresponds to 
the elastic regime; the 12 arc to the elastic-softening 
phase, where the maximum load is reached; the 23 
branch is attained when all the joint is in softening 
condition. Note that the stress fields corresponding 
to points A,B,C in Figure 4 are the ones marked by 
the same letter in Figure 3. 
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Figure 3. Interfacial shear stress distribution (α=0.7, β=3): 
elastic (A), elastic-softening (B) and softening (C) stage. ξ=0 
corresponds to the unloaded end and ξ=1 corresponds to the 
loaded end. 
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Figure 4. Typical full-range load-displacement curve (α=0.7, 
β=3): the line 01 corresponds to the elastic stage, the arc 12 to 
the elastic-softening stage and the branch 23 to the softening 
phase. The stress field corresponding to point A,B,C are repre-
sented by the curves A,B,C in Figure 3. The dashed line PQ 
represents the snap-back occurring if the test is displacement-
controlled. 

Note that, in the case considered in Figure 4, the ap-
plication of the simple stress criterion τ=τp would have 
provided a failure load (point 1) approximately equal 
to 2/3 of the actual one (point B). This means that the 
maximum shear stress may be attained under service 
loading. On the other hand, the maximum load is achieved 
when about one half of the bond length is in the soften-
ing regime (curve B in Fig. 3). These considerations 
fully justify the nonlinear analysis herein proposed. 

Finally, it is worth observing that, if the test is dis-
placement-controlled, the displacement ∆ is monotoni-
cally increasing during the test. It means that a snap-back in-
stability (Carpinteri 1985, 1989) occurs, i.e. a sudden load 
drop at fixed displacement from point P to Q (dashed line 
in Fig. 4). On the other hand, if the test is load-controlled, 
after the peak load the interfacial crack propagates always 
unstably up to global failure, i.e. no snap-through may occur. 

5 PARAMETRIC ANALYSIS 

Taking as fundamental quantities the peak stress τp 
and the thickness of the FRP plate hr, dimensional 
analysis shows that, during the debonding process, 
the dimensionless load and edge displacement de-
pend on the following dimensionless ratios: 
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We define the last ratio, ruling the size effect, as 
the interface energetic brittleness number sE: 
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This represents the extension to mode II debond-

ing failure of the energetic brittleness number GF/(σu 
h) introduced by Carpinteri (1981) for homogeneous 
quasi-brittle materials. 
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Figure 5. Effect of the bond length on load vs. displacement 
curve. Dimensionless ratios equal to hb/hr=100; tr/hr=25; 
tb/hr=100; Er/τp=62,500; Eb/τp=7500; α=0.5; sE=0.125. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



5.1 Effect of the bond length 

In Figure 5 we fixed all the parameters in Equation 
(31) except the ratio of the bond length l to the 
thickness of the FRP plate hr. For the sake of clarity, 
the load is normalized with respect to Fc

∞ instead of 
τphr

2. It is evident that, increasing the bond length, 
the elastic stiffness as well as the maximum load 
tend to a constant value. More in detail, the maxi-
mum transmissible force by the joint is Fc

∞, while 
the structural behaviour changes from quasi-brittle 
(curve A) to ductile-brittle (curve E). Note that, for 
relatively high bond lengths (curves C-D-E), a snap-
back instability occurs. Finally, it is worth observing 
that, based on Figure 5, it is possible to define an ef-
fective bond length, i.e. a threshold length beyond 
which the maximum load is practically equal to Fc

∞. 

5.2 Effect of the FRP stiffness 

In Figure 6 we fixed all the parameters in Equation 
(31) except the ratio of the Young moduli of the 
FRP and of the concrete, i.e. Er/Eb. Note that the 
same effect is obtained by varying hr/hb. It is seen 
that, increasing the reinforcement stiffness, the 
maximum load increases as well as the brittleness of 
the structural response. More in detail, the structural 
behaviour changes from quasi-brittle (curve A) to 
ductile-brittle (curve E). Note that, for relatively low 
FRP stiffnesses (curves C-D-E), the structural re-
sponse is ductile up to a final snap-back instability. 
Eventually, it is worth observing that the area be-
neath each curve, which is proportional to the energy 
spent to have complete delamination, is constant and 
that, for high FRP stiffnesses, the effective bond 
length increases. 
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Figure 6. Effect of the FRP stiffness on load vs. displacement 
curve. Dimensionless ratios equal to hb/hr=100; tr/hr=25; 
tb/hr=100; l/hr=200; Eb/τp=7500; α=0.5; sE=0.125. 

5.3 Effect of the cohesive law 

We wish now to analyze the effect of the shape of 
the cohesive law, within the assumption of a linear 

ascending branch followed by an exponential tail 
(Eq. (8)). We consider two cases. In the former one, 
we keep τp and δp constant and let α vary (and sE ac-
cordingly), see Figure 7a. All the other dimen-
sionless ratios (Eq. (31)) are kept constant. Although 
τp is the same for all the curves, from Figure 7b it is 
evident that the presence of a softening branch gives 
rise to a strength supply beyond the elastic regime. 
In fact, the load at which the stress reaches τp at the 
loaded end is also the maximum load only for an 
elastic-perfectly brittle interface (curve A). On the 
other hand, the softening of the interface cohesive 
law makes the maximum load higher (curves B-C-
D) and an horizontal plateau is reached for an elas-
tic-perfectly plastic interface (curve E). Eventually, 
observe that a snap-back instability occurs only for 
strongly decaying softening branches, i.e. for rela-
tively high α values (curves A-B-C). 
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Figure 7. Effect of the interface law (a) on load vs. displace-
ment curve (b) by varying α and keeping τp and δp constant. 
Dimensionless ratios equal to hb/hr=100; tr/hr=25; tb/hr=100; 
l/hr=200; Er/τp=62,500; Eb/τp=7500; sE=(1+α

2
)/(2α
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i.e. δp/hr= 0.05. 

 
In the latter case, we keep GIIc and k constant and let 

α vary (and sE accordingly), see Figure 8a. All the 
other dimensionless ratios (Eq. (31)) are kept constant. 
Since now τp is varying, it is more convenient to nor-
malize the load with respect to Fc

∞ instead of τphr
2. 

Figure 8b shows that, for a given bond length, the 
maximum transmissible force Fc

∞ is attained only by 
the curves corresponding to rapidly decreasing soften-
ing branches. Note that, k being constant, the initial 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



(elastic) slope of the F-∆ curves is the same for all the 
curves; analogously, the area beneath each curve is 
constant since the energy required to have complete 
delamination is the same (GIIc×tr×l). The snap-back in-
stability disappears for very slowly decreasing soften-
ing branches (curve E), when the F-∆ curve early de-
parts from the initial (elastic) straight line. 

5.4 Size effect 

In Figure 9 we fixed all the parameters in Equation 
(31) except the interface energetic brittleness num-
ber sE. Varying sE means, for instance, that the over-
all structural size changes while keeping constant all 
the geometrical ratios and material properties. 
Therefore, Figure 9 describes the size effect for the 
pull-push shear test. It shows that, increasing the in-
terface energetic brittleness number, the structural 
behaviour changes from ductile-brittle to quasi-
brittle and that the snap-back instability occurs for 
relatively low sE values. It is important to highlight 
that brittleness is not a purely material property, but 
a structural one: in fact, low interface energetic brit-
tleness numbers correspond to brittle interfaces 
and/or large sizes, while high sE values correspond 
to ductile interfaces and/or relatively small sizes. 

 

         
 
 
 

      

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

 
 

 
Figure 8. Effect of the interface law (a) on load vs. displace-
ment curve (b) by varying α and keeping k and GIIc fixed. Di-
mensionless ratios equal to hb/hr=100; tr/hr=25; tb/hr=100; 
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5.5 Interface laws: elastic-perfectly brittle, linear 
softening, exponential softening 

Fixing the geometrical aspect, in Figure 10 we com-
pared the solutions provided by different cohesive 
laws, namely an elastic-perfectly brittle law, an elas-
tic-linear softening law, and an elastic-exponentially 
softening law. We fixed the slope of the elastic 
branch and the fracture energy value, i.e. the area 
beneath the bond-slip law is constant for the three 
curves (Fig. 2). Therefore: 
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Figure 9. Size effect on load vs. displacement curve. Dimen-
sionless ratios equal to hb/hr=100; tr/hr=25; tb/hr=100; l/hr=200; 
Er/τp=62,500; Eb/τp=7500; α=0.5. 
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For the meaning of the symbols, refer to Figure 2. 

For the curve corresponding to linear softening, the 
solution was taken from Yuan et al. 2004, whereas 
the curve corresponding to the elastic-perfectly brit-
tle law derives directly from LEFM (Carpinteri et al 
2009b). However, it is worth observing that the elas-
tic-perfectly brittle case could be caught by the pre-
sent model letting α→∞. 

In Figure 10 we plotted the results for two different 
joint lengths. The solution of the present model differs 
from the one corresponding to linear softening because of 
a stronger deviation from the initial slope of the ascending 
branch in the load vs. displacement curve. Furthermore, a 
residual – although small – transferable force is present 
also for large displacements because of the exponentially 
decaying shear stress. 

A second aspect to be pointed out is that, while 
for sufficiently long joints the maximum transferable 
force is achieved for every interface law (Fig. 10b), 
for relatively short joints (Fig. 10a), Fc

∞ is reached 
only by the LEFM model. In other words, LEFM, as 
well as the linear softening model, tend to overesti-
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 



mate the maximum transferable force of the joint 
with respect to the present model. 

From a numerical point of view, it is worth noting 
that, although the linear softening looks more simple 
to handle than the exponential softening, the solution 
of the differential Equation is more complicated in 
the first case. This is due to the fact that, instead of 
the three stages (elastic, elastic-softening, softening), 
according to the linear softening the joint undergoes 
five different stages (elastic, elastic-softening, elas-
tic-softening-debonding, softening-debonding, debo-
nding). Furthermore, of these five stages, the third 
cannot be obtained in a fully analytical form since 
the equation relating the lengths of the softening and 
of the debonded zones has to be solved numerically. 
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Figure 10. Load vs. displacement curve for different bond-slip 
model: elastic-perfectly brittle (dashed line), elastic-linear sof-
tening (thin line) and elastic-exponential softening (thick line). 
Values: hr = 1.016 mm; hb = 75 mm; tr = 50 mm; tb = 150 mm; 
Eb = 33,640 MPa; Er = 230,000 MPa; τp = 6.64 MPa; δp = 
0.039 mm; GIIc= 1.59 N/mm. Figure (a) refer to a joint whose 
length is l = 200 mm; figure (b) to l = 400 mm. 

6 CONCLUSIONS 

In the present paper a closed-form solution describing 
the full-range behaviour of FRP-to-concrete bonded 
joints is presented. Restricting the analysis to the pull-
push geometry, a dimensional and parametrical analy-
sis of the problem has been performed, highlighting 
the effects on the solution of the bond length, the FRP 
stiffness, and the interface law. Moreover, also the size 
effect for the problem considered has been addressed. 

Concerning the comparison with different models 
available in the literature, it is worth observing that: (i) 
models neglecting the interface nonlinearity (i.e. elas-
tic-perfectly brittle interface law) usually provide very 
rough predictions; (ii) with respect to linear softening 
models, the present model is easier to be implemented 
(only 3 stages instead of 5) and it is believed to be 
more realistic; (iii) with respect to more sophisticated 
local bond-slip models (such as Ferracuti et al. 2006), 
the present approach provides similar results without a 
proper numerical analysis. Of course, the present 
analysis is restricted to a specific geometry (i.e. the 
pull-push test), but the approach is general: the solu-
tion procedure outlined can be easily extended to deal 
with similar test setups, such as the pull-pull shear test. 
These extensions, as well as the comparison with other 
analytical models for FRP debonding such as the 
three-parameter model by Leung & Tung 2006, will be 
the matter of future developments. 
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The proportionality coefficient D(h,T) is called 
moisture permeability and it is a nonlinear function 
of the relative humidity h and temperature T (Bažant 
& Najjar 1972). The moisture mass balance requires 
that the variation in time of the water mass per unit 
volume of concrete (water content w) be equal to the 
divergence of the moisture flux J  
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The water content w can be expressed as the sum 

of the evaporable water we (capillary water, water 
vapor, and adsorbed water) and the non-evaporable 
(chemically bound) water wn (Mills 1966, 
Pantazopoulo & Mills 1995). It is reasonable to 
assume that the evaporable water is a function of 
relative humidity, h, degree of hydration, αc, and 
degree of silica fume reaction, αs, i.e. we=we(h,αc,αs) 
= age-dependent sorption/desorption isotherm 
(Norling Mjonell 1997). Under this assumption and 
by substituting Equation 1 into Equation 2 one 
obtains 
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where ∂we/∂h is the slope of the sorption/desorption 
isotherm (also called moisture capacity). The 
governing equation (Equation 3) must be completed 
by appropriate boundary and initial conditions.  

The relation between the amount of evaporable 
water and relative humidity is called ‘‘adsorption 
isotherm” if measured with increasing relativity 
humidity and ‘‘desorption isotherm” in the opposite 
case. Neglecting their difference (Xi et al. 1994), in 
the following, ‘‘sorption isotherm” will be used with 
reference to both sorption and desorption conditions. 
By the way, if the hysteresis of the moisture 
isotherm would be taken into account, two different 
relation, evaporable water vs relative humidity, must 
be used according to the sign of the variation of the 
relativity humidity. The shape of the sorption 
isotherm for HPC is influenced by many parameters, 
especially those that influence extent and rate of the 
chemical reactions and, in turn, determine pore 
structure and pore size distribution (water-to-cement 
ratio, cement chemical composition, SF content, 
curing time and method, temperature, mix additives, 
etc.). In the literature various formulations can be 
found to describe the sorption isotherm of normal 
concrete (Xi et al. 1994). However, in the present 
paper the semi-empirical expression proposed by 
Norling Mjornell (1997) is adopted because it 

explicitly accounts for the evolution of hydration 
reaction and SF content. This sorption isotherm 
reads 
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where the first term (gel isotherm) represents the 
physically bound (adsorbed) water and the second 
term (capillary isotherm) represents the capillary 
water. This expression is valid only for low content 
of SF. The coefficient G1 represents the amount of 
water per unit volume held in the gel pores at 100% 
relative humidity, and it can be expressed (Norling 
Mjornell 1997) as 
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where k

c
vg and k

s
vg are material parameters. From the 

maximum amount of water per unit volume that can 
fill all pores (both capillary pores and gel pores), one 
can calculate K1 as one obtains  
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The material parameters k

c
vg and k

s
vg and  g1 can 

be calibrated by fitting experimental data relevant to 
free (evaporable) water content in concrete at 
various ages (Di Luzio & Cusatis 2009b).  

2.2 Temperature evolution 

Note that, at early age, since the chemical reactions 
associated with cement hydration and SF reaction 
are exothermic, the temperature field is not uniform 
for non-adiabatic systems even if the environmental 
temperature is constant. Heat conduction can be 
described in concrete, at least for temperature not 
exceeding 100°C (Bažant & Kaplan 1996), by 
Fourier’s law, which reads 

 
T∇−= λq                                (7) 

 
where q is the heat flux, T is the absolute 
temperature, and λ is the heat conductivity; in this 


	MAin
	Return

