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Abstract: The micropolar peridynamic lattice model for the simulation of plain and reinforced 
concrete structures is described and then demonstrated. It is found that the computational model is 
simpler than previous computational models for reinforced concrete, and more efficacious than 
existing computational methods for predicting the strength of reinforced concrete structures.  
 
 

1 INTRODUCTION 
The purpose of this paper is to demonstrate 

how the micropolar peridynamic lattice model 
(MPLM) can be used to predict the strength of 
reinforced concrete structures under quasistatic 
loading conditions. The MPLM has been 
introduced in [1]. 

In common behavioral regimes, continuum 
mechanics is an unsatisfactory model for 
reinforced concrete structures, because the 
concrete deformation, even prior to failure, is 
discontinuous. Silling’s peridynamic model [2] 
has not entirely discarded the continuum 
paradigm, because the material space 
continues to be idealized as continuous, and 
thus the original peridynamic model requires 
that further discretization decisions be made 
for the model to be computationally evaluated. 

We discard the continuum material concept 
completely, and regard the concrete as a 
discrete lattice of particles. By using close-
packed particle lattices in 1D, 2D and 3D, the 
MPLM has the potential to simulate the major 
features of quasibrittle materials, including 
elasticity, anisotropic damage, fracture, and 
even plasticity. Typically, lattice models have 
viewed the structure as a collection of beam or 
truss elements connected together at nodes (as 

with traditional truss- and beam-analogy 
lattice models). On the other hand, the MPLM 
views the structure as a collection of 
interacting point masses (as with the 
peridynamic and discrete element models). 
The material constitutive behavior is captured 
via inter-particle forces and moments that are 
functions of particle positions and velocities 
and their histories [3]. In the reference 
configuration, the MPLM uses a finite number 
of regularly-spaced interacting particles of 
finite mass, rather than an infinite number of 
infinitesimal particles as with peridynamics. 
Additionally, the MPLM is conceptually 
simpler than the original peridynamic model, 
and more general than the traditional beam-
lattice models, not to mention classical finite 
element methods. 

After defining the MPLM, a constitutive 
model for concrete is developed and 
calibrated, and its use is demonstrated using 
several two-dimensional example problems. 
Then, a model for reinforcing steel and a 
model for bond between the steel and the 
concrete is introduced. Finally, reinforced 
concrete beams are simulated and conclusions 
are drawn. 
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2 MICROPOLAR PERIDYNAMIC 
LATTICE MODEL (MPLM) 

Fig. 1 shows a 2D close-packed particle 
lattice. Each particle is spaced a distance, s, 
from its six nearest neighbors. 

 
Figure 1: Two-dimensional hexagonal lattice. 
 
The volume per particle is ∆𝑉 =  √3

2
 𝑠2𝑡 for a 

2D hexagonal lattice representing a flat plate 
of thickness, t. To represent a material with a 
mass density of ρ, each particle is endowed 
with a mass of ∆𝑚 =  𝜌∆𝑉. Assuming that each 
particle is a uniform solid sphere with radius, 
𝑟 ≈ 𝑠

2
, its mass moment of inertia, ∆𝐼, identical 

about all axes through the particle, is ∆𝐼 =
2
5
𝑚𝑟2. 

The particle lattice spacing, s, can 
reasonably be chosen as the material grain 
characteristic size (such as the maximum 
aggregate size for concrete). Alternately 
particle spacing, s, may be chosen based upon 
the requirement that the number of particles 
used for a particular problem not exceed the 
capacity of the computational resource. For a 
material like concrete, it makes no sense to 
allow the particle lattice spacing to be less than 
the aggregate size; the mesoscale of the 
material sets a lower bound on appropriate 
lattice particle spacing, s. Indeed, it makes no 
sense to define geometric features that are 
smaller than the aggregate size, as even if a 
structure with such small features could be 
constructed, these tiny features could hardly be 
considered as consisting of a spatially 
homogenous material. Thus, in contrast with 

traditional continuous R3 geometry, within the 
MPLM, a “perfectly sharp crack” and a 
“perfectly sharp corner” are meaningless 
features, impossible to express. Thus the 
MPLM is a suitable geometric model for 
materials with a grain size that is not too much 
smaller than the characteristic dimensions of 
the structure – and where powerful computers 
are available. 

With the material mass represented by 
particles in a lattice, Newton’s second law of 
motion is applied to each particle, i: 

 
∑ 𝑭𝒊𝒋
𝑁𝑖
𝑗=1 + 𝑭𝒆𝒙𝒕𝒊 = ∆𝑚𝒖̈𝒊, and  (1) 

 
∑ 𝑴𝒊𝒋
𝑁𝑖
𝑗=1 + 𝑴𝒆𝒙𝒕𝒊 =  ∆𝐼𝜽̈𝒊,  (2) 

 
where 𝑭𝒊𝒋 and 𝑴𝒊𝒋 are the force and moment 
vectors, respectively, exerted by particle j on 
particle i, 𝑭𝒆𝒙𝒕𝒊 and 𝑴𝒆𝒙𝒕𝒊 are the externally 
applied force and moment vectors, 
respectively, applied to the centroid of particle 
i, and  𝒖̈𝒊 and 𝜽̈𝒊 are the linear and angular 
acceleration vectors, respectively, of the 
centroid of particle i. 𝑁𝑖 is the number of 
particles, j, that are within the spherical 
neighborhood, whose radius is the “material 
horizon”, 𝛿, of particle i. With a close-packed 
lattice, and 𝛿 = 1.5𝑠, 𝑁𝑖 is six (or less) for a 
2D problem. Of course, one could contemplate 
MPLM models with larger material horizons, 
which might be preferable from the point of 
view of producing isotropic damage behavior 
with respect to lattice orientation, but the 
number of neighboring particles, 𝑁𝑖, and thus 
the number of force computations would be 
larger, per particle. 

Equations 1 and 2 are integrated explicitly 
in time using the velocity Verlet integration 
method, with time step, Δ𝑡 = 𝑠/(𝑛 × 𝑐0), with s 
being the particle spacing, 𝑐0 being the speed 
of sound in the material, and n being π or 
greater for stability. Because we are interested 
in modeling cementitious materials, with 
highly nonlinear material behavior, explicit 
time integration is the method of choice. 

The vector functions 𝑭𝒊𝒋 and 𝑴𝒊𝒋 describe 
the internal forces and moments between 
neighboring lattice particles, and from these 

x 

 

s 

√3
2

s   
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functions, the material behavior emerges. For a 
bond-based micropolar peridynamic model, 𝑭𝒊𝒋 
and 𝑴𝒊𝒋 are chosen to be functions of the 
reference position vectors, 𝒙𝟎𝒊  and 𝒙𝟎𝒋, and 
current position vectors, 𝒙𝒕𝒊  and 𝒙𝒕𝒋, and also 
as functions of the velocities 𝒗𝒕𝒊 and  𝒗𝒕𝒋 of 
particles i and j. Note that all of these 
kinematic vectors include particle positions 
(and velocities) as well as particle rotations 
(and angular velocities). The functions 𝑭𝒊𝒋 and 
𝑴𝒊𝒋 also depend upon evolving damage 
parameters, 𝜔𝑖𝑗, associated with the interaction 
between particle i and particle j. 

For a state-based peridynamic model [4], 
vectors 𝑭𝒊𝒋 and 𝑴𝒊𝒋 may be functions not only 
of the states of particles i and j, but also of all 
other particle, k, states and interaction damage 
states, 𝜔𝑖𝑘, within the peridynamic horizon of 
particle i. 

With today’s high performance parallel 
computers, a million particles can reasonably 
be modeled, and for concrete with aggregate 
size of 2 cm, a volume of (0.02𝑚)3

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒� ×

1,000,000 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = 8𝑚3 of concrete for at 
least several fundamental vibration periods can 
be simulated. Thus, on a parallel computer, it 
is feasible to simulate large 3D concrete 
structures using the MPLM – not just small 
laboratory specimens. 

In solid models, the forces between 
particles are assumed to arise due to deviations 
from a reference state. As long as the deviation 
of particle positions from their reference 
locations is not too extreme, the MPLM is 
suitable. Taking the terminology “cohesive 
crack model” to its logical conclusion, the 
MPLM could perhaps be termed a “cohesive 
particle” model. 

3 MPLM MODEL FOR CONCRETE 
A MPLM constitutive model for concrete is 

proposed in this section. Others are certainly 
possible. We start with the linear elastic 
regime. 

3.1 MPLM linear elasticity 
If the interaction between two particles 

spaced at distance s is thought of as a linear 
elastic Euler-Bernoulli frame element with 
axial stiffness a=E’A and bending stiffness 
b=E’I, then to simulate a plane-stress elastic 
continuum of thickness t and with Young’s 
modulus E and Poisson’s ratio, ν, the formulas 
for a and b are given by  
 
𝑎 = 𝐸𝑠𝑡

√3(1−𝜈)
 and 𝑏 = 𝐸𝑠3(1−3𝜈)𝑡

12√3(1−𝜈2)
  .               (3) 

 
Similar expressions for 1D, 2D plane strain, 
and 3D continua are found in [5]. In our 
computational formulation, elastic interaction 
deformations (interaction stretches and 
curvatures) are assumed to be reasonably 
small, but large translations and rotations are 
accounted for using a co-rotational stiffness 
formulation [6; 7]. Thus, patches of particles 
can detach as rigid bodies and move correctly 
with large translations and rotations. However, 
particle collision behavior is not currently 
incorporated into the model, except between 
particles that are adjacent in the reference 
lattice. 

While the presented linear elasticity model 
gives the same results as the classical Navier-
Cauchy elasticity model for states of uniform 
strain far from boundaries, it yields slightly 
different results than the classical elasticity 
model in the presence of nonuniform strain 
fields and near boundaries. This does not make 
the MPLM model wrong; just slightly different 
than the Navier-Cauchy continuum model. 
One could argue that the MPLM elasticity 
model is more realistic than the classical 
Navier-Cauchy model for materials like 
concrete. 

3.2 MPLM damage model 
With reference to Fig. 2, the micropolar 

axial stretch of interaction ij, 
 

𝜖𝑎 ≡
𝑑𝑡−𝑑
𝑑

,     (4) 
 

where 𝑑𝑡 is the current length and  d is the 
reference length, is defined in a manner similar 
to axial strain.  

Similarly, the maximum micropolar 
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curvatures about the local z-, y- and x-axes, 
respectively, of interaction i j are: 
 

𝜓𝑧 ≡  𝑚𝑎𝑥 �
�2
𝑑
�2𝜃𝑧𝑖 + 𝜃𝑧

𝑗 −  3
𝑑
�𝑑𝑦

𝑗 − 𝑑𝑦𝑖 ��� ,

�2
𝑑
�2𝜃𝑧

𝑗 + 𝜃𝑧𝑖 −  3
𝑑
�𝑑𝑦𝑖 − 𝑑𝑦

𝑗��� 
�,           (5) 

 

𝜓𝑦 ≡  𝑚𝑎𝑥 �
�2
𝑑
�2𝜃𝑦𝑖 + 𝜃𝑦

𝑗 −  3
𝑑
�𝑑𝑧

𝑗 − 𝑑𝑧𝑖 ��� ,

�2
𝑑
�2𝜃𝑦

𝑗 + 𝜃𝑦𝑖 −  3
𝑑
�𝑑𝑧𝑖 − 𝑑𝑧

𝑗��� 
�, and  (6) 

 

𝜓𝑥 ≡  �𝜃𝑥
𝑗−𝜃𝑥𝑖

𝑑
� .                                (7) 

 
We propose measures of micropolar tensile 

and compressive interaction deformation as 
 
𝜖𝑚𝑝+ ≡ 𝜖𝑎 + 𝛽𝑑�𝜓𝑥2 + 𝜓𝑦2 + 𝜓𝑧2  and         (8) 

 

𝜖𝑚𝑝− ≡ 𝜖𝑎 − 𝛽𝑑�𝜓𝑥2 + 𝜓𝑦2 + 𝜓𝑧2 ,               (9) 
 

where β is a dimensionless parameter. 
 

 
 
Figure 2: Displacement and force components, in local 
coordinates, acting between particles i and j, separated 

by reference distance, d. 
 

The tensile damage parameter, 𝜔𝑡, is 
defined in terms of these deformation 
measures, with reference to Fig. 3, as: 

 
for tension damage: 
 
for 0 ≤ 𝜖𝑚𝑝+  ≤ 𝜖𝑡,     𝜔𝑡 = 𝑚𝑎𝑥�0,𝜔𝑡𝑝𝑟𝑒𝑣 �     (10)

  
for 𝜖𝑡 ≤ 𝜖𝑚𝑝+  ≤ 𝛼𝑡𝜖𝑡, 
 𝜔𝑡 = 𝑚𝑎𝑥�Ω𝑡�𝜖𝑚𝑝+�,𝜔𝑡𝑝𝑟𝑒𝑣 � and  (11) 

 
for 𝛼𝑡𝜖𝑡  ≤ 𝜖𝑚𝑝+, 𝜔𝑡 = 1 ,                     (12) 
 
where 𝜔𝑡𝑝𝑟𝑒𝑣  is the value of the tensile damage 

parameter for interaction ij  in the immediately 
preceding time step. The damage function 
Ω𝑡�𝜖𝑚𝑝+� is defined in Fig. 3(a), and it has been 
chosen in such a way that the cohesive tensile 
softening behavior is modeled approximately 
correctly. 

 

 
 

Figure 3: (a) Damage, 𝜔𝑡, versus the micropolar strain 
measure, 𝜖𝑚𝑝+. (b) Damage, 𝜔𝑐, versus the micropolar 

strain measure, 𝜖𝑚𝑝−. (𝜔𝑡  and 𝜔𝑐 never decrease 
with time.) 

 
For the evolution of compression damage, 

𝜔𝑐:      
  

for 𝜖𝑚𝑝−  ≤ 𝛼𝑐𝜖𝑐  ,   𝜔𝑐 = 1                            (13) 
 

for 𝛼𝑐𝜖𝑐 ≤ 𝜖𝑚𝑝−  ≤ 𝜖𝑐 ,  
𝜔𝑐 = max �Ω𝑐�𝜖𝑚𝑝−�,𝜔𝑐𝑝𝑟𝑒𝑣�  and        (14) 

 
for 𝜖𝑐 ≤ 𝜖𝑚𝑝−,     𝜔𝑐 = max �0,𝜔𝑐𝑝𝑟𝑒𝑣�,        (15) 
  

where 𝜔𝑐𝑝𝑟𝑒𝑣 is the value of the compressive 
damage parameter for interaction ij  in the 
immediately preceding time step. Function 
Ω𝑐�𝜖𝑚𝑝−� is defined in Fig. 3(b).  

The damage parameter, ω, is computed as 
the maximum of 𝜔𝑡 and 𝜔𝑐. 

If 𝜖𝑎 ≥ 0, then 
 

{f}=(1- ω)[K]{d}    ,                        (16) 
 
and if 𝜖𝑎 ≤ 0, then 

 
{f}=(1- ω )[K*]{d}   ,                         (17) 

 
where {f} is the force vector acting between 
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particles i and j, [K] is the elastic stiffness 
matrix defined using Eq. 3, and {d} is the 
vector of particle deformations, associated 
with interaction ij. Because there are many 
interactions per particle, this form allows 
damage to be anisotropic. 

With the stiffness matrix, [K*], the axial 
components of force are the same as that 
computed by [K], but the shears and moments 
are reduced by the damage parameter (1-ω). 
Thus, compression failure is indirectly 
precipitated by loss of moment and shear 
capacity (and subsequent instability due to 
nonlinear geometric effects), but not by loss of 
axial stiffness. 

In this implementation, damage can be 
either tensile or compressive, but not both. 

The constitutive model presented has eight 
parameters: peridynamic lattice spacing 
parameter s, micro-elastic stiffness parameters 
a and b, and the parameters governing tensile 
and compressive damage evolution: 𝜖𝑡, 𝛼𝑡, 𝜖𝑐, 
𝛼𝑐, and 𝛽.  

The lattice spacing parameter, s, is chosen 
to be as small as the available computational 
capacity allows, but no less than the largest 
material grain size.  

The parameter 𝜖𝑡 is calibrated to reproduce 
the tensile strength, 𝑓𝑡, of the concrete: 𝜖𝑡 ≈

𝑓𝑡
𝐸

.  
The parameter, 𝛽 ≈ 0.1, is chosen to 

replicate the ratio of uniaxial compressive load 
to uniaxial tensile load, usually around ten, as 
is observed empirically for normal-strength 
concrete. 

The parameter 𝑠𝑐 ≈ 0.001 is chosen to 
replicate the strain at which uniaxial 
compressive failure commences, and 𝛼𝑐𝑠𝑐 ≈
0.003 is chosen to represent the ultimate 
compressive strain.  

The parameter 𝛼𝑡 is chosen to replicate the 
tensile fracture energy, 𝐺𝐹, of the material, as 
described in [1].  

3.3 MPLM frictional model  
The frictional model requires that when the 

link is in axial compression (𝜖𝑎  ≤ 0), and when 
𝜔 = 1  the magnitude of the shear force 
(𝑓𝑦𝑖 = −𝑓𝑦

𝑗) must never exceed the internal 
coefficient of friction, µ, times the 

compressive axial force (𝑓𝑥𝑖 = −𝑓𝑥
𝑗). For 

equilibrium with the shear force, the moments 

are computed as 𝑚𝑧
𝑖 = 𝑚𝑧

𝑗 =
𝑑𝑓𝑦

𝑖

2
. 

3.4 MPLM damping model 
Damage events can release sudden bursts 

of acoustic energy. If no material damping is 
included in the model, this acoustic energy can 
cause spurious vibration and consequent 
damage.  Thus we incorporate an  axial 
peridynamic damping model. When 
computing the force in interaction ij, the 
relative axial velocity, 𝑣𝑖𝑗, between particles i 
and j is computed. Then the axial damping 
force, 𝑓𝑑𝑎𝑚𝑝𝑖𝑗, between the two particles is 
given by  

 
𝑓𝑑𝑎𝑚𝑝𝑖𝑗 = 2𝜁𝑚𝜔𝑛𝑣𝑖𝑗, and (18) 
𝐹𝑖𝑗 = 𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑗 + 𝑓𝑑𝑎𝑚𝑝𝑖𝑗 ,  (19) 

 
where 𝜁 is the ratio of critical damping, with 
value set between 0 and 1, 𝑚 is the particle 
mass,  𝜔𝑛 is the highest natural frequency of 
vibration, 𝑣𝑖𝑗 is the relative axial velocity 
between particles i and j, 𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑗 is the elastic 
inter-particle axial force calculated in the 
previous section, including the effect of 
damage, and 𝐹𝑖𝑗 is the internal axial force used 
in Eq. 1. The damping force, always opposing 
the direction of motion, removes energy from 
the system. We find that choosing 𝜁 ≈ 0.05 
produces reasonable damping behavior. 

A similar strategy, not yet implemented 
and apparently not necessary, may be used to 
damp shear and rotational degrees of freedom. 

4 MODELING OF REINFORCING 
BARS AND BOND 

A reinforcing bar is represented as a 1D 
lattice of MPLM particles representing a bar 
with cross-sectional area As and cross-
sectional moment of inertia Is. The material 
parameters are Young’s modulus Es and yield 
stress Fy. Steel particles interact if they spaced  
less than s from each other. Steel particles 
from separate reinforcing bars do not interact. 

As shown in Fig. 4, only every other steel 
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particle of a given rebar is connected to 
concrete particles within a horizon s using the 
same elastic interaction model as for concrete-
concrete particles (such interactions assume no 
damage). The reason that only every other 
steel particle is connected to concrete is to 
allow cracks in concrete to develop unhindered 
by the non-damaged steel-concrete 
interactions. If the distance between a steel 
particle and a concrete particle is zero, the 
interaction between these two particles is 
ignored. 

 
Figure 4: Bond of reinforcement (red) to concrete 

(black) using peridynamic interactions (tan). 
 
Bond-slip is indirectly modeled and 

emerges from the elasticity and damage of the 
interactions between surrounding the concrete 
particles. 

5 EXAMPLES 
In all of the following examples, the target 

classical materials parameters are shown in 
Table 1, and the corresponding selected 
MPLM parameters for concrete and steel are 
shown in Tables 2 and 3. The time step is 
chosen as ∆𝑡 = 𝑠

24𝑐0(𝑠𝑡𝑒𝑒𝑙)
= 1.808 × 10−7 𝑠. 

In each example, the load is linearly ramped 
from zero to the peak load for duration of at 
least four fundamental periods of the structure, 
and is thus essentially quasistatic. The load is 
ramped from time zero up to 75% of the total 
simulation time and then held constant.  

“Strength” is defined as the peak load at 
which static equilibrium can still be achieved. 

In all of the following examples, the 
particles in the deformed configuration are 
shown and the damaged interactions are color-
coded as shown in Fig. 5. Undamaged 
interactions are not shown in the figures. 

 

The steel-concrete MPLM interactions are 
identical to concrete-concrete interactions, 
except that they are assumed to be linear 
elastic, with no damage. The steel is modeled 
as elastic-perfectly plastic. 

Table 1: Classical material parameters 

Parameter Value Units 
Conc. Young’s modulus, Ec 24.86 GPa 

Conc. Poisson’s ratio, µc 0.20 - 
Conc. comp. strength, f’c 27.58 MPa 

Conc. tens. strength, ft 2.758 MPa 
Conc. Density, ρc 2323.0 kg/m3 

Conc. fracture toughness, GF 175.0 N/m 
Steel Young’s modulus, Es 200.0 GPa 

Steel yield strength, Fy 414.0 MPa 
Steel Poisson’s ratio, µs 0.3 MPa 

Steel Density, ρs 7850.0 kg/m3 

Table 2: MPLM parameters for concrete 

Parameter Value Units 
Lattice Spacing, s 0.020 m 

Microelastic parameter, a 4.557x107 N 
Microelastic parameter, b 506.3 N-m2 

Tensile stretch limit St 0.000126 - 
Tensile stretch ratio αt 10 - 

Sc -0.001 - 
αc 5.728 - 
β 0.10 - 

Damping ratio, c 0.05 - 

Table 3: MPLM parameters for steel 

Parameter Value Units 
Lattice Spacing, s 0.020 m 

Microelastic parameter, a EsAs N 
Microelastic parameter, b EsIs N-m2 

Yield limit, St 0.00207 - 
Damping ratio, c 0.05 - 

 
Figure 5: Color-coding for example problems. 

 
 
 
 
 
 

Concrete particles 
Steel particles 
Tensile damage (0<wt<1) 
Tensile damage (wt=1) 

Compressive damage (wc=1) 
  

 

Compressive damage (0<wc<1) 
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5.1 Uniaxial tension 
Fig. 6 shows the deformed particles for two 

uniaxial tension examples, with the load 
direction in Fig. 6(b) rotated by 90o with 
respect to the lattice in Fig. 6(a). Equal tensile 
loads are applied to each of the particles in the 
end two layers of particles; similarly, opposite 
forces are applied to the two layers of particles 
on the opposite end of the specimen. The total 
number of simulation time steps is 10000. The 
damage patterns in each specimen at the end of 
the simulation are shown in Fig. 6. For the 
lattice orientation in Fig. 6(a), the failure load 
is at a stress level of 2.784 MPa (within 1% of 
the target ft). However, for the lattice 
orientation in Fig. 6(b), the failure load is at a 
stress level of 3.226 MPa (17% higher than the 
target ft). Thus, although the character of the 
damage patterns is reasonable in both cases, 
we conclude that the tensile strength is 
somewhat sensitive to lattice orientation. 
Significant tensile damage (yellow) is evident 
prior to crack formation (black). 

 
Figure 6: Damage patterns for uniaxial tension. 

Deformations magnified by factor of 100, at time step 
10000. (a) Load applied in vertical direction; (b) Load 

applied in horizontal direction. 

5.2 Uniaxial compression 
   To investigate uniaxial compressive 
behavior, the problem described in Section 5.1 
is repeated, but now the loading directions are 
reversed. The resulting deformed 
configurations and damage patterns are shown 
in Figs. 7(a) and (b) for two loading directions 
with respect to the lattice orientation. 

 For the lattice orientation in Fig. 7(a), the 
failure load is at a stress level of 28.48 MPa 
(3.3% higher than the target f’c). However, for 
the lattice orientation in Fig. 7(b), the failure 
load is at a stress level of 61.06 MPa (121% 
higher than the target f’c). As shown in Figs. 
7(a) and 7(b), the tensile damage patterns 
between the two loading orientations are 
similar, but the compressive damage patterns 
are different. We conclude that both the 
compressive strength and failure mode are 
sensitive to lattice orientation. Further study 
and innovation are indicated. 

 
Figure 7: Damage patterns for uniaxial compression. 
Deformations magnified by factor of 10, at time step 

10000. (a) Load applied in vertical direction; (b) Load 
applied in horizontal direction. 

(a) 

(b) 

(a) 

(b) 
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5.3 Plain beam 
We assume a plane-stress uniformly-loaded 

beam, with span of 1.16 m, depth of 0.26 m, 
and thickness of 0.12 m. With reference to Fig. 
8, each particle in the top layer of particles is 
loaded downward to simulate uniform loading. 
To apply the load approximately statically, the 
load is ramped linearly from time zero up to 
75% of total simulation time and then the load 
is held steady. The simulation is run for 80000 
time steps. Assuming, classically, that the 
beam’s strength is achieved when the bending 
stress reaches tensile strength, ft, the failure 
load is predicted as 22.14 kN/m. The MPLM 
simulation predicts a failure load 2.1 times 
higher than the classical failure load: 46.4 
kN/m. This result is not unexpected: the 
modulus of rupture is typically around twice 
the tensile strength, especially for small 
beams. The deformed shape and the damage in 
the beam at failure are shown in Fig. 8. Note 
that the crack branches: perhaps a consequence 
of dynamic fracture. 

 
Figure 8: Deformed shape and damage in plain 

concrete beam subject to uniform loading at time 
step 80000. Deformation is magnified by factor of 10. 

5.4 Reinforced beam with no stirrups 
The plain beam in the previous section is 

now reinforced with a single horizontal steel 
reinforcing bar, of diameter 1.27 cm, whose 
centroid is located 2 cm above the bottom of 
the beam, as shown in Fig. 9. The beam is 
loaded as in the previous section. The 
simulation is run for 80000 time steps. 
According to the ACI code [8], the nominal 
bending strength of the singly-reinforced beam 
is 72.24 kN/m. The MPLM simulation predicts 
a slightly higher strength of 78.74 N/m. The 
deformed shape and associated damage are 
shown in Fig. 9.  

The damage patterns look reasonably 
realistic, including secondary cracking at the 
bottom of the beam and some compression 

damage at the top of the beam. At time step 
65000, the distributed damage above the 
reinforcing bar extending to the ends of the 
beam and the compression damage above the 
supports is somewhat unexpected and is 
perhaps an indication of bond failure. 
 

 
Figure 9: Deformed shape and damage in reinforced 

concrete beam subject to uniform loading. 
Deformation is magnified by factor of 10. 

5.5 Reinforced beam with stirrups – 
bending failure 
The plain beam in Section 5.3 is now 
reinforced with both flexural and the shear 
steel bars having diameters of 1.27 cm and 1.0 
cm, respectively. The centroid of flexural steel 
is located 2.0 cm above the bottom of the 
beam. The centroid of left-most stirrup is 
positioned at 4 cm from the left end of the 
beam and the stirrup spacing is 8 cm. The ACI 
code [8] predicts a bending-type failure of 
72.24 kN/m. The MPLM simulation is run for 
80000 time steps. The MPLM simulation 
predicts strength of 68.63 kN/m. The deformed 
shape and damage in the beam are shown in 
Fig. 10 at three different stages of loading.  

Surprisingly, by adding stirrups, the 
cracking behavior was altered significantly 
from the unreinforced beam, and the failure 

Time step 45000 

Time step 50000 

Time step 65000 
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load was slightly reduced. Perhaps the stirrups 
increased the bond strength, thus preventing 
bond failure in the beam without stirrups. 
More study is indicated. 

Figure 10: Deformed shape and damage in 
reinforced beam with stirrups. Deformations are 

magnified by factor of 10. Bending failure is 
indicated. 

5.6 Reinforced beam with stirrups – shear 
failure 

To increase the bending strength and thus 
induce a shear failure, the diameter of 
horizontal rebar in the previous section is now 
increased to 3.175 cm while keeping the 
stirrups unchanged. According to the ACI 
code [8], the failure is now of shear type, with 
a shear strength of 210 kN/m. The deformed 
shape and damage in the beam are shown in 
Fig. 11. The MPLM predicts a failure load of 
252 kN/m, as expected, somewhat higher than 
the ACI prediction. 

6 CONCLUSIONS 
We have presented the micropolar 

peridynamic lattice model (MPLM) and have 
demonstrated its use in simulating several 
plain and reinforced concrete structures. While 
the MPLM, as here implemented, has been 
shown to be somewhat non-objective with 

respect to lattice rotation, it nonetheless 
predicts damage, fracture, and strength more  
directly and realistically than many existing 
computational methods. Additionally, the 
MPLM makes strength predictions that are 
similar to those of the ACI code [8]. 

 
Figure 11: Deformed shape and damage in 

reinforced beam with stirrups. Deformations are 
magnified by factor of 10. Shear failure is indicated. 

Non-objectivity with respect to lattice 
rotation could be reduced by increasing the 
peridynamic horizon to include more 
neighboring particles – but at increased 
computational cost. 

All of the examples shown in this paper ran 
in under ten minutes on a single-processor 
computer. The model can be extended to 3D, 
but high-performance computers will be 
necessary to solve realistic 3D problems [9; 
10]. 

Future improvements to the MPLM 
peridynamic constitutive model may improve 
its accuracy, efficiency, and usefulness. 

One great advantage of the method is that it 
is conceptually simple, and therefore has the 
potential to allow practicing engineers to have 
sufficient confidence in the model to use it and 
thus to produce more rational designs. 

Time step 60000 

Time step 80000 

Time step 50000 

Time step 80000 

Time step 45000 

Time step 30000 
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