Landscaping of ASR-cracked retaining wall using HPFRCC shotcretes and observation over 5 years

K. Rokugo

Department of Civil Engineering, Gifu University, Gifu, Japan

N. Morii & S-C. Lim *Deros-Japan, Kanazawa, Japan*

T. Kanda & N. Sakata *Kajima Technical Research Institute, Tokyo, Japan*

ABSTRACT: High performance fiber-reinforced cementitious composites (HPFRCCs) were shotcreted onto an ASR-cracked concrete gravity retaining wall on a trial basis primarily for its landscaping. The width of cracks in the HPFRCCs was mostly limited to not more than 0.1 mm even 5 years after application, proving the expected effect of HPFRCCs. Within the range of this application, the effects of placing steel reinforcement and sealing cracks in the substrate concrete were not appreciable. Acrylic coating on the HPFRCC layer had an appearance-improving effect only for a short period.

1 INTRODUCTION

High performance fiber-reinforced cementitious composite (HPFRCC) is a fiber-reinforced mortar characterized by strain-hardening behavior and multiple fine crack behavior under tensile forces, being expected to be useful for surface repair and patching of concrete structures (Kanda et al. 2006, Rokugo et al. 2009). Recommendations for design and construction of HPFRCC have been published by JSCE (2007) both in a book and on web.

While concrete structures having cracks due to alkali-silica reaction (ASR) include those that only require surface repair for landscaping, repair methods and materials for such surfaces have yet to be established.

In April 2003, HPFRCCs were shotcreted onto a concrete gravity retaining wall having ASR-induced cracks on a trial basis to improve the landscape. This was one of the earliest applications of HPFRCCs to actual structures. Observation was then carried out 1, 3, and 5 years after the application to check the state of cracking and other defective events.

This paper reports on the details of this trial application and the results of subsequent observation of the wall structure, while verifying the validity of the initially adopted techniques.

2 CRACKING AND REPAIR METHODS

2.1 *State of cracking of structure*

The structure under study is a concrete gravity retaining wall measuring 18 m in width and 5 m in height constructed in the mid-1970s. Since ASRinduced map cracking was recognized on this wall, crack injection and overlay were applied for repair in 1994. However, cracking reappeared on the surface by the time of a survey in 2002 carried out by the authors as shown in Figure 1.

Because of the past survey data and the map cracking of the wall, cores were drilled from the wall (80 cm from the bottom and 50 cm from the surface) to estimate the residual expansion of concrete by the JCI-DD2 method. Since the resulting residual expansion was 0.005 to 0.011%, it was judged that the future expansion of the retaining wall under study would be relatively small.

Figure 1. ASR-cracked concrete retaining wall.

Table 1. Repair materials and conditions of blocks.

Repair materials	Block No.	Reinforcement	Unbonded	Coating
			region at crack	
Repair material A		Welded bar mesh	None	
Fiber: PVA+ High strength PE	2	Expanded metal	None	
Volume fraction of fiber: 1.5%	3	None	None	
Matrix: Premixed polymer cement	4	None	Sealing	
Repair material B	5	Welded bar mesh	None	Acrylic coating compound
Fiber: High strength PVA	6	Expanded metal	None	was applied to all blocks
Volume fraction of fiber: 2.1%	7	None	None	from bottom to level of 2 m.
Matrix: Premixed cement mortar	8	None	Sealing	
Repair material C				
Fiber: None	9	Welded bar mesh	None	
Matrix: Premixed cement mortar				

2.2 *Selection of repair methods*

In consideration of the small residual expansion due to ASR and the particularity of the structure of being a gravity retaining wall, it is unlikely that the safety of this structure would be significantly impaired in the future. It was therefore considered unnecessary the aesthetic appearance significantly deteriorated by cracking.

Though repair by crack injection and resin overlay was a possible option, this has already been applied earlier and failed to prevent re-deterioration as to apply such mechanical strengthening as earth anchors, but it was judged necessary to carry out surface repair primarily for landscaping to improve stated above (Fig. 1). It was thus considered necessary to overlay the surface with a repair material having excellent deformability across cracks. It was considered desirable to repair with cementitious materials from the standpoint of long-range aesthetic appearance. Surface overlays with HPFRCC shotcretes were therefore adopted on a trial basis.

Figure 2. Blocks of different repair types on wall.

3 OUTLINE OF APPLICATION

3.1 *Repair types*

Figure 2 shows the blocks of different repair types on the retaining wall. Table 1 shows the repair mate

rials and conditions of the blocks. The nine repair types were combinations of three shotcretes (A, B, and C) and two steel reinforcement types (welded bar mesh and expanded metal), with or without sealing of cracks, each type being applied to nine different blocks. Each block measured 1.8 m in width and 5 m in height. In blocks with crack sealing, a onecan polyurethane sealant was applied to cover 30 mm-wide areas on cracks to a thickness of 5 mm, to provide bondless areas between the HPFRCC and wall concrete, so as to facilitate the distribution of h with concrete, so as to number the distribution of the cracked areas. Two days after the application of shotcretes onto the blocks, a one-can acrylic coating compound was applied to an area across all blocks from the bottom edge of the repair area to a level of 2 m. It was anticipated that the expected cracks in the HPFRCCs would not damage the acrylic overcoat because of their small crack widths, thereby making such cracks scarcely visible from outside. Examples and Morphetics conting

Acrylic coating compound

was applied to all blocks

Irom bottom to level of 2 m.

Irom bottom to level of 2 m.

Institution of three shots correctes (A, B, steel reinforcement types (wel .com c.jp c.jp w.s.ftp://t.com/2012.com/2012.com/2012.com/2012.com/2012.com/2012.com/2012.com/2012.com/2012.com/ Acrylic coating compound
was applied to all blocks
from bottom to level of 2 m.
ded metally, with or without seal-
ded metally, with or without seal-
elect messared 1.8 m in width and
olocks with reach and the method metal Acrylic coating compound

was mopiled to all blocks

from bottom to level of 2 m.

mointons of three shoctcretes (A, B,

steel reinforcement types (welded

anded metal), with or without seal-

stell reinforcement types (w Acrylic coating compound
was applied to all blocks
from bottom to level of 2 m.
ministions of three shotcretes (A, B,
steel reinforcement types (welled
also shanded metal), with or without seal-
they been applied to nine Acrylic coating compound
was applied to all blocks
from bottom to level of 2 m.
distantions of three shockeres (A, B,
steel reinforcement types (welded
abanded metal), with or without scalanded metal), with a valid and
ab Acrylic coating compound

was applied to all blocks

from bottom to level of 2 m.

that steel reinforcement types (welled

state rainforcement types (welled

ananded metal), with or without seal-

they being applied to ni valuation of the blocks. The nine repair
was applied to all blocks
from bottom to level of 2 m.
and planet of three shotcretes (A, B, steel reinforcement types (welded
almoaled metal), with or whitout scaling a one-
block Frameword and otects of the blocks. The nine representations of three shotcretes (A, steel reinforcement types (weld) anded metal), with or without see the more distingent to invest to a more distingence of 5 m in with of the blocks. The nine repair
tions of three shotcretes (A, B, B, C)
eled renforcement types (welded
ded metally, with or without seal-
type being applied to nine differ-
ck measured 1.8 m in width and
cocks with crack sea of the blocks. The nine repair
tions of three shotcretes (A, B, C)
edeel reinforcement types (welded
oded metal), with or without seal-
ype being applied to nine differ-
colocks with crack sealing, a one-
colocks with crac ons of the blocks. The nine repair
inations of three shotcretes (A, B,
stead reachiorcement types (welded
anaded metal), with or without seal-
h type being applied to nine differ-
block measured 1.8 m in width and
blocks ons of the blocks. The nine repair
inations of three shotcretes (A, B,
steel reinforcement types (welded
obta and medial), with or without seal-
thy pe being applied to unie diffe-
block measured 1.8 m in width and
blocks ons of the blocks. The nine repair
oinations of three shotcretes (A, B, steel reinforcement types (welded
anded metal), with or without seal-
hype being applied to nine differ-
block measured 1.8 m in width and
blocks wit inations of three shotcretes $(A, B,$
steel reinforcement types (welded
ananded metal), with or without seal-
ananded metal), with or without seal-
blocks mesured 1.8 m in width and
blocks mesured 1.8 m in width and
blocks steel reinforcement types (welded
abanded metal), with or without seal-
hype being applied to nine differ-
hype being applied to inite differ-
block measured 1.8 m in width and
reast we applied to cover 30
are reas betwee relative the same of the same of the same of the dibook measured 1.8 m in without seal-
th type being applied to nine differ-
block measured 1.8 m in with and blocks with crack sealing, a one-
sealant was applied to cover the type being applied to nine differ-
block measured 1.8 m in width and blocks with crack sealing, a one-
is easilant was applied to cover 30
n cracks to a thickness of 5 mm, to
a sate between the HPFRCC and
a sate betw block measured 1.8 m in width and
block measured 1.8 m in width and
exact solation can be solated to cover 30
on cracks to a thickness of 5 mm, to
areas between the HPFRCC and
as to facilitate the distribution of
exerped 1 blocks with crack sealing, a one-

2 sealant was applied to cover 30

n cracks to a thickness of 5 mm, to

i areas between the HPFRCC and

2 is areas between the HPFRCC and

2 is areas between the HPFRCC and

2 as to fa by sealant was applied to cover 30 an cracks to a thickness of 5 mm, to areas between the HPFRCC and a sto facilitate the distribution of e HPFRCC over the cracked areas. ea application of shotcretes onto the acrylic coat n cracks
areas
as to 1
as to 1
acrylic
across as to 1
acrylic
across r area to
expect the *i*
acrylic spect widths,
commounts and steel
a HPFI polymed high
a HPFI polymed high
a HPFI mortar
content rmal ce
areay thicl bar restinger and a rest substitution of the substitution of the substitution of the control of the control of the $\frac{1}{2}$

3.2 *Shotcretes and steel reinforcements*

Shotcrete A was a HPFRCC shotcrete mortar comprising premixed polymer mortar, polyvinyl alcohol (PVA) fibers, and high strength PE (polyethylene) fibers with a total fiber content of 1.5% by volume. Shotcrete B was a HPFRCC shotcrete mortar comprising premixed mortar and high strength PVA fibers with a fiber content of 2.1% by volume. Shotcrete C was a normal cementitious shotcrete mortar for repair. The spray thickness was 50 to 70 mm. across all blocks from the bottom
r area to a level of 2 m. It was an-
expected cracks in the HPFRCCs
ge the acrylic overcoat because of
widths, thereby making such cracks
com outside.
 $md \t{steel} \t{reinforcements}$
a HPFRCC shotcrete r area to a level of 2 m. It was an-
expected cracks in the HPFRCCs
ge the acrylic overcoat because of
widths, thereby making such cracks
com outside.
nd steel reinforcements
a HPFRCC shotcrete mortar com-
polymer morta expected cracks in the HPFRCCs
ge the acrylic overcoat because of
widths, thereby making such cracks
com outside.
nd steel reinforcements
a HPFRCC shotcrete mortar com-
polymer mortar, polyvinyl alcohold
d high strength ge the acrylic overcoat because of
widths, thereby making such cracks
com outside.
and steel reinforcements
a HPFRCC shotcrete mortar com-
polymer mortar, polyvinyl alcohold
d high strength PE (polyethylene)
a HPFRCC shotc dths, thereby making such cracks

n outside.

steel reinforcements

HPFRCC shotcrete mortar com-

lymer mortar, polyvinyl alcohol

high strength PE (polyethylene)

ber content of 1.5% by volume.

content conditions of the rom outside.
 nd steel reinforcements

a HPFRCC shotcrete mortar com-

polymer mortar, polyvinyl alcohol

d high strength PE (polyethylene)

1 fiber content of 1.5% by volume.

a HPFRCC shotcrete mortar com-

mortar and nd steel reinforcements

a HPFRCC shotcrete mortar com-

polymer mortar, polyvinyl alcohol

d high strength PE (polyethylene)

a HPFRCC shotcrete mortar com-

mortar and high strength PVA fi-

content of 2.1% by volume. Sh nd steel reinforcements
a HPFRCC shotcrete mortar com-
polymer mortar, polyvinyl alcohol
d high strength PE (polyethylene)
a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
ro a steel reinforcements
a HPFRCC shotcrete mortar com-
polymer mortar, polyvinyl alcohol
d high strength PE (polyethylene)
a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
rma a HPFRCC shotcrete mortar compolymer mortar, polyvinyl alcohol
d high strength PE (polyethylene)
1 fiber content of 1.5% by volume.
a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume polymer mortar, polyvinyl alcohol
d high strength PE (polyethylene)
1 fiber content of 1.5% by volume.
a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
rmal cementitious shot

The welded bar mesh was made of D6 bars (SD295) welded into a grid with 100 mm intervals. An expanded metal with a mesh size of 75 by 203 mm (spec: XS-82) was also used. These steel reinforcements, which were placed 10 mm off the wall surface to be embedded in the sprayed HPFRCCs, were expected to allow the cracks in the HPFRCCs to be finely distributed without localization. d high strength PE (polyethylene)
1 fiber content of 1.5% by volume.
a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
rmal cementitious shotcrete mortar
ray thickness was 50 I fiber content of 1.5% by volume.

a HPFRCC shotcrete mortar com-

mortar and high strength PVA fi-

content of 2.1% by volume. Shot-

rmal cementitious shotcrete mortar

ray thickness was 50 to 70 mm.

par mesh was made a HPFRCC shotcrete mortar com-
mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
rmal cementitious shotcrete mortar
ray thickness was 50 to 70 mm.
par mesh was made of D6 bars
into a grid with 100 mm interv mortar and high strength PVA fi-
content of 2.1% by volume. Shot-
rmal cementitious shotcrete mortar
ray thickness was 50 to 70 mm.
bar mesh was made of D6 bars
into a grid with 100 mm intervals.
tal with a mesh size of 7 content of 2.1% by volume. Shot-
rmal cementitious shotcrete mortar
ray thickness was 50 to 70 mm.
bar mesh was made of D6 bars
into a grid with 100 mm intervals.
tal with a mesh size of 75 by 203
2) was also used. These rmal cementitious shotcrete mortar
ray thickness was 50 to 70 mm.
bar mesh was made of D6 bars
into a grid with 100 mm intervals.
tal with a mesh size of 75 by 203
2) was also used. These steel rein-
h were placed 10 mm of ray thickness was 50 to 70 mm.

par mesh was made of D6 bars

into a grid with 100 mm intervals.

ttal with a mesh size of 75 by 203

2) was also used. These steel rein-

th were placed 10 mm off the wall

ibedded in the s por mesh was made of D6 bars
into a grid with 100 mm intervals.
tal with a mesh size of 75 by 203
2) was also used. These steel rein-
h were placed 10 mm off the wall
hbedded in the sprayed HPFRCCs,
allow the cracks in the into a grid with 100 mm intervals.

ttal with a mesh size of 75 by 203

2) was also used. These steel rein-

th were placed 10 mm off the wall

ibedded in the sprayed HPFRCCs,

allow the cracks in the HPFRCCs

buted withou ration, a mesh size of 75 by 203

2) was also used. These steel rein-

th were placed 10 mm off the wall

ibedded in the sprayed HPFRCCs,

allow the cracks in the HPFRCCs

buted without localization.

Proceedings of FraMCo 2) was also used. These steel rein-
h were placed 10 mm off the wall
hbedded in the sprayed HPFRCCs,
allow the cracks in the HPFRCCs
buted without localization.
Proceedings of FraMCoS-7, May 23-28, 2010 the were placed 10 mm off the wall
heedded in the sprayed HPFRCCs,
allow the cracks in the HPFRCCs
buted without localization.
Proceedings of FraMCoS-7, May 23-28, 2010 found to describe the sprayed HPFRCCs,
allow the cracks in the HPFRCCs
buted without localization.
Proceedings of FraMCoS-7, May 23-28, 2010 computed without localization.
Bouted without localization.
Proceedings of FraMCoS-7, May 23-28, 2010 buted without localization.
Proceedings of FraMCoS-7, May 23-28, 2010

(e) Spraying (f) After construction Figure 3. Shotcreting after surface treatment with water jet.

Figure 4. Load-displacement (deflection) curves of bending specimens.

3.3 *Application*

Figure 3 shows the state of shotcreting. Prior to shotcreting, the wall surface was chipped by a water jet to a depth of a few millimeters. The shotcretes were then sprayed to the surface after placing steel reinforcements and sealing the cracks (Blocks 4 and 8). HPFRCC shotcrete A was mixed using a geared mixer with a capacity of 320 liters and pumped with a snake pump for shotcreting. HPFRCC shotcrete B and shotcrete C were produced using a Hobart mixer with a capacity of 120 liters and pumped with a squeeze pump. FIFE To the state of the first control of the first co (c) Reinforcement

(c) Reinforcement

(d) Un

(c) Spraying

(e) Spraying (f) After

Tigure 3. Shotcreting after surface treatment

Table 2. Compressive Toung's

Materials strength (Fc) modulus (d)

(MPa) (GPa)

Materials contract of the contract district of the contract of the cont (c) Reinforcement

(d) Unbonded region

(d) Unbonded region

(c) Spraying

(c) after construction

(e) Spraying

(f) After construction

C analysis (c) and bending test results.

Head, (d) $\frac{(NPa)}{(NPa)}$

(c) amounts (E) The water of Changing and Content with water jet.

Le 2. Compression and bending test results.

Le 2. Compressive Compressive Vouring a strength (fb) modulus (E) strength (fb) $\frac{(NPa)}{(NPa)}$ (CP₂) (CP₂) (CP₂) (CP₂) **Example 19**

(e) Spraying after surface transform that water jetters). Compressive and bendering text results.

Table 2. Compressive Conduct Correlation water jetters of MPa)

Materials strength (CC) modulos (E) strength value of the number of the non-evaporation

Figure 3. Shotcreting after surface treatment with water jet.

Table 2. Compressive Compass Bending

Materials strength (Cr and Collembus (E) strength (ft) $\frac{(MP0)}{0.000}$

A $\$ (e) Spraying

(i) After construction

Figure 3. Shotcreting after surface treatment with water jet.

Table 2. Compressive Young's Bending

Matcinals strength (C) modulus (E) strength (ft) FVIb

Matcinals strength (C) modu (c) Spraying

(e) Spraying (f) After construction

Figure 3. Shotcetting after surface treatment with water jet.

Table 2. Compressive Months (E) stending

Materials strength (f) c) modulus (E) strength (ft) f v/b

(MPa) (e) Spraying (1) After construction
Figure 3. Shotcreting after surface treatment with water jet.
Table 2. Compression and bending test results.

Materials strength (fr) modulus (E) strength (fb) f χ MPs) (GPa) (MPs) ((c) Spraying (f) After construction

Figure 3. Shotcering after surface treatment with value jet.

Table 2. Compressive Young's Bending

Materials strength (fc) modulus (E) strength (fb) F c/fb

(MPa) (GPa) (GPa) (MPa)
 Figure 3. Shotcreting after surface treatment with water jet.

Table 2. Compression and bending test results.

Materials strength (r^o) condulus (E) strength (ft) Pc/fb

(MPa) (GPa) (GPa) (MPa)

A 37.6 (52 – 5.6

B 54.2 Table 2. Compression and bending test results.

Compressive Young's Bending

Materials strength (fc) modulus (E) strength (ft) $\frac{(MP_0)}{1.85}$ (for 15.6 (17.6 (182)

A 37.6 (152) (APa) (GPa) (APa) (182)

B 54.2 20.5 8.31 Table 2. Compression and bending test results.

Materials strength (f°c) modulus (E) strength (ft) f°c/fb

(CMPa) (GPa) (GPa) (NDe)

A 37.6 15.5 6.72 5.6

B 54.2 20.5 8.31 6.5

C 59.3 29.7 4.65 12.8

C 59.3 29.7 4.65 12.8 Materials strength (Pc) modulus (E) strength (f) Pc /fb

(MPa) (GPa) (MPa) (1976)

A 37.6 15.5 6.72

B 54.2 20.5 8.31 6.5

B 54.2 20.5 8.31 6.5

C 59.3 29.7 4.65 12.8

C 59.3 29.7 4.66 12.8

Equation 2 on a depth of a A

B

C
 $\frac{30}{2}$
 $\frac{2}{3}$
 $\frac{3}{2}$
 $\$ 2.8

1991

1991

1992

1993

1992

1993

1993

1994

1993

1994

1994

1994

1994

1994

1994

1994

1995

1994

1995

1 $\frac{1}{2}$. $\frac{1}{2}$ $\frac{2}{3}$ 20
 $\frac{2}{3}$ 10
 $\frac{1}{3}$ 10
 $\frac{1}{9}$ Material A
 $\frac{1}{9}$ Material B
 $\frac{1}{9}$ Material B
 $\frac{1}{9}$

Figure 4. Load-displacement (deflection) curves of bending

Figure 3 shows the state of shotcreting. **Example 12**
 Interior A
 Interior A
 Interior Called Material B
 Interior Called Material B
 Interior Called Material B
 Interior Called Material moist
 Figure 4. Load-displacement (deflection) curves of be Material A

Material A

Material B

Material C

Disp.(mm) Bisp.(mm) Disp.(mm) Disp.(mm)

Figure 4. Load-displacement (deflection) curves of bending

specimens.

3.3 Application

Figure 3 shows the state of shotcreting. Pr $\frac{3}{5}$ 10 $\frac{1}{9}$ Material A Material B Material C 0.3 0.6 0.3 0.6 0.2 0.4 Disp.(mm)

Figure 4. Load-displacement (deflection) curves of b

specimens.

Trigure 3 shows the state of shotcreting. Prior to

creting, the $\frac{\text{Material A}}{0}$ Material B Material B Material C $\frac{0.3}{0.3}$ 0.3 0.6 0 0.3 0.6 0 0.2 0.4
Disp.(mm) Disp.(mm) Disp.(mm) Disp.(mm)
are 4. Load-displacement (deflection) curves of bending
timens.
Application
we 3 shows the s ^{0 03} 0.5 0 ⁰³ 0.5 0 ⁰³ 0.6 ⁰ 0.2 ⁰⁴

Figure 4. Load-displacement (deflection) curves of bending

specimens.

3.3 *Application*

Figure 3 shows the state of shotcreting. Prior to shot-

cross were julimeters. The Eigure 4. Load-displacement (deflection) curves of bending
specimens.
3.3 Application
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few millim Figure 4. Load-displacement (deflection) curves of bending
specimens.
3.3 *Application*
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few milli Figure 4. Load-displacement (deflection) curves of bending
specimens.
3.3 *Application*
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few milli 3.3 Application
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few millimeters. The shotcretes were
then sprayed to the surface after placing s 3.3 Application
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few millimeters. The shotcretes were
then sprayed to the surface after placing st 3.3 Application
Figure 3 shows the state of shotcreting. Prior to shot-
creting, the wall surface was chipped by a water jet
to a depth of a few millimeters. The shotcretes were
then sprayed to the surface after placing s Figure 3 shows the state of shotcreting. Prior to shotcreting, the wall surface was chipped by a water jet
to a depth of a few millimeters. The shotcretes were
then sprayed to the surface after placing steel rein-
forcemen righte 3 shows are state of shotecreting. Thot to shotecreting, the wall surface was chipped by a water jet
contently a depth of a few millimeters. The shotcretes were
then sprayed to the surface after placing steel rein-
 be used according to the sign of the sign of the sign of the sign of a few millimeters. The shotcretes were then sprayed to the surface after placing steel reinforcements and sealing the cracks (Blocks 4 and 8). HPFRCC sho relation and search the surface after placing steel rein-
forcements and sealing the cracks (Blocks 4 and 8).
HPFRCC shotcrete A was mixed using a geared
mixer with a capacity of 320 liters and pumped with
a snake pump for ifferements and sealing the cracks (Blocks 4 and 8).

HPFRCC shotcrete A was mixed using a geared

mixer with a capacity of 320 liters and pumped with

a snake pump for shotcreting. HPFRCC shotcrete B

and shotcrete C were especies and seamig the cracks (Diocks 4 and 6).

HPFRCC shotcrete A was mixed using a geared

mixer with a capacity of 320 liters and pumped with

a snake pump for shotcreting. HPFRCC shotcrete B

and shotcrete C were pro First Nece shotched 71 was inflaced using a gealed
mixer with a capacity of 320 liters and pumped with
a snake pump for shotcreting. HPFRCC shotcrete B
and shotcrete C were produced using a Hobart mixer
with a capacity of structure with a capacity of 320 fiters and pumped with
a snake pump for shotcreting. HPFRCC shotcrete B
and shotcrete C were produced using a Hobart mixer
with a capacity of 120 liters and pumped with a
squeeze pump.
Proc a shake pamp for shotcheting. The Nece shotchete B
and shotcrete C were produced using a Hobart mixer
with a capacity of 120 liters and pumped with a
squeeze pump.
Proceedings of FraMCoS-7, May 23-28, 2010 and shotcrete C were produced using a Troodit linker
with a capacity of 120 liters and pumped with a
squeeze pump.
Proceedings of FraMCoS-7, May 23-28, 2010 with a capacity of 120 fiters and pumped with a squeeze pump.
Squeeze pump.
Proceedings of FraMCoS-7, May 23-28, 2010

4 TEST RESULTS OF SHOTCRETES ¹ TEST RESULTS OF SHOTCRETES

Since the tension test method for HPFRCCs had yet to be established by the time of this trial application, only compression and bending tests were conducted. Table 2 gives the compression and bending test results at an age of 1 month. Figure 4 shows the loaddisplacement (deflection) curves of bending specimens 10 by 10 by 400 mm in size measured during third-point flexural loading testing. The static moduli and flexural strengths of both HPFRCC shotcretes were lower and higher, respectively, than those of shotcrete C. Their compressive-to-flexural those of shotcrete C. Their compressive-to-flexural
strength ratios (fc/fb) were smaller than that of shotcrete C. The compressive strength and static modulus of HPFRCC shotcrete B were both higher than those of HPFRCC shotcrete A. In the flexural load-displacement curves of HPFRCC shotcretes A and B measured during third-point loading, the load increased as the displacement increased after the crack onset, clearly showing the so-called deflection-
hardoning properties. The grading loads of both hardening properties. The cracking loads of both HPFRCC shotcretes A and B in the bending testing were similar at around 13 kN , but both the maximum bending load and the displacement at the max-
1 10 UDEDGG abstracts D maximum bending load of HPFRCC shotcrete B were greater than those of HPFRCC shotcrete A. Explicitly and the state of the evolution of the exolution of the evolution of the ev Frame States and Bernards of HPFRCC shorteres A and the mass of the same of the same of the solution of the solution of the set of the solution of the set of the solution of the set of the solution of the solution of the Figure
Figure
4 TE Since
to be (only c
Table sults a
displamens
third-pmodul
shotcr those streng
creads than t load-d and B
increads harder
modul than t load-d and B
increads harder
mum imum
greate
mum imum
greate
funce: I La Construction of the http://www.com/default.com/default.com/default.com/default.com/default.com/default.com/default.com/d TCRETE

I for HPFI

of this tria

g tests we

g tests we

g tests we

g tests we

g testing

g testing

g testing

g testing

g testing

ths of bo

gher, resp

compressi

naller than

termicrea

te B wer

crete A. I

HPFRC e S OF
the the definition of the definition
of a computed of the computation
of a computation
of the definition of the definition
of the WAI
and d of the WAI
and d of the WAI
crack dation
opplicated e everated of the using m H ord oth ode T x e , je (f) PH erd he a pe t t o T = b) が の ps f f a T ite ac in e t n = h t n = b = h t n tt Copies in relitte autoreous, de sint tute . E rov Thi he dambor . Copies in relitte autoreous, de sint tute . E fter water je

CRETES

or HPFRC

this trial a

ests were

and bend

re 4 show

ize measu

testing.

of both

ize measu

testing.

of both

er, respect

ler than tl

strength

B were l

te A. In t

strength

te A. In t

per e Contenting in the retaination of the content of the co of was Source to the same of was Source to the complement of was Source to the complement of the same of the same of the same of the same of the was so the same of the complement of the complement of the complement of the d and the control of the co App

T R

App

T R

the testabl

mpr

2 giv an *i*

stabl

mme and *i*

ob by an *i*

and *i*

and *i*

stable and *i*

stable and than

yean

y ht Clickersharahatakenetha-L-Jerkhariennat CA - 1 U. vattene, norm e —— The Side of List such that the function of List of the function of the function of the function of ad yet
ation,
acted.
ast re-load-
speci-luring
static RCC
, than
static static shot-
action-
ation-
ation-
both maxi-
maxi-
were
TME the ction-
sting maxi-
were
TME imaxi-
action-
crack scope
ottom mina-
crack scope
ottom моры римся s at c r c d r c c l r c c l r l з — c d r v l c l s n r l с e a to be established by the time of this trial application, to the strain and bending tests were conducted. Table 2 gives the compression and bending test resolution and bending test resolution and bending test resolution an phylopersies and bending tests were conducted.
Table 2 gives the compression and bending test results at an age of 1 month. Figure 4 shows the loadsignement (deflection) curves of bending speci-
mens 10 by 10 by 400 mm in Table 2 gives the compression and bending test re-
members and point and bending test remement (deflection) curves of bending speci-
members 10 by 10 by 400 mm in size measured during
moduli modulity flexural conding sett sults at an age of I month. Figure 4 shows the load
displacement (deflection) curves of bending speci-
mens 10 by 10 by 400 mm in size measured during
third-point flexural loading testing. The static moduli and flexural st displacement (deflection) curves of bending speci-
mens 10 by 10 by 400 mm in size measured during
mens 10 by 10 by 400 mm in size measured during
hind-point flexural loading testing. The static
moduli and flexural strengt mens 10 by 100 y 400 mm in size measured during
mens 10 by 10 y 400 mm in size measured during theird, meant-
moduli and flexural loading testing. The static
moduli and flexural loading testing, expectively, than
there we third-point flexural loading testing. The static horizon
fimoduli and flexural sterengths of both HPFRCC
shotcretes were lower and higher, respectively, than
theored shotcrete C. Their compressive-to-flexural
strength rati moduli and flexu
shotcretes were lo
those of shotcrete
strength ratios (fc/
crete C. The c
modulus of HPFR
than those of HPFR
load-displacement
and B measured d
increased as the
crack onset, clearly
hardening propert
HPFRC いちともくしてしました International security of the control international research いちのみ stricture of the strict of e s がお 「i e n ie n i e l l l l l l l s 」 s , s 」 h a , as ti an n i a c c c - w zi "(ヾ w zi o _ ヽ c d zi d d l l _ ヽ d _ c _ p si n li a; a; p m j i ti e ヽ www.com

or single over the SCC

completed on the Scalar HD and Scalar HD and (fb)
completed completed completed and complete completed and controller in the set of F
c k w CA'
of cr and cof F
is welved and cof F
is welved and approaching the and approaching to the and the and the and the and the an c c s net I cot a c se c se c se c se c i c se c i c se c i c se c i c i c se c i c i c i c i c i c i c i c i c i verside the first properties of the first properties of the same o k gth 1
C. alus
thos disp
mased
same assed consacred interferent the HAN
FTE
Obse Mee surf
inter thin a ha ave surf
inter thin a ha alus
and brand that as app. above of solutions continuous of the complessive-to-rical rating
thrength ratios (fc/fb) were smaller than that of shot-
other contracted B were both higher
man those of HPFRCC shotcrete A. In the flexural
oad-displacemen t c r c r c r c r r n t ε c r c r n n ε c r c r n n ε c r c r n n e c r c r n n e c r c r n n e c r c r n n e modulus
than the
load-dis
and B n
increase
crack or
hardenir
merase
transform
where simum be
greater t
formular integration
5.1.1 M
wall sum
width h
since 2 In th
edge, sum the 2 In the
edge, sum membra
and crace
and crace contribution of the discussion of the disc of Hristandal Contracts of H
see of H
alaceme easured
a state that a the set, clear proper
shoter nilar at nding lo
and hand those NGES CR APP!
ervation
ercoat
face obs
are also
are also
also a for cracking 2 yes in th it of the task of the control to the second of the second of the second of the second to the second the second to the second the second to the second REC shoctete B were boun inginer

FFRCC shotcette A. In the flexural

tr curves of HFFRCC shotcretes A

during third-point loading, the load

during third-point loading, the load

during third-point loading, the load

dur man inose of **FIFFRCC** subortee A. In the nexural
ioad-displacement curves of HPFRCC shotcretes A monder and B measured during third-point loading, the load
increased as the displacement increased after the cancel cricack bacac-uspacement curves on FIFFNCC subcuctes And B measured during third-point badain, the load increased as the displacement increased after the displacement increased after the hardening properties. The cracking loads of and B measured during time-pincreased as the displacement
creack onset, clearly showing the
hardening properties. The cra
hardening properties and B if
were similar at around 13 kN
mum bending load and the disp
imum bendin r v c r r r r v c r v d r v d v r v r r r v t) r v d r v d r v d r v d r v d r v d r v d r v d r v d r v d r properties. The cracking loads of
hoterates A and B in the bending to \blacksquare Elearly showing the so-called dell-
roperties. The cracking loads o \overline{a} $rac{1}{2}$

5 CHANGES OF WALL SURFACE OVER TIME AFTER APPLICATION

5.1 *Observation of cracks and others*

5.1.1 *Method of crack observation and acrylic overcoat*

Wall surface observation has been carried out at regular intervals after application, including visual observation of cracks using a crack scale. The crack width has also been measured using a microscope since 2 years after application.

In the acrylic-coated area 2 m from the bottom edge, such defective events as blistering, delamination, and cracking began to increase in the coating membrane 2 years after application. Delamination and cracks in the coating membrane became so apparent as to mar the aesthetic appearance by 4 years after application. The uncoated area also became so the displace

HPFRCC

FRCC sho

L SURFA

DN

ks and oth

bservation

has been

cation, in

g a crack

easured us

ation.

area 2 m

nts as bli

to incre

g membra

hetic apper

hetic apper

coated are e loads of
bending t
both the
ent at the
ete A.
ete A.
Electrical contracts are also the principal contract of
the contract of the principal calls in the contract of the contract of the contract of the contract of the contr s. The clack
is A and B in th
and 13 kN, bu
and the displace
of HPFRCC shot
MALL SURFA
ATION
wALL SURFA
ATION
cracks and oth
ack observation
ation has been
application, incusing a crack
n measured us
pplication, incusing a propertive
shotcrete:
lar at arc
ling load
ding load
an those of
GES OF
'APPLIC
rvation of
thod of crice
croat
ce observals after
also bee
ars after a acrylic-cc
defective
cracking
2 years
in the community of the cation.
T were si

num b

mum b

greater

5 CHA

AFT

5.1 Ob

AFT

5.1 Ob

65.1.1 M

o

5.1.1 M

o

1 Wall su

allar int

servatic

width h

lince 2

In the senge, su

ion, amembra

amembra

and cra

after apper いいしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう ちょうしょう しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ extraxient

axient

gegreback

for naing

interative scribes CHANGES OF WALL SU
AFTER APPLICATION
Observation of crack obser
overcoat
11 surface observation has
r intervals after applicatio
vation of cracks using a
lth has also been measur
ce 2 years after application
In the acr c RFACE
 d others
 ation ar

been can
 n, inclue

crack sc

d using

2 m fre

s blister

ncrease

lication

mbrane

appeara

d area : s il a ridia con la a OVER TIME
 d acrylic

ried out at reg-

ing visual ob-

ale. The crack

a microscope

om the bottom

ing, delamina-

in the coating

Delamination

became so ap-

nce by 4 years

lso became so 5 CHANGES OF WALL SURFACE OVER TIME
AFTER APPLICATION
5.1 *Observation of cracks and others*
5.1.1 *Method of crack observation and acrylic*
overcoat
Wall surface observation has been carried out at reg-
ular intervals 5 CHANGES OF WALL SURFACE OVER TIME
AFTER APPLICATION
5.1 *Observation of cracks and others*
5.1.1 *Method of crack observation and acrylic*
overcoat
Wall surface observation has been carried out at reg-
uservation of c AFTER APPLICATION
5.1 *Observation of cracks and others*
5.1.1 *Method of crack observation and ac*
overcoat
Wall surface observation has been carried
ular intervals after application, including
servation of cracks using 5.1 *Observation of cracks a*
5.1.1 *Method of crack obse*
overcoat
Wall surface observation ha
ular intervals after applicati
servation of cracks using a
width has also been measu
since 2 years after applicatio
In the a S.1.1 *Method of crack observation and acrytic*
overcoat
Wall surface observation has been carried out at reg-
ular intervals after application, including visual ob-
servation of cracks using a crack scale. The crack
width *overcoat*
Wall surface observation has been carried out at regular intervals after application, including visual observation of cracks using a crack scale. The crack width has also been measured using a microscope since wall surface observation has been carried out at regular intervals after application, including visual observation of cracks using a crack scale. The crack width has also been measured using a microscope since 2 years afte duar intervais after application, including visual ob-
servation of cracks using a crack scale. The crack
width has also been measured using a microscope
since 2 years after application.
In the acrylic-coated area 2 m from servation of cracks using a crack scale. The crack
width has also been measured using a microscope
since 2 years after application.
In the acrylic-coated area 2 m from the bottom
edge, such defective events as blistering, width has also been measured using a microscope
since 2 years after application.
In the acrylic-coated area 2 m from the bottom
edge, such defective events as blistering, delamina-
tion, and cracking began to increase in t since 2 years after application.
In the acrylic-coated area 2 m from the bottom
edge, such defective events as blistering, delamina-
tion, and cracking began to increase in the coating
membrane 2 years after application. In the acrylic-coated are
edge, such defective evention, and cracking began t
membrane 2 years after a
and cracks in the coating p
parent as to mar the aesthe
after application. The unco t trap
インター dra ion, and cracking began to increase in the coating
nembrane 2 years after application. Delamination
nd cracks in the coating membrane became so ap-
arent as to mar the aesthetic appearance by 4 years
fter application. The a
Fa and cracks in the coating inenforance became so apparent as to mar the aesthetic appearance by 4 years after application. The uncoated area also became so the temperature of the heat conduction. The uncoated area also became so solution.

dirty that cracks were difficult to define. For this reason, the area from the bottom edge up to a level 2.5 m above was cleaned with a water jet 4 years after application with the aim of improving the aesthetic appearance of the coated area and facilitate crack measurement. Figure 5 shows the appearances before and after treatment with a water jet.

5.1.2 *Crack mapping*

Cracks were marked with chalk in the range between 1 m above (uncoated) and 1 m below (coated) the level 2 m from the bottom edge. These marks were then photographed with a digital camera and made into a crack map by image analysis. Such a crack map was produced 1, 3, and 5 years after application. Figure 6 shows the appearances of the retaining wall surface and the crack maps.

5.1.3 *Up to 1 year after application*

In Block 9 repaired with shotcrete C, fine cracks have been observed since 1 month after application. A continuous long crack in the vertical direction approximately 4.5 m in length was recognized 3 months after application. Map cracks occurred all over the block 10 months after application. In all blocks repaired with shotcretes A and B, fine cracks with a width of not more than 0.05 mm were found 10 months after application.

One year after application, fine mesh cracks were observed in all blocks repaired with all shotcretes. Greater numbers of cracks at smaller intervals were observed in shotcretes A and B than in shotcrete C. In regard to the acrylic-coated areas, cracks were scarcely found in shotcretes A and B, whereas cracks were observed in shotcrete C. This is presumably because wide cracks that the coating film cannot follow occurred in the area repaired with shotcrete C. Dirtiness on shotcretes A and B was slightly more obvious than on shotcrete C but not to an extent that obvious than on shotcrete C
is aesthetically problematic.

5.1.4 *3 years after application*

Three years after application, larger numbers ofcracks than 2 years before were found in the blocks repaired with HPFRCC shotcrete A (Blocks 1 to 4) and shotcrete C (Block 9). In the blocks repaired with HPFRCC shotcrete B (Blocks 5 to 8), however, the numbers of cracks were smaller than those 2 years earlier. This is presumably because in shotcrete B with a higher fiber content than shotcrete A, more fibers were exposed to the air, being more prone to surface contamination with dust and microbes in the atmosphere, which hid most cracks on the surface of shotcrete B. This can also be inferred from the color

Figure 6. Appearances of wall surface and crack maps.

of shotcrete B, which was darker than those of other shotcretes (Fig. 6 (b)).

Three years after application, cracks were also found in the coated areas of shotcretes A and B. The number of cracks was smaller in shotcrete B than in shotcrete A.

5.1.5 *5 years after application*

As stated above, the area from the bottom edge to a level 2.5 m above was cleaned with a water jet 4 years after application to improve the aesthetic appearance of the area coated with acrylic and facilitate pearance of the area coated with acrylic and facilitate crack measurement. Five years after application, numerous cracks were observed in shotcretes A and B in the area uncoated with acrylic and cleaned with a water jet (the area between 2 and 2.5 m from the

bottom edge). On the other hand, most cracks were blocked up with microbes and dirt, making visual observation difficult, in the rest of the uncoated area, which was not cleaned with a water jet (the area between 2.5 and 3 m from the bottom edge). Cracks were readily observed on the surfaces of shotcrete C regardless of waterjetting. As described later,
slightly wider cracks tended to occur at slightly lar-
ger intervals in the coated area than in the uncoated regardless of waterjetting. As described later,
slightly wider cracks tended to occur at slightly larsughtly which clacks tended to becur at slightly larger intervals in the coated area than in the uncoated area of all blocks. $\frac{1}{2}$ 1 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 11 $\frac{1}{2}$ 10 $\frac{1}{2}$ 11 $\frac{1}{2}$ 11 $\frac{1}{2}$ 11 $\frac{1}{2}$ 12 $\frac{1}{2}$ 1 ht.
e
a
q occur at s
than in th
h over tim
ack width
exeres means after e $\frac{1}{100}$ and the critical contracts to coal the critical of $\frac{1}{100}$ and $\frac{1}{100}$ an coated
ed us-
cation

5.2 *RChanges in the crack width over time* ⎢ ⎣

5.2.1 *Methods of measuring crack width*

The crack widths on the surface were measured using a microscope, beginning 2 years after application $\frac{d\mathbf{r}}{d\mathbf{r}}$ idth over
crack wid
2 years aft
9 years aft i

 $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$

(c) Acrylic overcoat and changes in cracks over time. concrete (C) Acrylic overcoat and changes in cracks over time.
Figure 7. Results of crack width measurement.
Proceedings of FraMCoS-7, May 23-28, 2010 1

Figure 7. Results of crack width measurement. (c) Acrylic overcoat and changes in cracks over time.
Figure 7. Results of crack width measurement.
Proceedings of FraMCoS-7, May 23-28, 2010 1 Figure 7. Results of crack width measurement.
Proceedings of FraMCoS-7, May 23-28, 2010 1

 $\frac{1}{5678}$ - $\frac{6}{78}$ $\begin{bmatrix} 1 \\ 1 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \end{bmatrix}$

. $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

by the following methods:

Method 1: Draw a horizontal line 900 mm from the left edge of each block at a specified level and measure the crack widths of all cracks across that line.

Method 2: Randomly select 40 cracks from the uncoated area 1.8 m in width of each block between the levels 2 m and 2.5 m from the bottom edge and measure their widths in situ.

Crack widths were measured 2, 3, and 5 years after application as follows:

1) 2 years after application: Method 1 at a level of 2.05 m and Method 2

2) 3 years after application: Method 1 at a level of 2.05 m

3) 5 years after application: Method 1 at levels 1.95, 2.05, and 2.55 m

Figure 4 shows the results of crack width measurement. The horizontal axis represents the number of cracks measured. The crack width measurements are arranged in descending order, with the widest crack being plotted at the left end.

5.2.2 *Comparison between measurement methods*

Figure 7(a) shows the results of crack width measurement 2 years after application by methods 1 and 2. The cracks in blocks repaired with HPFRCC shotcretes A and B (Blocks 1 to 8) were 0.1 to 0.15 mm in width at the largest, mostly being fine cracks with a width of less than 0.1 mm. In Block 9 repaired with shotcrete C, the crack width measurements were similar to those in HPFRCC-repaired blocks by Method 1, but the maximum crack width was around 0.3 mm by Method 2, with the width of more than 40% of the cracks being not less than 0.1 mm. The difference of the measurement method may have affected the crack width measurements of shotcrete C, which partially contained large cracks. While Method 2 can emphasize large crack widths, the selection of cracks is subject to the operator's arbitrary decision. It was therefore decided to adopt Method 1 for measurement 3 and 5 years after application. Note that shotcrete C included apparent "through cracks" showing traces of water leakage from the backside.

5.2.3 *Changes in crack width over time*

Figure 7(b) shows the changes in the crack width over time measured by Method 1 on a horizontal line 900 mm in length from the left edge of each block at a level of 2.05 m. Since it was difficult to measure the crack width in Blocks repaired with HPFRCC shotcrete B (Blocks 5 to 8) due to contamination, only crack widths in blocks repaired with shotcretes A and C (Blocks 1 to 4 and Block 9) were measured 3 years after application. Five years after application, however, the crack widths of all blocks were measured, as surface contamination was cleaned with a water jet a year earlier.

Figure 8. Effects of steel reinforcement and crack treatment.

No increase in the crack width over time was observed in all shotcretes, with most crack widths remaining around 0.02 to 0.1 mm. Figure 7(b) shows no large crack widths in shotcrete C, because no large local cracks were included in the measurement range.

5.2.4 *Acrylic overcoat and changes in cracks over time*

Figure 7(c) shows the results of crack width meas-
uramont in (a) coated areas closured with a water jet a reginal α is the the results of trust when means (along the line at a level of 1.95 m); (b) uncoated areas cleaned with a water jet (along the line at a level of 2.05 m); and (c) uncoated areas not cleaned with a water jet (along the line at a level of 2.55 m).

As stated above, the crack widths in coated areas tended to be greater than those in uncoated areas. In areas uncoated and not cleaned with a water jet, the widths of most cracks were less than 0.1 mm regardless of the shotcrete type. In regard to HPFRCC shotcretes A and B, this may be because the cracks were measured narrower because of being blocked up with microbes and dirt. In regard to shotcrete C, this may be because large cracks were outside of the measurement range by the adopted measurement method. The fact that crack width measurement in shotcrete C is affected by the measurement method is also recognized in the graphs for uncoated and uncleaned areas in Figure 6, in which few cracks are visually observable in shotcretes A and B, whereas many cracks are observed in shotcrete C. Thus cracks in shotcrete C should have been observed over a wider range. No.3 (No.4) (Welco be

Head (None)

Head (None)

Head (None)

Head be

Head be

Head be

The cross width over time was ob-

the cross width over time was ob-

cneces, with most crack widths re-

cneces, with most crack The proportional coefficient coefficient coefficient of the metal coefficient coefficient coefficient of the metal state of the st mother and the care of the measurement and care of the measurement and care and the care of the care o For the crack width over the relationship of the relationship of the relation of the measurement range.

For **Example 1972**
 Example 1972). The crack width over time was obtretes, with most crack widths re-
 $.02 \text{ to } 0.1 \text{ mm}$. Figure 7(b) shows no increte C, because no large lo-

cludd in the measurement range.

Frocat and c that the crack width over the variation in the crack width over the crack width over the crack width retrets. with most crack width retrets with most crack width retrets with measurement range.

First a creative C, becaus volume of content and content and content and content and content processes, with most creat widths result in the crack width over time was obtacted in the measurement ange. The sign of content content width measurement r divergence of the moisture of the moisture of the moisture of the moist creation (10 cm). All the crack width over the crack widths is in shotcrete c, because no large 1 cluded in the measurement range.

Figure 7(b) shows ter structure of the contract the structure of the s reinforcement and crack treatment.

The crack width over time was ob-

tests, with most crack widths re-

to 0.1 mm. Figure 7(b) shows no

shotcrete C, because no large lo-

ded in the measurement range.
 pat and changes All I de Luis de Prudit ristica at Langia e Da d Franchielm and crack treatment and crack treatment and crack widths reto 0.1 mm. Figure 7(b) shows no soluted in the measurement range. out and changes in cracks over he results of crack width measurement range. out and c **Example 19**

Lead reinforcement and crack treatment.

the crack width over time was ob-

0.2 to 0.1 mm. Figure 7(b) shows no

in shotcrete C, because no large lo-

cluded in the measurement range.
 ercoat and changes in teel reinforcement and crack treatment.

the crack width over time was ob-

treretes, with most crack widths re-

0.2 to 0.1 mm. Figure 7(b) shows no

si in shotcrete C, because no large lo-

cluded in the measurement rang teel reinforcement and crack treatment.

the crack width over time was ob-

tcretes, with most crack widths re-

co.02 to 0.1 mm. Figure 7(b) shows no

is in shotcrete C, because no large lo-

cluded in the measurement ran teel reinforcement and crack treatment.

the crack width over time was ob-

toretes, with most crack widths re-
 $.02$ to $.0$. I mm. Figure 7(b) shows no

si in shotcrete C, because no large lo-

cluded in the measurement the crack width over time was ob-
tcretes, with most crack widths re-
.02 to 0.1 mm. Figure 7(b) shows no
in shotcrete C, because no large lo-
cluded in the measurement range.
Proced are the measurement range.
From an cha the crack width over time was ob-
trectes, with most crack widths re-
(02 to 0.1 mm. Figure 7(b) shows no
is in shotcrete C, because no large lo-
cluded in the measurement range.
Procent and changes in cracks over
s th tcretes, with most crack widths re-
o2 to 0.1 mm. Figure 7(b) shows no
in shotcrete C, because no large lo-
cluded in the measurement range.
ercoat and changes in cracks over
stated areas cleaned with a water jet
a leve .02 to 0.1 mm. Figure 7(b) shows no sin shotcrete C, because no large lo-
cluded in the measurement range.
eroot and changes in cracks over s the results of crack width meas-
ated areas cleaned with a water jet alevel o is in shotcrete C, because no large lo-
cluded in the measurement range.
ercoat and changes in cracks over
s the results of crack width meas-
ated areas cleaned with a water jet
a level of 1.95 m); (b) uncoated ar-
a wa cluded in the measurement range.
 ercoat and changes in cracks over
 s the results of crack width meas-

ate a level of 1.95 m); (b) uncoated area in what into the interped

2 a level of 1.95 m); (b) uncoated area

a ercoat a

s the readed are

a level

a water

c) uncoa

he line a

ve, the c

ve, the c

ter than

d not c

acks were ty

B, this

s and di

use large

by

t that cr

fected b

in the Figure

in she obser

e.

e.

e.

e.
 ω have viid in Kit con … nit angin ν γ δη σ a water jet (along the line at a level
c) uncoated areas not cleaned with a
he line at a level of 2.55 m).
We, the crack widths in coated areas
ter than those in uncoated areas. In
d not cleaned with a water jet, the
acks c) uncoated areas not cleaned with a
he line at a level of 2.55 m).
See, the crack widths in coated areas
teer than those in uncoated areas. In
d not cleaned with a water jet, the
racks were less than 0.1 mm regard-
crete he line at a level of 2.55 m).

We, the crack widths in coated areas

ter than those in uncoated areas. In

the racks were less than 0.1 mm regard-

crete type. In regard to HPFRCC

B, this may be because the cracks

sarr be, the crack widths in coated areas
ter than those in uncoated areas. In
a not cleaned with a water jet, the
acks were less than 0.1 mm regard-
crete type. In regard to HPFRCC
B, this may be because the cracks
harrower be than those in uncoated areas. In
not cleaned with a water jet, the
ss were less than 0.1 mm regard-
te type. In regard to HPFRCC
this may be because the cracks
cower because of being blocked
od dirt. In regard to shotcret nd not cleaned with a water jet, the racks were less than 0.1 mm regard-
crete type. In regard to HPFRCC
B, this may be because the cracks
and rower because of being blocked
a sand dirt. In regard to shotcrete C,
use large racks were less than 0.1 mm regard-
crete type. In regard to HPFRCC
B, this may be because the cracks
arrower because of being blocked
as and dirt. In regard to shortcrete C,
sue large cracks were outside of the
nge by th crete type. In regard to HPFRCC
B, this may be because the cracks
anrower because of being blocked
s and dirt. In regard to shotcrete C,
use large cracks were outside of the
ge by the adopted measurement in
that crack widt B, this may be because the cracks
aarrower because of being blocked
s and dirt. In regard to shotcrete C,
sue large cracks were outside of the
nge by the adopted measurement
t that crack width measurement in
fected by the narrower because of being blocked
s and dirt. In regard to shotcrete C,
suse large cracks were outside of the
ge by the adopted measurement in
that crack width measurement in
fected by the measurement method
in the graphs is and dirt. In regard to shotcrete C, use large cracks were outside of the graphing by the adopted measurement in fected by the measurement method in the graphs for uncoated and un-
Figure 6, in which few cracks are ble i use large cracks were outside of the
nge by the adopted measurement
t that crack width measurement in
fected by the measurement method
in the graphs for uncoated and un-
Figure 6, in which few cracks are
ple in shotcretes isotely the adopted measurement
t that crack width measurement in
fected by the measurement method
d in the graphs for uncoated and un-
Figure 6, in which few cracks are
ble in shotcretes A and B, whereas
e observed in sho t that crack width measurement in
fected by the measurement method
1 in the graphs for uncoated and un-
Figure 6, in which few cracks are
ple in shotcretes A and B, whereas
e observed in shotcrete C. Thus
tet C should have fected by the measurement method
d in the graphs for uncoated and un-
Figure 6, in which few cracks are
ble in shotcretes A and B, whereas
e observed in shotcrete C. Thus
ete C should have been observed
e.
el reinforcemen 1 in the graphs for uncoated and un-
Figure 6, in which few cracks are
ble in shotcretes A and B, whereas
e observed in shotcrete C. Thus
ete C should have been observed
e.
el reinforcement and crack treat-
repair, crack Figure 6, in which few cracks are
ble in shotcretes A and B, whereas
e observed in shotcrete C. Thus
ete C should have been observed
e.
el reinforcement and crack treat-
repair, cracking was investigated in
reinforcemen be in shotcretes A and B, whereas
e observed in shotcrete C. Thus
ete C should have been observed
e.
el reinforcement and crack treat-
repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of e observed in shotcrete C. Thus
ete C should have been observed
e.
el reinforcement and crack treat-
repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010

5.3 *Effects of steel reinforcement and crack treatment*

Three years after repair, cracking was investigated in relation to steel reinforcement and crack treatment. e.

sel reinforcement and crack treat-

repair, cracking was investigated in

reinforcement and crack treatment.

Proceedings of FraMCoS-7, May 23-28, 2010 read reinforcement and crack treat-
repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 *el reinforcement and crack treat*-
repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 el reinforcement and crack treat-
repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 repair, cracking was investigated in
reinforcement and crack treatment.
Proceedings of FraMCoS-7, May 23-28, 2010 Figure 8 shows crack maps of HPFRCC shotcrete A and shotcrete C 3 years after application. Only large cracks judged as being 0.1 mm or wider by a crack scale are shown in the figure. As is seen from Blocks 1 and 9 having welded bar mesh, when repaired with shotcrete C, cracks with a width of 0.2 mm or more occur in the shotcrete directly above the underlying cracks in the retaining wall concrete, while smaller cracks 0.1 to 0.2 mm wide developed between these wider cracks. When repaired with HPFRCC shotcrete A, no cracks related to underlying cracks were found, but predominant cracks ran in the vertical and horizontal directions at intervals similar to those of horizontal directions at intervals similar to those of the embedded welded bar mesh. When reinforced with expanded metal, cracks resembling the mesh shape developed. Though steel reinforcement was placed to finely distribute cracks in the HPFRCCs, its effect was not appreciable partly because of the small tensile deformation of the HPFRCC layer. rigues a shows clausar angles on thr rive C subsette ra

relation of solutions and solutions of the match in the form of the particle and shorested is the particle and 9 having wells are accels in degree and the match in t cs1scccvcfbtvs12.its cnervcttube そcsfs71 le are shown in the figure. As is seen from Blocks
as the measure in the figure and place as the smalled of the real of the
state C, cracks with a width of 0.2 mm or more with a width of 0.2 mm or more
take in the shoctrot l and 9 having welded har mesh, when repaired with
a noid both an explodition more concur in the shottered circle directly above the underlying
creats in the relations with correct directly and corrects. When repaired
vid shottere C, eracks with a width of 0.2 mm or more more
soccur in the shottere directly above the underlying reacks in the retaining wall concrete. while smaller cracks 0.1 to 0.2 mm wide developed between these wider crac occur in the shottere directly above the underlying wave concert
cracks in the retaining wall concrete. while smaller
violer cracks O. to 0.2 mm wide developed between these active
A, no cracks related to underlying cracks reacks in the realiting wall concrete, while smaller cracks 0.1 to 0.2 mm wide developed between these videor cracks. When repaired with HPFRCC shot-
cracks 0.1 to 0.2 mm wide developed when the variation cracks were A, no

In Block 4 where the cracks in the retaining wall concrete were sealed beforehand with a sealant, the number of cracks with a width of 0.1 mm or more exceeded that in Block 3 having no steel reinforcement. This tendency was clearer in the area coated with acrylic. Though cracks in the retaining wall were sealed beforehand with the aim of finely distributing cracks in the HPFRCC, the effect of sealing turned out to be not clear partly because of the small tensile deformation of the HPFRCC layer similarly to steel reinforcement to steel reinforcement. cracks 0.1 to 0.2 mm wide developed between these concretes. When repaired with HPFRCC shot-
crete A, no cracks related to underlying cracks were contoucly but predominant cracks ran in the vertical and
noticonal direction wider cracks. When repaired with
crete A, no cracks related to undeb
found, but predominant cracks ranchorizontal directions at intervals
the embedded welded bar mesh
with expanded metal, cracks responsible parallocal meta and, but predominant cracks ran in the vertical and
izontal directions at intervals similar to those of
embedded welded bar mesh. When reinforced
embedded welded bar mesh. When reinforced
pe developed. Though steel reinfor 上 H U C a H L C T H L C M C C C C C U C O H L C C C C C C C C C C C C C C C U C C C C C C C C C C C C In expanded metal, cracks resembling the mesh
pe developed. Though steel reinforcement was
eed to finely distribute cracks in the HPFRCCs,
effect was not appreciable partly because of the
HETCCs, all tensile deformation of shape developed. Though steel reinforcement was
placed to finely distribute cracks in the HPFRCCs, the HBCCs, then
small tensile deformation of the HPFRCC layer.
In Block 4 where the cracks in the retaining vall
oroncerte placed to huely distribute cracks in the HPFRCCs,
its effect was not appreciable partly because of the
mail tensile deformation of the HPFRCC layer.
In Block 4 where the cracks in the retaining wall
concrete were scaled be is effect was not appreciable partily because of the
small tensile deformation of the HPFRCC layer.
In Block 4 where the cracks in the retaining wall
concrete were sealed beforehand with a scialant, the
number of racks wit In the IBI deformation of the IHPHRCC layer.
In Block 4 where the cracks in the relating wall
concrete were sealed beforehand with a sealant, the
number of cracks with a width of 0.1 mm or more
axexceded that in Block 3 ha In Block 4 where the cracks in the retaining wall
concrete were sealed beforehand with a sealant, the
number of cracks with a width of 0.1 mm or more
exceeded that in Block 3 having no steel reinforce-
ment. This tendency concrete were seeded beforehand with a sealant, the concrete were secoeded that in Block 3 having no steel reinforce-
number of cracks with a width of 0.1 mm or more
exceeded that in Block 3 having no steel reinforce-
ment number of cracks with a width of 0.1 mm or more
exceeded that in Block 3 having no steel reinforce-
ment. This tendency was clearer in the area coated
with acrylic. Though racks in the relating wall
were sealed beforehand execeed that in Block 3 having no steel reinforce-
ment. This tendency was clearer in the area coated
with acrylic. Though cracks in the retaining wall
were sealed beforehand with the aim of finely dis-
tirbuting cracks in ment. This tendency was clearer in the area coated ment. This tendency was cleared beforehand with the aim of finely distributing cracks in the HPFRCC, the effect of sealing wall were sealed beforehand with the aim of fine

6 CONCLUSIONS

A surface of a concrete gravity retaining wall having cracks due to alkali-silica reaction was repaired by spraying fiber-reinforced cementitious composites forming multiple fine cracks (HPFRCCs) for landscaping and subjected to observation over five years. The following results were obtained: with arcylic. Though cracks in the relationg wall
were sealed beforehand with the aim of finely distributing cracks in the HPFRCC, the effect of sealing
turned out to be not clear partly because of the small
turned out to were se:
tributing
turned o
tensile (consile different of the set of the spraying
forming
scaping
The foll:
Proceedin $\frac{1}{2}$ and $\frac{1}{2}$ irry
ing
by
ites
ars. ようしょう こうしょう こうしょう アー・プレート しんしょう こうしょう アー・プレーター 6 CONCLUSIONS

A surface of a concrete gravity retaining wall having

creacks due to alkali-silica reaction was repaired by

spraying fiber-reinforced cementitious composites

forming multiple fine cracks (HPFRCCs) for la **SECUNCLUSIONS**
A surface of a concrete gravity retaining wall having
cracks due to alkali-silica reaction was repaired by
spraying fiber-reinforced cementitious composites
forming multiple fine cracks (HPFRCCs) for land-
 A surface of a concrete gravity retaining wall having
cracks due to alkali-silica reaction was repaired by
spraying fiber-reinforced cementitious composites
forming multiple fine cracks (HPFRCCs) for land-
scaping and subj A surface of a concrete gravity retaining wall heracks due to alkali-silicar reaction was repair
paraxing fiber-reinforced cementitious comp
forming multiple fine cracks (HPFRCCs) for
scaping and subjected to observation o cks due to alkali-silica reaction was repaired by
aying fiber-reinforced cenentitious composites
ming multiple fine cracks (HPFRCCs) for land-
ping and subjected to observation over five years.
Following results were obtai spraying Ther-reinforced cementitious composites
forming multiple fine cracks (HPFRCCs) for land-
scaping and subjected to observation over five years.
The following results were obtained:
Proceedings of FraMCoS-7, May 23forming multiple time cracks (HPFRCCs) for land-scaping and subjected to observation over five years.
The following results were obtained:
Proceedings of FraMCoS-7, May 23-28, 2010 scaping and subjected to observation over five years.
The following results were obtained:
Proceedings of FraMCoS-7, May 23-28, 2010 The following results were obtained:
Proceedings of FraMCoS-7, May 23-28, 2010

1) Crack widths were mostly limited to not more than 0.1 mm in HPFRCC shotcretes A and B 5 years after application. The use of the HPFRCCs for surface repair thus had the expected effect of improving the aesthetic appearance of the landscape.

2) Because of the fine cracks of both shotcretes A Let be a the tracks of both shotcless A
and B, most cracks were blocked up with microbes
and dirt, making visual observation difficult, by 3
and 5 years after the application of shotcretes A and and B, most cracks were blocked up with microbes
and dirt, making visual observation difficult, by 3
 $\frac{1}{2}$ and 5 years after the application of shotcretes A and B, respectively.

3) Steel reinforcement was placed in the HPFRCCs, and cracks in substrate concrete were In FRCCs, and cracks in substract concrete were
sealed with a sealant to weaken the bond with the HPFRCC near the cracks, with the aim of finely distributing the cracks in the HPFRCCs, but no appreciable effects were obtained partly because of the small tensile deformation of the HPFRCC layer. nforcement was placed
cracks in substrate concret \mathbf{a} − 3, respectively.

3) Steel reinforcement was placed

→ DEPCCs and cracks in substrate congr *i* force

4) An acrylic overcoat on the HPFRCCs hid their fine cracks for approximately 2 years. However, the acrylic coating then deteriorated, with delamination and cracking increasing, and began to impair the aesthetic appearance by 4 years after application. Thus the acrylic overcoat on the HPFRCCs had an appearance-improving effect only for a short period. than 0.1 mm in HPFRCCs bracteries A and B 5 years
fare application. The use of the HIPFRCCs for surface repair thus had the sexpected effect of improving
face repair thus had the sexpected effect of improving
2) Because o fine rapplication. The use of the HPFRCCs for sum-
finde repeate from the heathed effect of improving the sesthetic opperance of the limit
scepter. The content in the sestent of the procedure of the method of shorter and
 reads and deviation of a control and deviation of a control and deviation of B, respectively and D and D B, respectively in a control of the control of B. Control of Rokugo App ber ing No. Control and Rokugo App ing No. c D1 O U C U H d 11 I C u c H d 11 U C st D1 A3 N p , i fat a a p c i H d 11 U C st D1 A3 N p , i fat a a p c was pla
ubstrate c
ken the the time
PFRCCs, partly be
the HPFRCs, partly be
the HPFR / 2 years.
tted, with after app.
PFRCCs h
after app.
PFRCCs h
r a short p
Design and
forced Cen
PFRCC). C
besign and
forced Cen
PFRCC). C en to with the contribution of a contribu acks
nt td
in t cobt
in a obt
obtatio or or a datio
croxir a det or or and atio
crace E
crace E
 $\frac{1}{2}$ crace E
Perfor and A, No.
Hiro,
On Hiro, No. e d w x f c c d r v , h m ar H .o m N ig w o a c c) i 2(c et of for the s what is a contribution of the contribution o ation diff

in of shotcr

vas place

strate con

in the bon

in the aim of

RCCs, bu

artly beca

HPFRCC

years. How

HPFRCC

years. How

d, with de

gan to implican

step and Coment

RCC). Con

step Sec_JSCE.pd

colvago, t s a it [] d t _ ry as [] d r n H e h -v e it r visua

isua

isua
 G t, m
ears
ectiv Stee
ectiv Stee
CCs, with
g unified and the effect
and a coal coal phase of Perl Multi SCI
Perl Multi SCI
Perl Multi SCI
Art of DO7. 1, Sal
Art of posite, Sal
Art of Perl Multi SCI
HPFF, 9, Sal
ticatic diff http://www.com/divideo.com/divideo.com/divideo.com/divideo.com/divideo.com/divideo.com/divideo.com/divideo.com/ ectors of the contract of the contract of the contract of contract of the contract of the contract of w A and

u the were

were the the y dis-

uppre-

interference the left their

their their

e aes-

Thus

operation of

posites

tion of posites
 $\frac{1}{2009}$.

tate of Dement

crack-

crack-

crack-

(b). 42, (1) b a4 n b し x c l l l g l g l ji g d l l d l d d b id c tributing the cracks in the HPFRCCs, but no appreciable effects were obtained partly because of the small ensile deformation of the HPFRCC layer.

4) An acrylic overcoat on the HPFRCCs hid their cracks for approximately 2 ciable effects were obtained partly because of the small tensile deformation of the HPFRCC layer. A) An acrylic overcoat on the HPFRCCs bid their fine cracks for approximately 2 years. However, the film cracks for approxi small tensile deformation of the HPFRCC hayer.

4) An acrylic overcoat on the HPFRCC layer.

4) An acrylic overcoat on the HPFRCCs hid their

fine cracks for approximately 2 years. However, the acrylic conting then determ 4) An acrylic overcoat on the HPFRCCs hid their
fine cracks for approximately 2 years. However, the fine cracks for approximately 2 years. However, the
dearning increasing, and began to impair the aes-
their eigheraric by fine cracks for approximately 2 years. However, the
acrylic coating then deteriorated, with delamination and cracking increasing, and began to impair the asset
ender dependent GPIFRCCs had an appear-
anne-improving effect acrylic coating then deteriorated, with delamination
and cracking increasing, and began to impair the aest-
matching increasing, and began to impair the aest-
metric coercoat on the HPFRCCs had an appearance-improving effe

REFERENCES

- JSCE. 2007. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC). Concrete Library 127, JSCE. /Concrete Engineering Series 82. http://www. ⎤ 127, JSCE. /Concrete Engineering Series 82. http://www.face.or.jp/committee/cocrete/e/hpfrcc_JSCE.pdf and cracking increasing, and began to impair the aesthetic appearance by 4 years after application. Thus
the there acylic overcoat on the HPFRCCs had an appearance-improving effect only for a short period.
REFERENCES 3007. thetic appearance
the acrylic overcoa
ance-improving eff
REFERENCES
ISCE. 2007. Recomment in Performance
with Multiple Fin
127, JSCE. /Conc
isce.or.jp/committed and T. Sakata, N., 1
Composite Resear
Journal, JCI, Vol.4
Rok f e (ri g 1 t 1 l 7 j 1 o t 1 t 1 l 7 j 1 o t s R s ji a A a S 3 i n p la d time records on the control of the contr ticidential distribution of the state of tect
ee/cc
ee/cc
Kuni Per
44, N
intecor
Japa n c in at t , rat at 1 ... rat 2 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 completed a red in a red of the completed and completed a red of the completed of the completed of the complete ϵ ESS comandele de la comande de la proporció de la comande de la comparabilitat de la comparabili $\begin{bmatrix} 1 \\ \end{bmatrix}$ e produit $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. ERE 2007
gh P M M M 7, JS
e.or.j
a,T., a Art mpo K.
plica is (HF Teir in 1990)
plica is (HF 1990). ance-improving effect only for a short period.

REFERENCES

SCE. 2007. Recommendations for Design and Construction of

High Performance Fiber Reinforced Cener tomposites

127, ISCE. /Concrete Engineering Series & 2. http: REFERI

ISCE. 200

High

with 1

127, J

jsce.or

Kanda,T.,

the A Comp

Journa

Rokugo I Applic

ber re

ing (H

No. 9, correct call of the call of t ENCES
7. Recom
Performan
Tultiple I
SCE. /Co
Sakata,N
1 ip/comm
siste Ress
I, JCI, Vo
4, Kanda
ations and forced C)
1197- 12 s mendations for Design and Construction of
ce Fiber Reinforced Cement Composites
increte Engineering Series 82. http://www.
ttee/cocrete/e/hpfrcc_JSCE.pdf
, Kunieda,M. & Rokugo,K. 2006. State of
arch and Structual Applicati ISCE. 2007. Recommendations for Design and Construction of

High Performance Fiber Reinforced Cement Composites

vith Multiple Fine Cracks (HPFRCC). Concrete Library

127, JSCE. /Concrete Engineering Series 82. http://www. ISCE. 2007. Recommendations for Design and Construction of
High Performance Fiber Reinforced Cement Composites
with Multiple Fine Cracks (HPFRCC). Concrete Library
127, ISCE. /Concrete Enginering Series 82. http://www.
Kan
- Sce.or.jp/committee/cocrete/e/npircc_JSCE.pdf
Kanda,T., Sakata,N., Kunieda,M. & Rokugo,K. 2006. State of the Art of Hight Performance Fiber Reinforced Cement the Art of Hight Performance Fiber Reinforced Cement

Composite Research and Structual Application, Concrete

Journal JCJ Vol 44 No. 3 3.10 $\frac{1}{2}$ Journal, JCI, Vol.44, No.3, 3-10.
- Rokugo K., Kanda T., Hiroshi Yokota H. & Sakata N. 2009. − ⎠ Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan, Materials and Structures, Vol. 42, No. 9, 1197- 1208. High Performance Fiber Reinform
with Multiple Fine Cracks (HPF
127, JSCE. /Concrete Engineerin
jsce.or.jp/committee/cocrete/e/hpfi
Kanda,T., Sakata,N., Kunieda,M. & 1
the Art of Hight Performance F
Composite Research and S , 3-10.
hi Yokota I
endations of
pposites with
Materials and the content of the content $\frac{1}{2}$ E.pdf

,K. 2006. Seinforced (

einforced (

blication, C.

& Sakata N.

ultiple fine

tructures, V. unieda, M. & Roki
Performance Fiber
Performance Fiber
h and Structual A, No.3, 3-10.
Hiroshi Yokota F
commendations of
nt composites with
pan, Materials an akata, N., K
of Hight I
te Researc
JCI, Vol.44
Kanda T.,
orced ceme
PRCC) in Ja
97- 1208. Comp Journ
Rokugo | Appli
ber re
ing (H No. 9 $\frac{2}{1}$ nen
1009
ack 42
42 $\frac{1}{2}$ and $\frac{1}{2}$ a ber reinforced cement compositing (HPFRCC) in Japan, Mater
No. 9, 1197- 1208.
 rc
te
i: $\frac{1}{2}$ and $\frac{1}{2}$ a gi
u ultiple fine crack-

ructures, Vol. 42,

vol. 42, ing (HPFRCC) in Japan, Materials and Structures, Vol. 42, No. 9, 1197-1208. $\frac{1}{2}$ froe $\frac{1}{2}$ free (evaporable) water content in content in content in content in content in concrete at $\frac{1}{2}$ froe (evaporable) water content in content in content in content in content in content in conte