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Abstract: Under sustained loading, the propagation of cracks in concrete is assumed to be 
related to the elastic deformation, material parameters and time. Based on the fictitious crack model 
(FCM), a finite element method is proposed to explain the behavior of cracks in time using current 
constitutive relations to approximate the time-dependent crack strain. Experiments have been 
performed on small concrete specimens to determine the cracking strain and to validate the finite 
element model. For flexural cracks, a creep coefficient model is adopted for bulk creep and a 
cracking strain rate based on test results is employed. For shear cracks fracture mode II is 
considered as well. The development of concrete strength in time is taken into account. The model 
is applied to predict the behavior of a cracked concrete beam subjected to sustained loading. Finally 
a comparison is made between the results of different approaches. 
 

 

1 INTRODUCTION 

Developing numerical models to simulate 
the time-dependent behavior of quasi-brittle 
materials such as concrete and masonry has 
always been a major issue in civil engineering 
[1-6]. Traditionally, numerical simulations are 
based on finite element methods based on 
discrete crack approach or the smeared crack 
model. This paper aims at modelling the time-
dependent behavior of concrete by means of 
the discrete crack approach. 

 

Figure 1: Sustained	loading	tests	on	concrete	beams	
[7]. 

Long-term tests on large-scale concrete 
beams [7] without shear reinforcement  
(Figure 1), which had been tested for more 
than two years under sustained loading close 
to the ultimate shear capacity (load ratio 
ranging from 87% to 95%) under climate 
controlled condition, showed that sustained 
loading has no significant effect on the shear 
capacity. Although many flexural and shear 
cracks occurred, the beams carried the load for 
a long time. The tests showed that crack 
formation took place only some days after 
loading, but after a week the cracks stabilized 
and became dormant. After these tests, it was 
decided to evaluate the behavior of single-
cracked concrete beams under sustained 
loading by means of experiments and 
numerical modeling. This part of the research 
is presented in this paper.  
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2 FICTITIOUS CRACK MODEL 

Fracture in quasi-brittle materials such as 
concrete and masonry is different from that of 
real brittle materials. Tension cracking at a 
notch or a pre-existing crack is associated with 
a localized narrow band of damaged material 
ahead of the crack tip referred to as the 
fracture process zone (FPZ) and the stresses 
within this zone exhibit significant softening 
[8]. 

The FPZ in front of a notch or a crack 
normally develops in a tensile stress field and 
consequently the properties of this zone are 
similar to those of the fracture zone in a direct 
tensile test. The stress transferring capability 
of FPZ depends on the width of the slit in the 
stressed direction. 

The stress transferring crack is not a real 
crack but can be considered as a fictitious 
crack and therefore the model described above 
is called the Fictitious Crack Model. When 
using the Fictitious Crack Model the following 
assumptions are made: 
 In the traditional fictitious crack model, the 

static tensile strength serves as a criterion 
for initiation of the crack. 

 The fracture zone develops in the direction 
perpendicular to the first principal stress. 

 The material in the fracture zone is partly 
damaged but it is still able to transfer 
stress. The stress transferring capability 
depends on the local deformation of the 
fracture zone in the direction of the first 
principal stress. In the calculations the 
fracture zone is normally replaced by a 
stress transferring crack and the stress 
transferring capability depends on the 
width of the crack in the stressed direction 
according to the softening curve. 

 The width of the fracture zone is obtained 
according to the strain in the direction of 
first principal stress.  

 Outside the fracture zone the material 
behavior is assumed to be elastic.  

By using the Fictitious Crack Model, it is 
possible to study the development of the 
fracture zone, the initiation of crack growth 
and the propagation of the crack through the 
material [9]. 

3 CREEP 

Time dependent behavior of quasi-brittle 
materials is usually described by means of 
creep or relaxation. In a uniaxial creep test, the 
stress history σ(t) is prescribed by:  

 
(1) 

where σ0 is a constant stress applied at time 
t=0.  

The creep strain ε(t) is expressed as:  

ε(t)=J(t) σ0 (2) 

where J(t) is the creep compliance.  
For creep simulation, creep may be divided 

into two main processes regarding the period 
of consideration; short-term bulk creep and 
long-term bulk creep. For a duration of less 
than several months, short-term bulk creep can 
be calculated from Bažant’s Model B3 [10]:   

ϕ(t,t′) = E(t′) J(t,t′) – 1  

J(t,t′)= q1 + C0(t,t′)+Cd(t,t′,t0) (3) 

Where E(t′) is the modulus of elasticity at 
loading age t′, q1 is the instantaneous strain 
due to unit stress, C0(t,t′) is a compliance 
function for basic creep and Cd(t,t′,t0) is an 
additional compliance function due to 
simultaneous drying. A simplified compliance 
function based on a double power law was 
proposed earlier by Bažant and Chern [11]: 

J(t,t′)= 1/E0 [1+ ϕ(t′-1/3+0.05)(t – t′)1/8] (4) 

where E0 is 1.5~2.0E. In this study model 
B3 has been used for modeling together with 
the EC2 recommendation for creep [12]. 

For long-term periods exceeding several 
months, the creep coefficient ϕ(t) which is the 
ratio of the creep displacement to the elastic 
displacement at time t is expressed by an 
exponential growth function: 

ϕ(t)= ϕ∞ (1 – e -t /T ) (5) 

where ϕ∞ is the creep coefficient at time 
infinity and T is the retardation time at which 
63% of the maximum value of ϕ is obtained. 

4 CRACK RATE DEPENDENCY 

The process of the breakage of bond in the 
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FPZ, which causes the softening law for the 
crack opening to be rate-dependent, can be 
modeled by a cohesive crack growth model in 
a viscoelastic material [13]. However, based 
on the experimental results, the opening of the 
crack in time shows rather viscoplastc 
behaviour, see section 5, therefore in this 
paper it is tried to develop an elastic-visco-
plastic model with damage for the rate 
dependency of the crack strain. Typically the 
viscoplastic constitutive equations are 
developed from a number of spring and 
dashpot elements arranged in series and 
parallel.  

Two commonly used models are the 
generalized Maxwell chain and the generalized 
Burger’s model where in the former the same 
strain is shared across all the elements and the 
stress is additive, and in the generalized 
Burger’s model the strains are additive and the 
stress is the same for each element. The 
generalized Burger’s model will be adopted 
here because it shares the same framework as 
classical visco-plasticity models and allows for 
non-linearity based on stress to be 
accommodated more easily [14]. It can be seen 
from Figure 2 that the generalized Burger’s 
model comprises an elastic element in series 
with a number of viscoelastic (Kelvin-Voigt) 
elements and a viscoplastic element. The 
stresses transmitted through each element and 
the strains are additive such that: 

ε(t) = εel(t)+ εve(t) + εvp(t) (6) 

where ε, εel, εve, εvp are the total elastic, 
viscoelastic and viscoplastic strain components 
at time t. The elastic component can be drawn 
as: 

εel(t) = σ(t) / E0 (7) 

where σ is stress and E0 is modulus of 
elasticity of the elastic element. The 
viscoelastic and viscoplastic components can 
be calculated using the Hereditary Integral 
formulation [15]: 

 

 

 

 

 

(8) 

 

 

(9) 

Where Jve and Jvp are the viscoelastic and 
viscoplastic creep compliances and t′ is a 
dummy integration variable, which is in our 
case the age of the specimen when the first 
load is applied. It can be shown that the first 
derivatives of the viscoelastic and viscoplastic 
creep compliances and the initial creep 
compliances for the generalized Burger’s 
model shown in Figure 2 are given by: 

 

 

(10) 

τi = ηi / Ei 
(11) 

 

(12) 

Where ηi and Ei are viscosity and modulus 
of elasticity of the ith Voigt viscoelastic 
element, η0 is the viscosity of the viscoplastic 
element with the boundary condition of  
Jve(0) = Jvp(0) = 0. This constitutive model 
needs to be expressed in incremental forms of 
elastic strain ∆εel, viscoelastic strain ∆εve and 
viscoplastic strain ∆εvp, which can be written 
after simplification as: 

∆εel = t+∆tεel – tεel = ∆σ / E0 (13) 

 

 

 

(14) 

 
(15) 

where, t+∆tεel and tεel are the elastic strains at 
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time t and t+∆t respectively, tσ is the stress at 
time t, ∆σ is the stress increment, N is the 
number of Voigt elements, tεve

i is the 
viscoelastic strain for the ith Voigt element at 
time t. 

The above mentioned rheological model 
with three Voigt elements is used to evaluate 
the cracking strain rate according to the test 
results and is employed in the following 
model. 

 

Figure 2: Generalized	Burger's	model. 

5 EXPERIMENTAL PROGRAM 

The experimental investigation relates to 
the behavior of plain concrete beams with a 
single notch under sustained loading, see 
Figure 3. The notch is located in the bottom 
side of the beam at midspan. The experimental 
program comprised a total number of 15 
specimens with the same concrete mix design, 
eight of which were subjected to short-term 
loading. 

On one hand, the test results refer to 
measured material characteristics such as 
development of concrete compressive strength 
and on the other hand, the measured crack 
width and length are given for each specimen. 
The crack mouth opening (with a measuring 
length of 40 mm) and midspan deflection were 
measured at both front and rear of the beam by 
means of LVDT’s connected to the computer. 

5.1 Short-term results 

The results of the eight short-term tests are 
given in Figure 4. The average ultimate 
capacity of specimens that failed in short-term 
loading (including two beams that were 
supposed to be loaded in long-term but failed 
before the desired load was applied), was 2.74 
kN with a coefficient of variation of 12.9%. 

The end of elastic zone in P-CMOD curves 

is observed at a concrete strain ranging from 
0.000112 to 0.000180 with an average value of 
0.000146. 

 

Figure 3: Geometry	of	the	specimens. 

 

Figure 4: Short-term loading, P-CMOD curves. 

 

Figure 5: Long-term loading, P-CMOD curves. 

5.2 Long-term results 

In order to get insight into the effect of load 
under sustained loading, the applied load is 
given as a ratio to the ultimate short-term 
capacity. The load ratios in the following 
graphs are based on the average value of all 
short-term tests.  

In Figure 5, the load ratio is represented 
along the vertical axis, whereas along the 
horizontal axis the displacements are shown. 
Together with the long-term tests, one of the 
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short-term tests is presented for a better 
comparison. As shown in this figure the lower 
is the load ratio, the larger is the CMOD at 
failure. E.g. specimens C3B3, C2B5 and 
C3B4, which were loaded at 83%, 75% and 
71% of ultimate capacity, had a maximum 
CMOD of 0.024, 0.035 and 0.071 mm, 
respectively, at the time of failure. 

 

Figure 6: Maximum displacement versus time to failure 

 

Figure 7: Time to failure versus load ratio. 

In Figure 6, the magnitudes of CMOD and 
δ for different load ratios are presented in a 
graph versus time. These curves confirm that 
the longer the time to failure, the larger the 
displacement at failure. In the other words 
under sustained loading, the concrete fails due 
to larger strains depending on the load 
ratio/time of loading. 

Moreover, the load ratio versus the 
corresponding time to the failure of the beam 
under sustained loading is shown in Figure 7. 
These graphs show a logarithmic relationship 
between the sustained-loading time and the 
load ratio. 

5.3 Cracking strain rate 

The cracking strain rate is found from the 
relation between the crack opening strain 
measured from the moment that the sustained 
loading is fully applied and the time. As 
shown in Figure 8, three different stages can 
be distinguished in this graph; the Primary 
Stage, which can be fitted with an elastic and a 
viscoelastic model, according to section 4, the 
Secondary Stage, which can be fitted with a 
viscoplastic model and the Tertiary Stage that 
is the fracture stage. The latter is not fitted 
with any model since that is the irreversible 
stage where fracturing already occurred. As 
mentioned before, this Burger’s model with 
three Voigt elements will be used in the 
following FE modeling. 
In Figure 9, the relative crack opening 
displacements of three tests loaded at 71%, 
75% and 83% of the ultimate capacity are 
shown in a semi-logarithmic graph as a 
function of time. CMODu is the crack mouth 
opening displacement of short-term tests when 
the load is at peak. 

 

Figure 8: Three stages of cracking strain development 
under sustained loading 

 

Figure 9: CMOD and time to failure for different load 
ratios. 
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6 LINEAR ELASTIC FRACTURE 
MODEL (LEFM) 

Linear elastic fracture models have been 
widely used to predict the crack path 
development for quasi-brittle materials such as 
concrete, even for complex trajectories [16]. 
With step-wise linear increment, the initiation 
and the propagation of the crack can be 
simulated to a global response [5], which can 
be reproduced by changing the material 
properties in every step. 

Based on the fictitious crack model [17, 18] 
and using the finite element method, a LEFM 
is employed to predict the time dependent 
behavior of a flexural crack. 

Under long-term loading, the strain due to 
the creep effect in the high stress zone around 
the fictitious crack tip may reach the critical 
strain, so that crack formation can occur below 
the static tensile strength. Therefore the 
criterion should be adjusted to account for the 
time effect. 

Time dependent problems are often solved 
by dividing time into small increments. Under 
sustained loading, it is usual to evaluate 
incremental creep strains from stresses at the 
beginning of the time step. In order to obtain 
the strain as a function of time, a bulk creep 
function should be used; either an existing 
recommended function for creep (e.g. the 
Eurocode 2 recommendation for creep  [12] or 
Model B3   [10]) or an experiment-based 
function by means of a rheological model can 
be used. The Poisson ratio can be assumed to 
be time independent (being equal to 0.2) [19]. 
The structure is considered to be 
macroscopically homogeneous in the sense 
that the same J(t,t′) applies to every point of 
the homogenizing continuum throughout the 
bulk of the structure. 

The finite element method with discrete 
approach has been chosen in modeling of FPZ. 
A special program was developed in 
MATLAB and used in all calculations. For the 
simplification in modeling of a flexural crack, 
the crack propagation path is assumed to be 
known in advance and is chosen to coincide 
with the boundary conditions while in the 
shear crack, the unknown crack path 

propagates between the elements with 
corresponding regeneration of finite element 
mesh. 

 

 

Figure 10: Top: FE model of the specimen in Figure 3.	
Only	half	of	the	beam	is	modeled	due	to	symmetry.	
Bottom:	FE	model	of	the	beam	with	notch	in	shear. 

Material is modeled as linear elastic by 
using 4-node plane stress elements. Every 
single element has four individual nodes which 
are connected to the nodes of the next element 
through a connection matrix. The connection 
of two/three/four neighbor nodes is lost when 
the crack passes through the elements. To 
solve the problem, an iterative method is 
required to update the stiffness matrix and find 
the nodal forces in the fictitious crack. 
Moreover, the stress redistribution due to 
crack opening in time is considered. The 
nonlinear behavior is modeled by an 
interactive linear model that approximates the 
crack propagation into step-wise linear 
increments and regenerates the meshes in each 
segment. 

The step by step linear elastic model was 
derived on basis of the following 
considerations: 
A. By assembling of stiffness matrix, the 

nodal stress vector can be found as: {σ} = 
[D] {ε} where [D] is the constitutive 
matrix and {ε} = [B] {ue}, [B] is the strain 
displacement matrix and {ue} is element 
displacement vector. 

B. The crack propagation is assumed to occur 
in the interface between the elements in 
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linear increments. Under sustained loading, 
the incremental creep strains from the 
principal stresses at the beginning of the 
time segment can be evaluated. The crack 
path follows the maximum principal stress 
in the adjacent nodes. The criterion for 
which the crack will begin to propagate is 
the total strain (including the elastic and 
creep strains) at the crack tip exceeding the 
critical strain εcr. At this point, the 
corresponding node pair opens (2nd 
segment) and the mesh regenerates. Yet 
the crack width in fracture zone is small 
enough to carry the tensile forces, the 
fracture zone is modeled by ‘nodal forces’ 
which act as resisting stress along the 
crack face. The resisting stresses acting 
across the fracture zone are replaced by 
nodal forces in the finite element model. 

C. For each increment, an iterative method is 
used to evaluate the nodal forces in the 
FPZ, according to the following method; 
With the new stiffness matrix based on 
new mesh generation, the nodal 
displacements and thus the crack width in 
the first iteration wi,iter=1, is found. The 
intensity of these forces at each step 
depends on the width of the fictitious crack 
according to the σ-w curve of the material. 
In the linear elastic model, the width of the 
fictitious crack depends on the size of the 
applied load P, and when the nodal forces 
(corresponding to the width of crack) apply 
to the nodes, the crack width reduces. With 
the obtained nodal force at the end of 
iteration, vector {F}nodes is assembled with 
the nodal forces. The total applied force on 
the model is: {F}iter=2={F}P + {F}nodes. 
With the new force vector {F}iter=2, in the 
second iteration, the nodal displacements 
and the crack width are evaluated. 
Subsequently, a new vector of the nodal 
forces should be adjusted to the new crack 
width. It is obvious that  
wi,iter=2 < wi,iter=1 due to the resistant forces 
applied on the node. The iteration 
continues until the difference of crack 
widths in two following iterations 
converges to zero. This would be the end 
of segment 2. 

D. At the end of each increment the criterion 
for the propagation of the crack should be 
considered. The crack in static modeling 
propagates until the criterion ε ≥ εcr is met.  

E. After the static modeling and evaluating 
the stresses in front of the notch tip, the 
creep strain can be assessed in different 
time intervals, by means of compliance 
functions, see Figure 11. Meeting the 
criterion ε ≥ εcr , the corresponding node 
pairs are opened and step C should be 
followed. 

 

Figure 11: Strain development of strain at nodes in 
front of crack tip in time. 

 

Figure 12: Modulus of elasticity used at each load step. 
t1, t2 represent the time at the beginning of segments 1, 2 

F. In this way, the crack propagation in the 
given time interval can be evaluated. 
Under high load ratios, the creep develops 
faster and the failure (opening of all node 
pairs in front of crack tip) occurs at early 
age, while for low loading ratios, failure 
may never occur. 

7 TIME DEPENDENT PARAMETERS 

The following time-dependent parameters 
are taken into consideration into this model: 
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7.1 Bulk creep 

Short-term bulk creep for loading times up 
to 4 months and long-term bulk creep for 
longer times are considered in this model. The 
results of Model B3 [10] are compared to the 
Eurocode2 creep recommendations [12].. 

7.2 Crack rate dependency 

As mentioned in section 6, the creep strain 
can be evaluated in a stabilized stress 
distribution at each time interval. However, 
this assumption needs modification when the 
rate dependency of the fracture process is 
considered. This means that due to the time 
dependent crack width, the stress intensity and 
the nodal force vector {F}nodes in FPZ changes. 
Accordingly, the stress should be redistributed 
in the model in each time interval. Based on 
the cracking strain rate which is evaluated 
from the test results, sections 4 and 5, the 
model is modified. 

7.3 Concrete strength 

The compressive strength of concrete at an 
age t depends on the type of cement, 
temperature and curing conditions. For a mean 
temperature of 20ºC and curing in accordance 
with EN 12390 the compressive strength of 
concrete at various ages fcm(t) may be 
estimated from the following expressions [20]: 

fcm(t) = βcc(t) fcm  (16) 

βcc(t) = exp{s [ 1 – (28 / t)0.5]} (17) 

where fcm is the mean compressive strength 
at 28 days, t is the age of concrete in days and 
s is a coefficient which depends on the 
strength class of cement. 

The development of tensile strength with 
time also is strongly influenced by curing and 
drying conditions as well as by the dimensions 
of the structural members. As a first 
approximation it may be assumed that the 
tensile strength fcm(t) is equal to: 

fctm(t) = [βcc(t)] α  fctm  [20] (18) 

where, α = 1 for t < 28 days and α = 2/3 for 
t ≥ 28 days 

7.4 Modulus of elasticity 

The variation of E modulus with time can 
be estimated by the following expressions: 

Ecm(t) = (βcc)
0.3 Ecm  [12] (19) 

Ecm(t) = [βcc(t)]
0.5 Ecm  [20] (20) 

The modulus of elasticity, as it is 
developing in time, should be recalculated 
when the crack develops in time but remains 
constant until the next node pair opens. The 
new modulus (E1, E2,…) in each time interval 
(t2-t1, t3-t2,…) should be taken into account 
according to Figure 12. It is not allowed to 
consider the developing modulus of elasticity 
within the time interval, as it is impossible to 
have a negative strain in linear tension. 

7.5 Fracture energy mode I, IGF 

The fracture energy of concrete, defined as 
the energy required for propagating a tensile 
crack of unit area, should be determined by 
related tests. In absence of experimental data, 
IGF [N/m] for ordinary normal weight concrete 
may be estimated from one of the following 
expressions. 

IGF = 73 · fcm
0.18  [12] (21) 

IGF = ad · fcm
0.7  [21] (22) 

where, ad is a coefficient that depends on 
the maximum aggregate size and is equal to 4, 
6 or 10 for maximum aggregate size of 8, 16 
and 32 mm, respectively.  

As the concrete strength develops in time, 
the fracture energy requires to be modified in 
each time interval, according to the method 
used to evaluate the modulus of elasticity in 
time. 

As mentioned before, the fracture zone, in 
front of the notch-tip is modeled by ‘nodal 
forces’ and the intensity of these forces of 
course depends on the width of the fictitious 
crack according to the σ-w curve of the 
material. Following [17, 22] a bilinear 
softening traction-separation curve is used in 
this paper as shown in Figure 13, with the 
following values: 

ftm = fctmo  ln(1 + fcm / fcmo) (23) 
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w' = 2IGF / ft – 0.15 wc (24) 

wc = αF IGF / ftm (25) 

where, fctmo = 2.12 MPa and fcmo = 10 MPa 
 [20]. ftm is mean tensile strength. w' is the 
crack opening at the neck [mm], wc is the 
crack opening [mm] for σct = 0 and αF depends 
on the maximum size of aggregates dmax that is 
equal to 8, 7, and 5 corresponding to dmax = 8, 
16, 32 mm, respectively. 

 

Figure 13: Bilinear σ-ε and bilinear softening traction-
separation curve (σ-w curve). 

7.6 Fracture energy mode II, IIGF 

It was shown by Gálvez et al [16] that for 
quasi-brittle materials under global mixed 
mode loading the crack grows with a 
predominantly local mode I fracture. It has 
also been stated that Mode II fracture energy 
may only have a slight effect on the growth of 
the shear crack. However, for different 
geometries of the mixed mode fracture, the 
results may be different. 

For mixed mode fracture, the interaction 
between normal stress, σ, and tangential stress, 
τ, should be taken into account. Since the 
creep strains are evaluated based on the 
principal stress, it is not required to check the 
strain in different directions. The tension-
resistant forces (tensile strength) perpendicular 
to the crack face are taken into account based 
on the tension softening curve (fracture energy 
mode I). Potentially, the slip-resistant forces in 
FPZ parallel to the crack can be evaluated 
according to the cohesion strength (fracture 
energy mode II). 

To get insight into the influence of the 
cohesion c, to the results of shear capacity of 
the concrete, two models are proposed. In the 

first model the initiation and growth of the 
shear crack is reported by pure Mode I while 
in the second model, the mixed mode (I and II) 
is considered which means that the slip-
resistant forces due to cohesion softening 
curve are taken into account, see Figure 14. 

 

Figure 14: Path	of	shear	crack.	The	red	vectors	
represent	the	cohesion	in	the	middle	part. 

Using a quadrilateral mesh and allowing the 
shear crack path to find its way between the 
elements, the aggregate interlock can be 
simulated when the fracture mode II is 
considered. It seems more realistic than using 
triangular meshes with a smooth shear crack as 
the shear crack faces are naturally rough. With 
a very fine mesh, the possible inconsistencies 
due to the mesh type will be avoided. 

8 RESULTS OF MODELLING 

The results of FE modeling are presented in 
the following divisions: 

8.1 Time-dependent behavior and total 
fracture 

With the proposed FE method, the 
propagation of the critical crack can be 
estimated in time until fracture of the beam. In 
Figure 15, the propagation of the crack is 
shown by means of the total creep in the nodes 
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in front of the notch tip. As soon as the total 
creep exceeds the critical creep, which is here 
0.00015, the corresponding node opens and the 
model is regenerated. It is shown that under 
60% of the ultimate capacity, the failure 
occurs at 72 days after opening of the 5th node 
(crack length = 28 mm). 

 In Figure 16, the estimated time for the 
fracture of concrete beam is presented in 
different load ratios together with the 
experimental results. The material properties 
given as input to the program are based on the 
tests performed on the concrete specimens. 

 

Figure 15: Opening	of	the	nodes	in	front	of	notch	tip	
in	time	(Load	ratio	=	60%). 

 

Figure 16: Estimated	time	for	fracture	of	beam	
according	to	B3	model	&	EC2	creep	coefficient. 

8.2 Effect of compliance function 

The estimated fracture time in this model 
depends on the compliance function that is 
used. Considering that the tensile strength in 
American codes (e.g. ACI) is higher than in 
the European code (EC2), the compliance 
function of Model B3 [10] gives a slower rate 
of crack propagation in comparison with the 
EC2 creep coefficient, see Figure 16. 

8.3 Effect of cracking strain rate 

As shown in section 5.3, the cracking strain 
rate with an elastic-visco-plastic model is 
considered in this model. Figure 17 presents a 
comparison of two models with and without 
cracking rate dependency, confirming that if 
the cracking rate dependency is not considered 
in the model, the fracture process would be 
longer than expected, especially in case of 
high load ratio where the crack is already 
formed. The effect of cracking strain rate is 
well presented in [6]. 

 

Figure 17: Effect	of	cracking	strain	rate. 

8.4 Effect critical strain on time of failure 

If the magnitude of the critical strain is 
changed to a lower value, e.g. 0.00014, the 
graph in Figure 18 may shift to the left as 
faster fracture is expected, but it would be also 
shifted up, as the ultimate capacity is 
decreased. Hence, the effect of critical strain 
on time of failure is insignificant. 

 

Figure 18: Effect	of	critical	strain. 

8.5 Effect of fracture energy mode I 

The magnitude of the fracture energy in 
mode I cracking has an important influence on 
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the resistant stress in FPZ, accordingly the 
stress in front of the crack depends on IGF ; a 
lower fracture energy leads to a higher stress at 
the crack tip and faster development of the 
crack. 

8.6 Effect of fracture energy mode II on 
shear capacity 

The effect of fracture energy in mode II 
cracking on short-term shear failure is 
presented in Figure 19. This result is obtained 
based on IGF = IIGF. Obviously, when 
considering only fracture energy mode I, the 
fracture mode is not shear failure and the beam 
fails in flexural mode, while considering the 
mixed mode, the crack propagation is more 
likely to be the shear crack. 

 

Figure 19: Crack propagation under deformed shape. 
Top:	Fracture	considering	IGF	and	IIGF.		
Bottom:	Fracture	considering	IGF. 

9 CONCLUSION 

To evaluate the shear capacity of concrete 
under sustained loading a finite element model 
is developed that takes into account the strain 
rate. This model has been validated against 
experimental results. For the crack 
development that may result in failure four 
different situations are distinguished as a 
function of the load ratio; see Figure 20. 
- Load ratio higher than 75 to 80%: where the 
crack is initiated at time t0=0 and the cracking 
strain rate is taken into account, generating a 
fast propagation of the crack. As can be seen 

in this figure, the total fracture occurs within 
1000 seconds. 
- Load ratio between 60 and 75%: where the 
crack does not occur at time t0=0, but the 
potential cracks, denoted as micro-cracks, will 
in the long run be developed to a crack which 
becomes critical in a later stage and fracture 
occurs. 
- Load ratio between 50 and 60%: where just a 
few micro cracks in the FPZ will develop in 
the long run, to finally make the strain 
exceeding its critical value  
- Load ratio below 50%: where no crack is 
formed, and the stresses and strains are far 
from critical. 

This paper presented the results of FE 
modeling together with a few experimental 
tests, which are in agreement with each other. 
However, for a better conclusion, further tests 
are required those are already undertaken. 
With the presented model, it is also possible to 
predict the shear crack process but in the 
absence of experimental data, the FE results 
are not given, although the results are similar 
to the flexural crack. 

  

Figure 20: Estimated	time	for	the	fracture	of	the	
beam. 
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