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ABSTRACT: Among rehabilitation strategies, bonding of Fiber Reinforced Polymers (FRP) sheets/plates is
becoming more and more popular, especially for what concerns concrete structures. The performance of the
interface between FRP and concrete is one of the key factors affecting the behavior of the strengthened struc-
ture. Up to now, closed-form analytical solutions exist only for the local bond-slip law with linear softening.
Aim of the present paper is to show that analytical solutions can be achieved also assuming an exponential
decaying softening law. Accordingly, the expressions for the interfacial shear stress distribution and the load-
displacement response are derived for the different loading stages. A full parametric analysis of the problem
has been performed, highlighting the size effect on the structural behavior as well as the effects of the bond
length, of the FRP stiftness and of the interface constitutive law. A comparison with other analytical models

available in the literature concludes the paper.

1 INTRODUCTION

Bonding of FRP has emerged as a wide-spread
method for retrofitting existing concrete structures.
In this technique, the performance of the FRP-to-
concrete interface is of primary importance. The
failure mode of FRP-reinforced beams is often di-
rectly related to the debonding of the FRP plate from
the substrate. The debonding of the plate may take
place either from the edge of the FRP strip or from
an intermediate flexural crack. The former failure
mode is named edge debonding, whereas the latter is
usually referred to as intermediate crack induced
debonding (IC-debonding) (Carpinteri et al. 2009a).
In IC-debonding failure, the stress state is similar
to that of a push-pull shear test (Fig. 1), where a
plate is bonded to a concrete block and is subjected
to tension. It is a kind of single lap joint. Because of
its (relative) simplicity, several experiments as well
as theoretical analyses have been concerned with
such a test geometry. Experiments show that, in such
joints, the principal failure mode is concrete failure
under shear, leading to a main crack running few
millimeters beneath the concrete-to-adhesive interface.
Thus, the maximum transferable load of the joint
strongly depends on concrete mechanical properties.
Several works are available in the literature about
the pull-push shear test (see, e.g., Wu et al. 2002,
Yuan et al. 2004, Leung & Yang 2006, and refer-
ences herein). However, an analytical solution for
the complete debonding process of the joint is avail-
able in closed-form only for a local bond-slip law
with linear softening, sometimes referred to as bi-

linear law (Yuan et al. 2004). Aim of the present pa-
per is to provide an analytical solution for an expo-
nentially decaying softening of the interfacial stress-
displacement law. Up to now, the solution of such a
problem has been achieved only numerically (see,
e.g., Ferracuti et al. 2000). Finally observe that, al-
though attention is focused on FRP-to-concrete
bonded joints, the present analysis is applicable also
to other kind of reinforcements, e.g. steel plates.

2 GOVERNING EQUATIONS

Figure 1 shows a single-lap pull-push test of a plate-
to-concrete bonded joint, in which the width and
thickness of each of the three components (plate, ad-
hesive layer and concrete prism) are constant along
the length. The width and thickness of the rein-
forcement plate are denoted respectively by # and A,
those of the concrete prism by # and /A, and the
bonded length of plate is denoted by /; x is the longi-
tudinal coordinate. The Young’s moduli of plate and
concrete are £, and £, respectively. In such a joint,
the adhesive layer is mainly subjected to shear de-
formations, so that mode II interfacial fracture is the
expected failure mode. Note that a rigorous elastic
analysis of the problem show that also a mode I
component (i.e. peeling stresses) is present (Suo &
Hutchinson 1990), but we will neglect such a contri-
bution. A simple mechanical model for this joint can
thus be established by treating the plate and the con-
crete prism (the two adherents) as being subject to
axial deformations only, while the adhesive layer
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can be assumed to be subject to shear deformations
only. That is, both adherents are assumed to be sub-
ject to uniformly distributed axial stresses, with any
bending effects neglected, while the adhesive layer
is assumed to be subject to shear stresses which are
also constant across the thickness of the adhesive
layer. It should be noted that, in such a model, the
adhesive layer represents not only the deformation
of the actual adhesive layer, but also that of the ma-
terials adjacent to the adhesive. Based on these as-
sumptions, the equilibrium equations of the rein-
forcement and of the overall joint read respectively:

do
h L—1=0
" odx S
Grhrtr +thbtb = O (2)

where 71 is the shear stress in the adhesive layer, o, is
the axial stress in the reinforcement plate and oy, is
the axial stress in the concrete prism. The constitu-
tive equations for the adhesive layer and the two ad-
herents are:

©=1(3) 3)
—_ dur

o= @

Gy = Ly, dTL;b (5)

where u, and u, are the longitudinal displacements of
the reinforcement and of the concrete, respectively.
By means of Equations (1-5), it is possible to
achieve the following second order differential equa-
tion in the interfacial slip O, defined as the relative
displacement between the two adherents (i.e.
Sd=u—uy):

Reinforcement

Adhesive hrJ/

By - <“—r

Concrete block

Concrete block
()

t t Reinforcement —>F

Figure 1. Pullpush shear test of a single lap bonded joint: (a)
elevation; (b) plan.
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where p is the mechanical fraction of reinforcement
(ie. p=FE 1. he | Iy 1, ). Observe that, by Equation
(2) and by definition of slip, it is possible to express
the stress in the FRP as a function of the first deriva-
tive of the slip:

E dd
G, = (7)
1+p dx
—
O
5
7

3 O Ot
Relative displacement (3)

Figure 2. Local bond-slip model: elastic-perfectly brittle model
(thin line); bi-linear model (medium line); elastic-exponential
softening model (thick line). The models are compared with the
same e¢lastic slope and fracture energy (i.c. the same arca be-
neath each curve).

3 COHESIVE LAW OF THE INTERFACE

In Yuan et al. 2004, an analytical solution based on a
linear softening bond-slip law was presented. How-
ever, this kind of law is often not realistic; further-
more, as it will be shown later, its use can lead to
overestimate the mechanical properties of the joint.
Among the different interfacial laws available in the
literature, we will use the one (Fig. 2) recently pro-
posed by Neale et al. 2006 (on the basis of the
analysis presented in Lu et al. 2005), characterized
by a linear phase, with slope &, followed by an ex-
ponential softening branch. Let us denote by 1, and
d, the peak shear stress and the related slip, respec-
tively (k = 1,/0p). Introducing the dimensionless rela-
tive displacement y = 0/0,, the interfacial cohesive
law is expressed analytically as:

y, if0<y<l1
—=1(y)= (8)

T e 2 0 if s
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where o is a (positive) coefficient characterizing
the exponential decay. The area beneath the curve
represents the interface mode 11 fracture energy Gir:

G = [0k =214 ©

0 o

From Equation (9) it is evident that o represents
the ratio between the area beneath the elastic line
and the area beneath the softening branch. For
o—o, the cohesive law (8) represents an elastic-
perfectly brittle interface, whereas for a—0, it repre-
sents an elastic perfectly-plastic interface.

4 ANALYSIS OF THE DEBONDING PROCESS

In order to solve Equation (6), it is more convenient
to use a dimensionless formulation. The longitudinal co-
ordinate is normalized with respect to the bond
length /, i.e. £ = x/I. Hence, in Equation (6), 6 and x
may be replaced respectively by y and &, yielding:

=2 g2 s(y)=0

: (10)
dg
where y(£) is the unknown function and:
I+p T,
=l | —— 11
b= s (11)

Before starting to analyze the different stages of
the debonding process, it is worth recalling that, for
a given set of material and geometrical parameters,
the failure load is a monotonically increasing func-
tion of the bond length /. However, for a bond length
tending to infinity, it can be proved that the failure
load tends to the following asymptotic value:

Fcoo — Zr 2chE;rl/lr
\/ I+p

In other words, F.” represents the maximum force
that the joint can transfer. Interestingly, it depends
only on the fracture energy, i.e. it does not depend
on the shape of the interfacial cohesive law. Observe
that this behavior is peculiar of external reinforce-
ments. In fact, for internal reinforcing bars, there is
always an anchorage length above which the full tensile
strength of the reinforcement can be exploited.

The single lap joint is characterized by the load
vs. displacement curve. The displacement of the
bonded joint is defined as the slip at the loaded end
(i.e. the value of 6 at x=/) and is denoted by A. Hence:

(12)

1235

(13)

The force [ at the loaded end of the reinforce-
ment may be evaluated by means of Equation (7) as
F =t h o(x=I). By normalizing the force with re-
spect to the maximum transferable force (12) and
through analytical manipulations, we get:

R ——_——T0

Fe o ol+a?

Equations (13) and (14) define the parametric plot
of the load vs. displacement curve.

(14)

4.1 Elastic stage

During the elastic stage, all the joint is in the elastic re-
gime, i.e. y<I for any &. We may prescribe that, at the
loaded end, the dimensionless displacement (1) is
equal to u, with 0<u<1. According to linear elasticity,
this setting is equivalent to impose that the shear stress
at the loaded end divided by the peak stress, 1.e. T/1,, 1s
equal to u. The second boundary condition states that
the other extreme of the reinforcement is unloaded, 1.e.
'(0)=0 because of Equation (7). In formulae:

(15)

The general solution of the (linear) differential
equation reads:

(16)

y(&) = cleﬁé + czeiﬁé

The two arbitrary constants have to be determined
by means of the boundary conditions. Hence:

e = cosh(Bi)u _ T(€)

5= cosh(pB) T, {17
Jrey o sinh(BE)
y@%ﬁcmmﬁu (18)

Because of the elastic regime, the relative displace-
ment (17) represents also the shear stress. For # = 0.5
(and B = 3), the stress field is represented by curve A in
Figure 3.

4.2 Elastic-softening stage

At the end of the elastic stage, the shear stress
reaches its peak at the loaded end of the joint. Al-
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though the structural behavior of the joint depends
on the test control, we assume as the control parame-
ter the position of the stress peak in order to obtain
all the possible solutions satisfying the governing
equation (10). In other words, we make the assump-
tion that the stress peak travels from the loaded end
to the unloaded extreme. Let us denote with & that
position. It divides the bonded joint into two reglons
the former (0 < £ < &) is in the elastic regime, the
latter is in the softening regime (& <& < 1). Since,
at the peak, y is equal to unity, the differential prob-
lem governing the solution of the elastic zone is:

y'-B*y=0 0<E<E<]
y'(0)=0

yE)=1,

(19)

The general solution is still given by Equation
(16). However, because of the different boundary
conditions, the solution now reads:

cosh(Bg) _ (&)
)= cosh(BE) T,
yi)=p 2t

(20)
€2y

Between the point (=& ) where the shear stress
reaches its peak and the loaded end (£=1), the joint is in the
softening regime: the differential equation changes accord-
ingly and it is not linear any more. On the other hand, the
boundary conditions are given by the continuity conditions
(respectively for the relative displacement and the tensile
force in the reinforcement) with the zone in the elastic re-
gime and can therefore be obtained by evaluating Equa-
tions (20-21) at £=E :

YR V=0 0<E<E<]
(&) =1
»'(€) =P tanh(BE)

(22)

Analytical details about how to achieve the solu-
tion of the differential problem (22) will be given
elsewhere. The final solution reads:

1+i2><

y(E)= »

1 SoshlaBy (€~ €) +In(y + a.tanh(BE))]
cosh[In(y + o tanh(BE))]

o ? tanhoBy(€ — ) + In(y + o tanh(BE))] (24)

(23)

y(e)=L
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with v =[a? tanh?(BE)+1]Y2. The stress field is
then obtained upon substitution of Equation (23) into
the constitutive law (8):

te) {

T

cosh[In(y + o tanh(BE))] } 25)
cosh[afy(§ - &) +In(y + o tanh(BE))]

For & = 0.5 (and a=0.7, p=3), the stress field
given by Equations (20) and (25) is represented by
curve B in Figure 3.

4.3 Softening stage

When the peak of the shear stress reaches the unloaded
side of the FRP strip, all the joint is in the softening
regime. The maximum shear stress is now fixed at £
= 0; its value 1s assumed to decrease from 1, to 0, the
latter value corresponding to final failure. Therefore,
the stress field in the softening regime can be ob-
tained by imposing that the normalized shear stress,
/1, at the unloaded end is equal to the parameter v,
with 0<y<1. The boundary condition on the stress
may be converted into a displacement condition by
means of the constitutive law (8). The related differ-
ential problem reads:

Yy B =0, 0<E<l
y(O):l—ln—‘;, 0O<v<l (26)
20
y'(0)=0
whose solution is:
. b cosh(aBix/;)
WE)=1+—1n — 5 27)
ey By
y(€)="_~ tanh[ape/v ] (28)

The stress field is then obtained upon substitution
of Equation (27) into the constitutive law (8):

r(i) _ v
1, cosh*(aBEv)

(29)

For v = 0.5 (and o=0.7, =3), the stress field is
represented by curve C in Figure 3.

4.4 Load vs. displacement curve

Upon evaluation of Equations (17-18), (23-24) and
(27-28) at £=1, and by means of Equations (13-14), it
is possible to achieve the load 7 vs. displacement A
characterizing the joint. It is interesting to point out
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that the shape of the dimensionless plot, i.e. F/F.” vs.
(1), depends uniquely on the two dimensionless pa-
rameter o and 3. The former is related to the parame-
ters of the cohesive law by the following relationship:

2 "
o= [i - 1} (30)

TP6P

Which derives directly from Equation (9). The
latter parameter is provided by Equation (11) and
depends on the geometrical dimensions and on the
stiffness of both the adherents and the adhesive. A
typical load vs. displacement curve is plotted in Fig-
ure 4 (0=0.7 and $=3). The 01 line corresponds to
the elastic regime; the 12 arc to the elastic-softening
phase, where the maximum load is reached; the 23
branch is attained when all the joint is in softening
condition. Note that the stress fields corresponding
to points A,B,C in Figure 4 are the ones marked by
the same letter in Figure 3.

Normalized shear stress
“—u—>

0 0.2 0.4 0.6 0.8 1
— &>
Dimensionless longitudinal coordinate (&)
Figure 3. Interfacial shear stress distribution («=0.7, B=3):
elastic (A), clastic-softening (B) and softening (C) stage. &=0
corresponds to the unloaded end and &=1 corresponds to the
loaded end.

™
]

@)
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«—-----

e

Normalized load (F/F.”)

0 2 4 6 .38

Normalized relative displacement (A/3,,)

Figure 4. Typical full-range load-displacement curve (o=0.7,
3=3): the line 01 corresponds to the elastic stage, the arc 12 to
the elastic-softening stage and the branch 23 to the softening
phase. The stress field corresponding to point A,B,C are repre-
sented by the curves A,B,C in Figure 3. The dashed line PQ
represents the snap-back occurring if the test is displacement-
controlled.
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Note that, in the case considered in Figure 4, the ap-
plication of the simple stress criterion =1, would have
provided a failure load (point 1) approximately equal
to 2/3 of the actual one (point B). This means that the
maximum shear stress may be attained under service
loading. On the other hand, the maximum load is achieved
when about one half of the bond length is in the soften-
ing regime (curve B in Fig. 3). These considerations
fully justify the nonlinear analysis herein proposed.

Finally, it is worth observing that, if the test is dis-
placement-controlled, the displacement A is monotoni-
cally increasing during the test. It means that a snap-back in-
stability (Carpinteri 1985, 1989) occurs, i.e. a sudden load
drop at fixed displacement from point P to Q (dashed line
in Fig. 4). On the other hand, if the test is load-controlled,
after the peak load the interfacial crack propagates always
unstably up to global failure, i.e. no snap-through may occur.

5 PARAMETRIC ANALYSIS

Taking as fundamental quantities the peak stress T,
and the thickness of the FRP plate /., dimensional
analysis shows that, during the debonding process,
the dimensionless load and edge displacement de-
pend on the following dimensionless ratios:

2 2 2 2 2 2

r T T T P P pr

2
Tphr Z(b ! hb [ E Eb gH
A f P G
h

We define the last ratio, ruling the size effect, as
the interface energetic brittleness number sg:

SE — ch (32)
T,/

This represents the extension to mode II debond-
ing failure of the energetic brittleness number Gy/(cu
h) introduced by Carpinteri (1981) for homogeneous
quasi-brittle materials.

Normalized load (F/F.”)

6 0 2 0 4 0 6 0 8
Normalized relative displacement (A/k;)

Figure 5. Effect of the bond length on load vs. displacement
curve. Dimensionless ratios equal to /#,/h=100; t/h=25;
t/h=100; £/7,=62,500; Eu/t,=7500; o=0.5; 55=0.125.
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5.1 Effect of the bond length

In Figure 5 we fixed all the parameters in Equation
(31) except the ratio of the bond length / to the
thickness of the FRP plate 4.. For the sake of clarity,
the load is normalized with respect to F.” instead of
w4 . It is evident that, increasing the bond length,
the elastic stiffness as well as the maximum load
tend to a constant value. More in detail, the maxi-
mum transmissible force by the joint is F.”, while
the structural behaviour changes from quasi-brittle
(curve A) to ductile-brittle (curve E). Note that, for
relatively high bond lengths (curves C-D-E), a snap-
back instability occurs. Finally, it is worth observing
that, based on Figure 5, it is possible to define an ef-
fective bond length, i.e. a threshold length beyond
which the maximum load is practically equal to 7.~

5.2 Effect of the FRP stiffness

In Figure 6 we fixed all the parameters in Equation
(31) except the ratio of the Young moduli of the
FRP and of the concrete, i.e. [£,/F,. Note that the
same effect is obtained by varying A/hy. It is seen
that, increasing the reinforcement stiffness, the
maximum load increases as well as the brittleness of
the structural response. More in detail, the structural
behaviour changes from quasi-brittle (curve A) to
ductile-brittle (curve E). Note that, for relatively low
FRP stiffnesses (curves C-D-E), the structural re-
sponse is ductile up to a final snap-back instability.
Eventually, it is worth observing that the area be-
neath each curve, which is proportional to the energy
spent to have complete delamination, is constant and
that, for high FRP stiffnesses, the effective bond
length increases.

4000

3000

2000

1000

Normalized load [F/(t,h.2)]

0 0.2 0.4 0.6 0.8 1

Normalized relative displacement (A/k;)

Figure 6. Effect of the FRP stiffness on load vs. displacement
curve. Dimensionless ratios equal to /#,/h=100; t/h=25;
t/h=100; 11h=200;, Ey/t,=7500; 0=0.5; 55=0.125.

5.3 Effect of the cohesive law

We wish now to analyze the effect of the shape of
the cohesive law, within the assumption of a linear
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ascending branch followed by an exponential tail
(Eq. (8)). We consider two cases. In the former one,
we keep 1, and J, constant and let o vary (and sg ac-
cordingly), see Figure 7a. All the other dimen-
sionless ratios (Eq. (31)) are kept constant. Although
T, 1s the same for all the curves, from Figure 7b it is
evident that the presence of a softening branch gives
rise to a strength supply beyond the elastic regime.
In fact, the load at which the stress reaches 1, at the
loaded end is also the maximum load only for an
elastic-perfectly brittle interface (curve A). On the
other hand, the softening of the interface cohesive
law makes the maximum load higher (curves B-C-
D) and an horizontal plateau is reached for an elas-
tic-perfectly plastic interface (curve E). Eventually,
observe that a snap-back instability occurs only for
strongly decaying softening branches, i.e. for rela-
tively high o values (curves A-B-C).

@
E
O
g
@ D
5
=
[75]
C
A B
Relative displacement (3)
(b)

5000 F°

4000

3000

2000

1000

Normalized load [F/(t,h.2)]

Normalized relative displacement (A/k;)

Figure 7. Effect of the interface law (a) on load vs. displace-
ment curve (b) by varying o and keeping T, and &, constant.
Dimensionless ratios equal to /,/k=100; t/h=25; t,/h=100;
I/h=200; E/t,=62,500; Ey/t,=7500; sg=(1+o’)/20)x5x107>,
i.e. 8y/h=0.05.

In the latter case, we keep G and & constant and let
oo vary (and sg accordingly), see Figure 8a. All the
other dimensionless ratios (Eq. (31)) are kept constant.
Since now T, is varying, it is more convenient to nor-
malize the load with respect to F.” instead of T4 .
Figure 8b shows that, for a given bond length, the
maximum transmissible force F.” is attained only by
the curves corresponding to rapidly decreasing soften-
ing branches. Note that, & being constant, the initial
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(elastic) slope of the F-A curves is the same for all the
curves; analogously, the area beneath each curve is
constant since the energy required to have complete
delamination is the same (Gucxtx/). The snap-back in-
stability disappears for very slowly decreasing soften-
ing branches (curve E), when the F-A curve early de-
parts from the initial (elastic) straight line.

5.4 Size effect

In Figure 9 we fixed all the parameters in Equation
(31) except the interface energetic brittleness num-
ber sg. Varying s means, for instance, that the over-
all structural size changes while keeping constant all
the geometrical ratios and material properties.
Therefore, Figure 9 describes the size effect for the
pull-push shear test. It shows that, increasing the in-
terface energetic brittleness number, the structural
behaviour changes from ductile-brittle to quasi-
brittle and that the snap-back instability occurs for
relatively low sg values. It is important to highlight
that brittleness is not a purely material property, but
a structural one: in fact, low interface energetic brit-
tleness numbers correspond to brittle interfaces
and/or large sizes, while high sg values correspond
to ductile interfaces and/or relatively small sizes.

@ A

Shear stress (1)

N~

Relative displacement (3)

Normalized load (F/F.”)

0.1 0.2 0.3 0.4 0.5
Normalized relative displacement (A/k;)

Figure 8. Effect of the interface law (a) on load vs. displace-
ment curve (b) by varying o and keeping k and Gy, fixed. Di-
mensionless ratios equal to /,/h=100; t/h=25; #/h=100;
Uh=200; Eh/Gn=5x10%  Eph/Gr=6x10", sg=[5(1+a)]"/
/(400), i.e. kh/ Gr=160.
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5.5 Interface laws: elastic-perfectly brittle, linear
softening, exponential softening

Fixing the geometrical aspect, in Figure 10 we com-
pared the solutions provided by different cohesive
laws, namely an elastic-perfectly brittle law, an elas-
tic-linear softening law, and an elastic-exponentially
softening law. We fixed the slope of the elastic
branch and the fracture energy value, i.e. the area
beneath the bond-slip law is constant for the three
curves (Fig. 2). Therefore:

6f — ngc

T

(33)

4000

3000

2000

1000

Normalized load [F/(t,h.2)]

6 012 014 016 018 i
Normalized relative displacement (A/k;)

Figure 9. Size effect on load vs. displacement curve. Dimen-

sionless ratios equal to /,/h=100; t,/h=25; t/h=100; I/h,=200;

E/t,=62,500; Fyp/t,=7500; 0=0.5.

6b — 2ch6p ’ T, = ngch
TP 613

For the meaning of the symbols, refer to Figure 2.
For the curve corresponding to linear softening, the
solution was taken from Yuan et al. 2004, whereas
the curve corresponding to the elastic-perfectly brit-
tle law derives directly from LEFM (Carpinteri et al
2009b). However, it i1s worth observing that the elas-
tic-perfectly brittle case could be caught by the pre-
sent model letting ot—>0.

In Figure 10 we plotted the results for two different
joint lengths. The solution of the present model differs
from the one corresponding to linear softening because of
a stronger deviation from the initial slope of the ascending
branch in the load vs. displacement curve. Furthermore, a
residual — although small — transferable force is present
also for large displacements because of the exponentially
decaying shear stress.

A second aspect to be pointed out is that, while
for sufficiently long joints the maximum transferable
force is achieved for every interface law (Fig. 10b),
for relatively short joints (Fig. 10a), F.” is reached
only by the LEFM model. In other words, LEFM, as
well as the linear softening model, tend to overesti-

(34)
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mate the maximum transferable force of the joint
with respect to the present model.

From a numerical point of view, it is worth noting
that, although the linear softening looks more simple
to handle than the exponential softening, the solution
of the differential Equation is more complicated in
the first case. This is due to the fact that, instead of
the three stages (elastic, elastic-softening, softening),
according to the linear softening the joint undergoes
five different stages (elastic, elastic-softening, elas-
tic-softening-debonding, softening-debonding, debo-
nding). Furthermore, of these five stages, the third
cannot be obtained in a fully analytical form since
the equation relating the lengths of the softening and
of the debonded zones has to be solved numerically.

(@

0.8 1 /
0641 | /
0.4+ ,

0.2 7

Normalized load (F/F.”)

0 t T -
0 1 2 3

Normalized relative displacement (A/8y)

(b)
)

0.4+

024

0

Normalized load (F/F.”)

f T
0 1 2 3

Normalized relative displacement (A/8y)

Figure 10. Load vs. displacement curve for different bond-slip
model: elastic-perfectly brittle (dashed line), elastic-linear sof-
tening (thin line) and elastic-exponential softening (thick line).
Values: /., = 1.016 mm; /4, = 75 mm; £, = 50 mm; £, = 150 mm;
Ey = 33,640 MPa; £, = 230,000 MPa; t, = 6.64 MPa; 5, =
0.039 mm; Gp= 1.59 N/mm. Figure (a) refer to a joint whose
length is / = 200 mm; figure (b) to / = 400 mm.

6 CONCLUSIONS

In the present paper a closed-form solution describing
the full-range behaviour of FRP-to-concrete bonded
joints is presented. Restricting the analysis to the pull-
push geometry, a dimensional and parametrical analy-
sis of the problem has been performed, highlighting
the effects on the solution of the bond length, the FRP
stiffness, and the interface law. Moreover, also the size
effect for the problem considered has been addressed.
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Concerning the comparison with different models
available in the literature, it is worth observing that: (7)
models neglecting the interface nonlinearity (i.e. elas-
tic-perfectly brittle interface law) usually provide very
rough predictions; (i7) with respect to linear softening
models, the present model is easier to be implemented
(only 3 stages instead of 5) and it is believed to be
more realistic; (777) with respect to more sophisticated
local bond-slip models (such as Ferracuti et al. 2006),
the present approach provides similar results without a
proper numerical analysis. Of course, the present
analysis is restricted to a specific geometry (i.e. the
pull-push test), but the approach is general: the solu-
tion procedure outlined can be easily extended to deal
with similar test setups, such as the pull-pull shear test.
These extensions, as well as the comparison with other
analytical models for FRP debonding such as the
three-parameter model by Leung & Tung 2006, will be
the matter of future developments.
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