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Abstract: This paper presents a numerical approach to model the complex failure mechanisms that 

define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and 

compression is described by a constitutive damage model derived from a combination of two 

specific damage models [1]. The nonlinear behavior of the compressed region is treated by the 

compressive damage model based on the Drucker-Prager criterion written in terms of the effective 

stresses. The tensile damage model employs a failure criterion based on the strain energy associated 

with the positive part the effective stress tensor. This model is used to describe the behavior of very 

thin bands of strain localization, which are embedded in finite elements to represent multiple cracks 

that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible 

with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements 

with elastic-perfect plastic behavior. 

It is shown that the resulting approach is able to predict the different stages of the collapse 

mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the 

finite element embedded crack approach are able to describe the stiffness reduction due to concrete 

cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding 

and, finally, the compressive damage model is able to describe the non-linear behavior of the 

compressive zone until the complete collapse of the beam due to crushing of concrete. The 

proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including 

size-scale effects. 

1 INTRODUCTION 

The development of ductility is influenced 

by several parameters, which makes it difficult 

to create a predictive model that can fully 

describe the mechanical behavior of reinforced 

concrete (RC) beams. Increasing their ductility 

provides a greater margin of safety because it 

favors greater dissipation of energy during the 

process that precedes collapse. Thus, in 

structural design, it is extremely important to 

analyze plastic rotation capacity, seeking 

mainly to know and simulate as accurately as 

possible the nonlinear behavior of concrete in 

the compressed region.  

Aiming to represent nonlinear behavior, 

especially in compression, Carpinteri et al. 

[4,5] proposed a numerical model that 

represents the plastic rotation capacity of RC 

beams subjected to bending. The model is 

based on the concept of localization of 

deformation, which is able to represent the 
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crack growth and the crushing of concrete in 

the loading process. To represent the nonlinear 

behavior in compression, the compressed 

region is described according to the 

overlapping crack model, which describes the 

localization of deformation due to crushing 

failure by interpenetration of the material. 

Thus, the cohesive crack model is proposed to 

represent the behavior of concrete under 

tension and compression. The process of 

fracturing and crushing failure is completely 

localized in the central cross section 

representative of concrete in flexure. The 

stress-strain behavior in the central cross 

section is linear-elastic until the ultimate 

strength of the concrete is reached. The 

stresses in the cohesive zone are thus governed 

by functions that describe their evolution with 

the relative displacement of opening or 

interpenetration, returning a null value when 

the displacement reaches a critical value [4,5]. 

This work aimed to create a more general 

computational model to describe the nonlinear 

behavior and its influence on the ductility of 

reinforced concrete structures. The behavior of 

tensioned and compressed concrete is 

described by models based on Continuum 

Damage Mechanics [6], which has been used 

as an important tool to represent the state of 

degradation of quasi-brittle materials due to its 

relative simplicity, versatility and consistency 

[7]. 

The combined damage model proposed by 

[1] is used here to model the crack process in 

the tensioned region and crushing failure in the 

compressed region. The effect of crack 

formation is modeled using finite elements 

with embedded cracks, within the context of 

the Continuum Strong Discontinuity Approach 

(CSDA) [2,8-14], which has been applied 

successfully to cases in which structural 

nonlinearity arises predominantly from states 

of tension. To represent the nonlinear behavior 

of compression, we use an approximation of 

distributed cracks and a Drucker-Prager 

degradation criterion based on the effective 

stresses.  

The models are composed in series, 

applying first the compressive damage model, 

using purely elastic stresses as effective 

stresses. The stresses degraded by the 

compressive damage model are then treated as 

effective stress by the tensile damage model 

[1].  

The experimental tests reported by [3] were 

simulated numerically, seeking to predict the 

plastic rotation capacity of RC beams. The 

tension and compression reinforcement rate, as 

well as the beams’ dimensions, were varied in 

order to reproduce the size-scale effect 

evidenced in the experimental results. 

2 NUMERICAL FORMULATION 

The methodology used in this paper to 

describe the aforementioned numerical 

simulation of plastic rotation capacity is 

organized as follows:  

� First, we present the mathematical 

formulation for the compressive damage 

model. The model is formulated in the 

effective stress field, based on the Drucker-

Prager criterion, which was originally 

formulated in 1952 and resulted from the 

modification of the von Mises criterion so as 

to include the effect of hydrostatic pressure.   

� The tensile damage model is then 

described, whose degradation criterion is 

based on the strain energy of the positive part 

of the effective stress tensor [15,16]. The 

model is able to represent the formation of 

discontinuities in the displacement field in 

quasi-brittle materials. 

� An explanation is then given on the 

composition of the two models in series 

proposed by [1], where the strain degraded by 

the compressive damage model is treated as 

effective stress by the tensile damage model. 

This model, based solely on continuum 

damage mechanics, is able to represent the 

behavior of materials that exhibit different 

responses when subjected to tensile or 

compressive loads. The combined model can 

also deal with alternating loads (tension and 

compression), involving closing and reopening 

of existing cracks. 

� Lastly, a brief description is given of 

the formulation of finite elements with 

embedded cracks in the context of the 
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Continuum Strong Discontinuity Approach 

(CSDA) [2,11]. 

2.1 Compressive damage model 

The effective stress tensor can be divided 

into a volumetric and a deviatoric part, as 

follows: 

PSISσ +=⋅+= mσ (1) 

where S  is the deviatoric stress tensor, mσ  is 

the mean stress and I  is the second-order 

identity tensor and IP ⋅= mσ  is the volumetric 

stress tensor. 

When applying the damage variable, d , 

only to degrade the deviatoric stress tensor, the 

expression of the nominal stress tensor is 

given by: 

( ) ISσ ⋅+−= md σ1   

which can also be expressed as: 

Sσσ ⋅−= d  (2) 

Note that the deviatoric and volumetric 

parts of the nominal stresses are given, 

respectively, by ( )SS d−= 1  and =P P . 

The damage criterion can be expressed in 

the effective stress field as: 

( ) ( ), 0F r rτ τ= − ≤σ  (3) 

where the scalar variable τ  is defined as: 

( )σ S mτ ασ= +  (4) 

and r  is the internal variable of the strain 

type, which establish the size of the elastic 

domain in the effective stress field.                                                                                                      

In the nominal stress field, the damage 

criterion can be written by multiplying the two 

members of Eq. (3) by )1( d− , 

( ) ( ) ( )rqdrd mm =+−=+= σασατ 1Sσ (5) 

Based on Eq. (5), the damage variable can 

be written in terms of the internal variable of 

the stress type, ( )q r , which defines a 

hardening/softening law: 

( )
m

q r r
d

rασ
−

=
−

 (6) 

An initial value is defined for the damage 

threshold, 0r , as a function of the ultimate 

compressive stress, cσ : 

0

2

3 3
cr

α
σ

 
= −  
 

 (7) 

The evolution of the damage threshold can 

be expressed in closed form, always using the 

highest value reached by τ  during the loading 

process, i.e., ),max( τrr = . 

The evolution of the damage variable can 

be defined by establishing a linear hardening 

law:  

0 0( ) ( )q r H r r r= − +  (8) 

where H is the linear hardening parameter. 

2.2 Tensile damage model 

In this case, the effective stress tensor is 

decomposed into positive and negative parts 

(positive and negative components of the 

effective stress tensor, respectively), 

−+ += σσσ
t  (9) 

where +
σ  and −

σ  are effective stress tensors 

containing, respectively, the principal tensile 

and compressive stresses: 

ii ppσσ ⊗〉〈=〉〈= ∑
=

+
3

1i

iσ  (10) 

where iσ  denotes the value of the i-th 

principal stress of tensor σ , ip  represents the 

unitary vector associated with the respective 

principal direction, and the symbol ⊗  denotes 

the tensor product. The symbol 〈⋅〉  represents 

the Macaulay function (returning the value of 

the expression when positive, and zero 

otherwise). 

The negative component of the effective 

stress tensor can be obtained as follows: 

+− −= σσσ  (11) 
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To establish the loading, unloading and 

reloading conditions, the damage criterion is 

defined by using the concept of effective 

tensile stress, 

( ) ( ) 0, ≤−= + ttttt rrF σττ  (12) 

where tτ  returns a scalar value as a function 

of the positive component of the effective 

stresses. The variable tr  establishes the 

damage threshold, controlling the size of the 

elastic domain in the space of the effective 

stresses. The damage threshold is bound by the 

surface ( ) 0, =ttt rF τ . 

The standard energy tensor is adopted:  

( )++−+ == σσ:C:σ 1 tt ττ  (13) 

where C  is the constitutive fourth-order 

isotropic elasticity tensor. 

The initial value of the damage threshold is 

expressed in terms of tensile strength, tσ , 

E
r tt σ
=0  (14) 

The evolution of the tensile damage 

variable is defined as a function of the damage 

threshold variable,  

( ) 









−

−=
t

t

r

r
A

t

t
tt e

r

r
rd 0

1
01  

(15) 

which establishes an exponential softening 

law, in terms of the exponential softening 

parameter, A . 

Therefore, the constitutive law can finally 

be expressed as: 

( ) −+ +−= σσσ t td1   

or 

+⋅−= σσσ
t td  (16) 

2.3 Combined damage model  

The models are composed in series, first 

applying the compressive damage model, 

using as effective stresses the purely elastic 

stresses, calculated from the strains, ε ,  

=σ C : ε  (17) 

The tensile damage model is then applied, 

admitting that the effective stresses for this 

model are the stresses degraded by the 

application of the compressive damage model, 

i.e.,  

t =σ σ  (18) 

Thus, the constitutive law for the combined 

model can be expressed as follows: 

( )( )σσ ΣΣ= t  (19) 

where  Σ  and tΣ  represent the constitutive 

relationships of the compressive and tensile 

damage models, respectively. 

2.4  Two-dimensional finite element with 

embedded localization band 

The effect of crack formation is modeled 

using finite elements with embedded cracks, 

within the context of the Continuum Strong 

Discontinuity Approach – CSDA. 

Figure 1 illustrates the finite element with a 

strain localization band, eS , where the 

formulation of the finite element with 

embedded crack starts from the imposition of a 

jump in the displacement field, [ ][ ]u , 

producing a relative movement of rigid body 

in the continuum region, eΩ , [2]. 

To represent the tensile fracture process, the 

nonlinear behavior in the region of strain 

localization (fracture process zone) is 

described according to the combined damage 

model, CΣ , with the exponential stress 

softening law. The continuum region is 

described according to the compressive 

damage model, Σ , based on the nonlinear 

behavior in compression. The surface forces in 

the region of strain localization must be in 

equilibrium with the calculated forces in the 

proximities (points in the continuum region 

bordering the strain localization region), i.e., 

the vector space of stresses should have:  

[ ][ ]( ) 0=uF   

    [ ][ ] [ ][ ] 0ˆˆ =





















−−


















−+ u

M
εΣu

MN
εΣN

ee

CT

llk
 (20) 
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The jump [ ][ ]u  in the element can be 

obtained by solving Eq. (20) for a given strain 

state by means of the Newton-Raphson 

iterative method [1]. 

 

Figure 1: Element with embedded localization band [2] 

3 RESULTS  

The plastic rotation capacity of RC beams 

is analyzed with the purpose of reproducing 

the experimental tests reported by [3].  

It was decided to begin by numerically 

simulating the experimental tests developed 

with beam B1, of length L=2000 mm, height 

h=200 mm and width b=100 mm, reinforced 

with 6-mm-diameter stirrups, with 150 mm 

spacing.  The longitudinal tensile, tρ , and 

compression reinforcement ratio, cρ , is 0.57% 

and 0.25% for the first test, 1.13% and 0.50% 

for the second test, and 1,71% for the third 

test, respectively. Table 1 presents the 

mechanical and geometrical parameters for 

beams B1, B2 and B3. A numerical analysis 

was then made of the experimental tests of 

beams B2 and B3 (see Table 1). Figure 2 

illustrates the geometric model and scheme of 

the tests, which, for reasons of symmetry, only 

had one half modeled. 

Figure 3 shows the finite element mesh, the 

distribution of the steel bars and stirrups, and 

the boundary conditions for the numerical 

model of the beam. The concrete is 

represented by triangular finite elements of 

three nodes, while the rebars are represented 

by linear elements of two nodes connected to 

the nodes of the solid elements. To obtain the 

structural curve (moment-rotation), the loading 

process was performed by controlling the 

vertical displacement of the loading point 

located in the central section (see Fig. 3).  

 

Table 1: Mechanical and geometric parameters  

 

 

 

Figure 2: Geometric model of the beam [3] 

The composite damage model was used to 

represent the nonlinear behavior of the 

concrete. The hardening/softening module 

01,0−=H  was used for the compression 

model, 0,1=B , and the exponential softening 

parameter of the tensile model 0, 025A = . 

The properties of the material used were: 

elastic modulus  34, 690E G P a= , Poisson’s 

coefficient 0, 2n = , tensile strength 

 2, 66t M P as =  and compressive strength 

 26, 60c M P as = . 

An elastic-perfectly plastic behavior was 

assumed for the steel. The properties of the 

material were: modulus  200, 0E G P a= , 

Poisson’s coefficient 0, 2n = , and yield 

strength  562, 0
y

M P as = .  
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Figure 3: Finite element mesh, geometric distribution of 

the steel bars and stirrups, and boundary conditions of 

the beam  

The crack pattern of beam B1-1.13 (beam 

B1 with longitudinal reinforcement ratio of 

1.13%) obtained numerically is depicted in 

Figure 4, which shows the lines of embedded 

cracks and an overview of the variable of 

tensile damage.   

 

Figure 4: Crack pattern shown by lines of embedded 

cracks and by the tensile damage variable of  

beam B1-1.13 

Figure 5 shows the moment vs. rotation 

curves for the different reinforcement ratios. 

Note that the numerical results reproduce well 

the experimental behavior characterized by a 

reduction in ductility in response to increasing 

longitudinal reinforcement.  

An important factor in modeling is the 

ability to represent the crushing failure of 

concrete, which in fact defines the maximum 

rotation that can be achieved after ultimate 

yield strength of the tension reinforcement is 

reached. Figure 6 shows the compressive 

damage at the end of the analysis of the beam, 

when the compressed region undergoes 

crushing failure, which is characterized by a 

wedge slip mechanism delimited by shear 

bands. Figure 7 illustrates the different phases 

of the structural behavior. 

 

Figure 5: Moment vs. rotation curve, comparing the 

structural responses obtained numerically and 

experimentally 

 

Figure 6: Crushing of the concrete due to compression 

in the beam (compressive damage variable) 
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Figure 7: Phases of the structural behavior  

(B1, 71,1=tρ ) 

Figures 8 and 9 show the structural 

responses of moment vs. rotation of the tests 

developed with beams B2 and B3 with 

different reinforcement ratios (see Table 1). In 

general, the numerical results efficiently 

simulated the experimental tests developed by 

[3].  Varying the reinforcement ratio for beams 

B2 and B3 produced results similar to those of 

beam B1, since increasing the tension ratios 

led to a considerable increase in strength and a 

decrease in ductility. Therefore, it was found 

that increasing the dimensions of the beam led 

to a significant increase in strength but a loss 

in ductility (Fig. 10). 

Thus, over-reinforced or oversized beams 

gain in strength, but with a loss in ductility, 

caused by crushing failure of the concrete in 

the compressed region, even before the 

tensioned steel begins to yield. 

Lastly, the results of the experimental 

investigation carried out by [3] clearly indicate 

the size-scale effect of the beam in ductility 

after reaching the elastic limit, presenting a 

gain in strength and a loss in ductility in 

response to increasing beam dimensions. In 

addition, the numerical investigation 

demonstrated that the combined model 

proposed for modeling the plastic rotation 

capacity is able to simulate this phenomenon 

efficiently. 

 

 

 

 

 

Figure 8: Moment vs. numerical and experimental 

rotation curve for beam B2 

 

 

Figure 9: Moment vs. numerical and experimental 

rotation curve for beam B3 
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Figure 10: Moment vs. numerical and experimental 

rotation curve for beams B1, B2 and B3, for the same 

tensile reinforcement ratio ( 57,0=tρ ) 

4 CONCLUSIONS 

In this study a numerical analysis was 

developed by the finite element method of 

plastic rotation capacity in RC beams, using a 

model based solely on continuum damage 

mechanics (combined damage model). The 

combined model is able to represent the 

structural nonlinearity resulting from the 

fracture process of concrete in the tensioned 

region, using finite elements with embedded 

cracks, in the context of Continuum Strong 

Discontinuity Approach, and the crushing 

failure of concrete in the compressed region, 

which are phenomena that normally occur in 

reinforced structural elements. 

Both the experimental and numerical results 

demonstrate the importance of the effect of 

compression (compressed region of the beam) 

on the ductile capacity of the RC beam, since 

the structure collapses at high tension 

reinforcement ratios when it reaches its 

ultimate compressive strength (strain domain 

4). For small tension reinforcement ratios 

(typically reinforced or under-reinforced 

beams corresponding to strain domains 2 and 

3), the steel’s yield stresses are reached when 

the compressive stresses in the compressed 

zone are still well below the compressive 

strength of the concrete. In such cases, the 

beam develops large strains before it collapses.  
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