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Abstract: High Performance Concrete Sandwich Elements (HPCSE) are an interesting option for 
future low or plus energy building construction. Recent research and development work, however, 
indicate that such elements are prone to structural cracking due to the combined effect of shrinkage 
and high temperature load. Due to structural restraints, autogenous shrinkage may lead to high  
self-induced stresses. Therefore autogenous shrinkage plays important role in design of HPCSE.  
The present paper assesses risk of fracture due to autogenous shrinkage-induced stresses in three 
fiber reinforced and regular High Performance Concretes (HPC). The research work described  
in this paper contains a description of experimental setup that allows measurement of effective 
shrinkage in HPC, which develops on an elastic inhomogeneity embedded in HPC matrix 
undergoing shrinkage during hydration (autogenous shrinkage). The test setup is based on direct 
measurement of the hydrostatic pressure developed in a simple pressure sensor embedded  
in the same matrix and a subsequent analysis based on Eshelby's solution for an ellipsoidal 
inhomogeneity embedded in an infinite matrix.  
The paper also presents the analysis necessary to perform an interpretation of the experimental 
results and to determine effective shrinkage in the HPC matrix. 
Furthermore, the mechanical properties of all the mixes – static elastic modulus, compression 
strength, tensile strength as well as fracture energy were investigated in detail as function of time.  
Finally the paper describes the modeling work with HPCSE predicting structural cracking provoked 
by autogenous shrinkage. It was observed that risk of cracking due to autogenous shrinkage rapidly 
rises after 3 days in case of regular HPC and after 7 days in case of fiber reinforced HPC. 
 

 

1 INTRODUCTION 

Thin-walled High Performance Concrete 
Sandwich Elements (HPCSE) undergo volume 
changes. These changes are generated by high 
thermal load applied on the concrete plates in 
the hardened state combined with autogenous 
and drying shrinkage during hardening. 
HPCSE are particularly sensitive to self-
desiccation of the cement paste during 
hydration process, which leads to autogenous 

shrinkage. If a restraint is present, autogenous 
shrinkage may lead to high self-induced 
stresses [1-3]. In practice, restraint of HPCSE 
arises from rigid inhomogeneities, 
reinforcement, temperature gradients over  
the specimen thickness and subgrade friction 
that limits the volumetric changes.  
The prediction of shrinkage cracking due to 
restraint is a complex phenomenon dependent 
on the interaction of several factors such as: 
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free shrinkage, creep relaxation, material 
stiffness, fracture resistance, environmental 
conditions, time dependence, and degree of 
restraint [4,5]. Autogenous shrinkage should 
be limited because it may possibly cause 
surface and even through-thickness micro-
craking or macro-cracking and impair the 
concrete quality [6]. Therefore autogenous 
shrinkage plays important role in design of 
HPCSE. The present paper is case study  
of 3.59m wide and 4.48m high load carring 
HPCSE. These HPCSE were subjected to 
structural cracking approximately 6 months 
after assembly. The HPCSE consist of  
an internal layer of insulation and two external 
High Performance Concrete (HPC) plates.  
The connectors are used to keep the plates 
together and the panel intact during handling. 
The prediction of shrinkage cracking is  
a complex problem dependent on several 
factors as was already mentioned. The 
experimental investigations and monitoring of 
all these factors could lead to high financial 
cost and long-term measurement.  

This work presents a low cost experiment 
which can combine several factors into one. 
The experimental work is based on direct 
measurement of the augoneous shrinkage-
induced stresses. 

In former studies some experiments of self-
induced stresses in concrete were performed. 
Nielsen [7] in his doctoral study developed a 
stress sensor to measure the stresses in an 
aggregate in a uniaxial creep test.  
The technique of measurement was based on 
change in the mutual inductance between two 
coils which are displaced in relation to each 
other. Furthermore, Sato et al. [8] attempted to 
measure self-induced stress with an embedded 
deformed bar and inspection of micro-crack in 
concrete at the vicinity of rebar. Dela [9] used 
massive porcelain spheres encircled with 
manganin wire glued to the surface as stress 
sensor to predict the magnitude of 
eigenstresses around aggregates in hardening 
cement paste. Her study is based on linear 
elastic solution and stepwise calculation taking 
into account change in the stiffness but 
disregarding the relaxation. Finally, the work 
by Stang [10] should be mentioned. In this 

work, the shrinkage-induced clamping 
pressure acting on aggregates and different 
fiber types embedded in cement pastes were 
investigated as a function of time. The 
estimation is based on direct measurement  
of the pressure developed in a simple pressure 
sensor embedded in the same matrix and a 
subsequent analysis based on Eshelby’s 
solution [11] for an ellipsoidal inhomogeneity 
embedded in an infinite matrix. 

The main motivation of the present work  
is to demonstrate that autogenous shrinkage of 
the HPC contributes to the potential structural 
cracking of the front plate of the HPCSE. 
Three fiber reinforced and regular HPC mixes 
were analyzed in order to assess risk  
of fracture and eventually foresee whether 
cracks will be propagated stably or unstably. 
Additionally the mechanical properties of all 
mixes – Static elastic modulus, compressive 
strength, tensile strength as well as fracture 
energy were investigated in detail as function 
of time. 

2 EXPERIMENTAL PROCEDURE 

The present work represents three fiber 
reinforced and regular HPC mixes. The first 
mix was a commercial mix developed  
by CONTEC ApS and will be denoted as 
Contec mix. Another two HPC mix designs 
were based on research work of Ozbay et al. 
[12]. These two mixes were denoted as DTU 
mixes. The DTUI mix was designed to 
correspond to the mechanical properties of  
the Contec mix. The DTUII mix was adjusted 
by bauxite sand and fly ash to obtain better 
mechanical properties than Contec and DTUI. 
The mix designs are shown in Table 1.  

A 60l pan mixer was used for mixing; 
mixing time was 2 minutes for the dry mixing 
and 5 minutes with water and super-
plasticizer. The vibrating time was chosen to 
be 30s. After casting, the specimens were left 
to harden in a climate chamber (22±2 °C and 
65±5% RH). Specimens were demoulded after 
24h and put in the water at 20 °C for curing. 

 Beams for determination of the mechanical 
properties were casted in one use polystyrene 
moulds. 
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Table 1 – HPC mix designs (kg/m3) 

Mix Contec DTUI DTUII Contec-F DTUIF DTUIIF
Cement (CEM I 52.5 R) / 495 460 / 495 460 
Binder Contop S 105-2  582.3 / / 582.3 / / 
CA, granite, 02-05 mm  832.3 868.4 1015.6 832.3 868.4 1015.6 
FA, sea gravel, 0.1-1.5 mm 
FA, bauxite sand, 0-1 mm 

763.7 
/ 

781.6 
/ 

/ 
609.4 

763.7 
/ 

781.6 
/ 

/ 
609.4 

Silica fume 
Fly ash 
Super-plasticizer 
Glass fibers 
Polypropylene fibers 
Total dry mass 

/ 
/ 
/ 
/ 
/ 

2178.3 

55 
/ 

11 
/ 
/ 

2200 

57.5 
57.5 
25.9 

/ 
/ 

2200 

/ 
/ 
/ 

4.04 
2.02 

2184.4 

55 
/ 

11 
4.0 
2.0 

2206 

57.5 
57.5 
25.9 
3.5 

1.78 
2205.3 

Water-cementitious material ratio 0.304 0.25 0.25 0.304 0.25 0.25 
Water-cementitious material ratio* / 0.27 0.295 / 0.27 0.295 

 * including the water content of the superplasticizer 

3 MECHANICAL PROPERTIES 

The developments of the mechanical 
properties - Static elastic modulus, 
compression strength, tensile strength (wedge 
splitting test) as well as fracture energy were 
investigated in detail as function of time. All 
the tests were performed at room temperature 
(20±2 °C). The compressive strength and static 
elastic modulus were determined according  
to EN 1992-1-1 [13]. Specimen geometry for 
mechanical tests is shown in Table 2. 

Table 2 – Specimen geometry for different tests 

Test Specimen geometry 
Compressive strength W/H/L = 40/40/40 mm 
Tensile strength  W/H/L = 100/100/100 mm
Static elastic modulus W/H/L = 100/100/100 mm

3.1 Compressive strength 

The mean compressive strength at 28 days 
was observed to range roughly between 75 to 
110 MPa. DTU mixes have significantly 
higher development of compressive strength 
during the first days. This phenomena can be 
explained by the use of the cement with rapid 
hardening together with silica fume and fly ash 
in case of DTUII(F). There was not found any 
significant difference in compressive strength 
between regular HPC mixes and the fiber 
reinforced. Development of compression 
strength for all HPC mixes is shown in  
Table 3.  

3.2 Tensile strength 

The 28 days splitting tensile strength of all 
HPC mixes was high around 5.5 MPa.  
The tensile strength of the DTU mixes made 
with silica fume, fly ash and cement with rapid 
hardening was observed to develop faster. 
After three days it was at roughly 5 MPa - well 
above the strength of the Contec mixes, 3 MPa 
(Table 3). Tensile strength development of 
Contec mixes tended to increase slower than 
DTU mixes. There was no obvious change of 
tensile strength caused by adding fibers to 
HPC matrix. 

3.3 Static elastic modulus 

With the exception of the Contec mixes,  
the mean static elastic modulus of the 
concretes Ecm, reached about 60GPa after 28 
days. The static elastic modulus of the Contec 
mixes was at 40GPa, thus significantly lower. 
This seems to be caused by discontinues grain 
size distribution curve and by a 
disadvantageous pore size distribution of the 
hardened concrete. The static elastic modulus 
of the DTU mixes developed significantly 
faster than Contec mixes (Table 3).  

3.4 Fracture energy 

An experimental investigation completed as 
part of this study were using the Wedge 
splitting test (WST) to ascertain the fracture 
behaviour of the concrete mixtures used 
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throughout this work. The specimen geometry 
and analysis needed to evaluate the WST were 
published in Ref. [14]. The fracture energy Gf, 
characterize the material's resistance to 
fracture. The mean fracture energy Gfm, was 
found to increasing with age for all the mixes.                     

The brittleness of cohesive material can be 
described by the characteristic length, Lch.  
The general trend in the development of the 
mean characteristic length Lchm, was observed 
to decrease with maturity. The same results 
were also found in literature, e.g. [15-16].

Table 3 – Mechanical properties 

Mix Age 
(days) 

fcm,cube – SD 
(MPa) 

fctm,sp – SD 
(MPa) 

Ecm – SD 
(GPa) 

Lchm – SD 
(mm) 

Gfm – SD 
 (N/m) 

Contec 

1 
3 
7 

28 

31.4 – 4.8 
43.6 – 8.2 
59.1 – 3.2 
72.3 – 8.4 

2.1 – 0.0 
3.0 – 0.4 
5.1 – 0.9 
5.2 – 2.1 

41.3 – 0.8 
43.7 – 5.8 
36.5 – 1.4 
43.3 – 0.0 

777 – 89 
430 – 109 
115 – 24 
186 – 49 

81.5 – 7.6  
86.1 – 35.2 
110.6 – 8.2 
115.9 – 1.4 

DTUI 

1 
3 
7 

28 

61.5 – 3.5 
65.6 – 2.2 
73.1 – 6.9 
89.2 – 3.7 

3.6 – 0.4 
4.4 – 0.0 
5.6 – 0.3 
6.5 – 1.4 

53.5 – 0.5 
44.9 – 7.5 
60.0 – 6.0 

55.5 – 11.6 

768 – 48 
281 – 3 

234 – 34 
168 – 29 

182.7 – 22.6 
119.8 – 19.5 
124.3 – 17.2 
129.3 – 8.0 

DTUII 

1 
3 
7 

28 

60.9 – 10.2 
81.8 – 4.3 
84.2 –  6.3 
102.7 – 9.0 

2.9 – 0.6 
4.7 – 0.1 
4.9 – 0.0 
5.5 – 0.6 

43.5 – 1.5 
48.3 – 3.1 
53.8 – 7.8 

58.6 – 19.0 

621 – 167 
234 – 14 
279 – 79 
258 – 4 

116.4 – 27.1 
106.0 – 2.9 
121.9 – 9.5 
134.6 – 2.4 

Contec-F 

1 
3 
7 

28 

38.0 – 5.2 
52.1 – 2.5 
60.3 – 4.0 
71.9 – 1.5 

2.1 – 0.3 
3.3 – 0.4 
3.9 – 0.0 
4.6 – 0.6 

39.1 – 0.5 
36.5 – 0.4 
36.4 – 0.9 
35.0 – 4.9 

1652 – 188 
464 – 76 
370 – 14 

346 – 156 

184.8 – 9.7 
136.5 – 7.4 
157.8 – 4.4 
204.8 – 5.7 

DTUIF 

1 
3 
7 

28 

47.4 – 3.5 
64.9 – 5.8 
65.0 – 5.4 
81.6 – 2.3 

3.4 – 0.1 
4.8 – 0.2 
5.9 – 0.2 
6.5 – 0.5 

50.0 – 1.1 
48.5 – 0.6 

43.3 – 10.4 
52.3 – 5.6 

697 – 60 
344 – 54 
209 – 3 

223 – 156 

158.2 – 11.8 
161.0 – 4.2 

167.8 – 20.6 
168.9 – 29.1

DTUIIF 

1 
3 
7 

28 

58.1 – 7.3 
75.1 – 5.8  
83.8 – 5.3 

111.9 – 4.6 

3.5 – 0.1 
5.0 – 0.0 
5.1 – 1.7 
5.2 – 0.2 

48.1 – 1.5 
46.8 – 1.6 
46.8 – 2.1 
58.7 – 0. 1  

894 – 76 
299 – 42 
245 – 25 
338 – 21 

222.5 – 40.1 
157.0 –  7.8 
135.8 – 14.8 
155.8 – 3.7 

3.5 Autogenous shrinkage-induced stresses 

The experimental setup proposed by Stang 
[10] was used to determine autogenous 
shrinkage-induced stresses. As stress sensor  
a laboratory mercury thermometer with 
temperature scale going from 0 to 50°C and  
a precision of 0.1°C was chosen. The stress 
sensors were calibrated for hydrostatic 
pressure by using the so-called Budenberg 
instrument. The Budenberg was loaded 
stepwise until reaching 50 bars, and then 
unloaded. The average calibration factor α, 
was found to be 1.67MPa/°C. Furthermore,  
the amount of mercury in the capillary tube 
was measured by weighing the tube with and 
without mercury and the calibration factor β 

 
(g/°C), was determined related to apparent 
temperature change to mass of mercury. The 
equivalent compression modulus of the stress 
sensor κe, was determined according Eq. 1: 

 hge 
 


  (1) 

where γhg is density of mercury and ν is the 
total volume of mercury cell (glass and 
mercury). Based on modelling the mercury 
cell as an axis-symmetric ellipsoidal shell with 
wall thickness h, the linear elastic solution for 
the equivalent compression modulus κe*,  
can be determined as shown in Eq.2 [10] 
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3

s
e E h

bI
    (2) 

where Es is static elastic modulus and I is 
function of  a/b (a is the length  of the  
half-axis in the direction of symmetry and b is 
radius of the cell) and Poisson’s ration υs.  
The calculated bulk moduli based on linear 
elastic shell solution were compared with 
measured one. It was found that results  
of measured and calculated bulk moduli, κe 
and κe*, are close with 10% differences 
between them. 

To record properly the stresses due to 
autogenous shrinkage, the thermometer should 
disturb the concrete as little as possible. The 
glass tube protecting the mercury-filled 
capillary is removed leaving only the mercury 
container and the capillary (see Fig. 1a). 
Before casting, the 18 cylinders  

(3cylinders per mix) were oiled to allow the 
HPC freely shrink without applying tension on 
the cylinder. After calibration, the stress 
sensors were casted into the center of PVC 
cylindrical mould filled with the HPC. The 
cylinders had a diameter of 100mm and  
a height of 200mm. The recording of the 
temperature during long-term testing was 
performed by thermocouples inserted in the 
concrete cylinder. To compensate the 0.2°C 
precision  
of the couples, two couples were inserted close 
to the thermometer and the average of their 
readings was considered. After casting, the top 
of the cylinder was covered with a thin layer 
of oil to preserve the water from evaporating 
(see Fig. 1b) Thus, the HPC experience only 
autogeneous shrinkage and temperature 
variation associated with the hydration 
process.  

                                            
 (a) (b) 

Figure 1: a) Photograph showing the different parts of the mercury thermometer used as a pressure sensor in the 
experimental investigations. b) Photograph showing the experimental setup, the PVC mould, the stripped thermometer, 

and the thermocouple module. 
 
The output of observation was based on 

temperature differences ΔT, between the stress 
sensor and average value of the two 
thermocouples observed over time t, where  
t = 0 corresponds to the beginning of 
experiment (30 minutes after mixing). Using 
the calibration factor α, the observed ΔT was 
readily transformed to an equivalent 
hydrostatic stress state e

hyd , in the equivalent  

 
elastic inhomogeneity: 

 ( ) ( ( ) ( 0))e
hyd t T t T t      (3) 

The development in equivalent hydrostatic 
stress state for six different mixes is shown in 
Fig. 2. Figure 2 clearly shows that there is  
a significant difference between the DTU and 
Contec mixes. A much higher hydrostatic 
stress develops in the sensors embedded  
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in DTU mixes. Furthermore, the hydrostatic 
stress keeps rising in the Contec mixes and 
then after approximately 600 hours drops to an 
almost constant level. The hydrostatic stress of 
the DTU mixes keeps constantly rising up to 
2000 hours then the curve is flattened. All 
fiber reinforced mixes showed the same 
tendency in development of the hydrostatic 

stresses as regular HPC mixes. However, there 
is a lack of information in literature whether 
increase of the hydrostatic stresses in fiber 
reinforced HPC mixes is significant or not. 
The experimental programme with more 
specimens would be necessary to statistically 
confirm this phenomenon. 

 

Figure 2: Development in equivalent hydrostatic stress e
hyd , in the pressure sensors.  

The analysis in ref. [10] based on Eshelby’s 
original superposition scheme [11] with 
homogeneous infinite medium and an 
inclusion undergoing a stress-free strain was 
utilized in interpretation of the experimental 
results. The concept of effective shrinkage εs,e, 
was defined as a function of time according 
Eq. 4. The effective shrinkage can be defined 
as the autogenous shrinkage that in linear 
elastic system interpret the correct stress state 
in an embedded equivalent inhomogeneity. 

 ,
*

( ) 1 ( )
( )

( ) 1 3

e
hyds e c c

e
c i

t E t
t

E t

 
 

 
   

 (4) 

Here Ec(t) is static elastic modulus of the HPC 
mixes as function of time. The Poisson’s ratio 
of the HPC mixes, υc of 0.2, is assumed to be 
equal to Poisson’s ratio of embedded 
inhomogeneity, υi.  
 
 

Looking at Figure 3, it has to be noted that 
static elastic modulus of the HPC mixes was 
measured at certain time steps of maturity as 
shown in Table 3. To build up the effective 
shrinkage curves, the static elastic modulus of 
the HPC mixes as function of time was 
linearly interpolated between the measured 
ones. The effective shrinkage of the Contec 
mixes rises to 2.5 10-4- 3.0 10-4 and after 
approximately 600 hours drops to an almost 
constant level of about 2.0 10-4- 2.5 10-4.  
The significant drop can be explained by 
relaxation, which plays an important role in 
Contec mixes. In the case of the DTU mixes 
the effective shrinkage keeps rising, however, 
with a much lower rate. The effective 
shrinkage at 4000 hours almost reaches double 
of the Contec mixes, about 3.0 10-4- 4.0 10-4. 
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Figure 3: Development in effective shrinkage, εs,e  for different inhomogeneities. 

4 ASSESSMENT RISK OF FRACTURE 

In the case of HPCSE embedded steel 
connectors cause restrain to the HPC plates, 
see Fig. 4. The finite element program Abaqus 
was used to calculate the response of the 
concrete front plate to autogenous shrinkage. 
The plate has a width of 3.584m and a height 
of 4.48m. The thickness of the plate is 20mm. 
The shear connectors were implemented in the 
middle of the plate thickness. The calculations 
made the assumption of linear elastic 
behaviour/small displacements. A quarter  
of the panel was modelled, accounting for 
symmetry. The numerical model consists  
of two types of element: C3D8T:  An 8-node 
thermally coupled brick for concrete front 
plate and T3D2T:  A 2-node 3-D thermally 
coupled truss for welded wire truss shear 
connectors. All the investigated mixes were 
analyzed in order to assess risk of fracture and 
eventually foresee weather crack will  
be propagated stably or unstably. The material 
data from experiments (Static elastic modulus, 
E, and coefficient of thermal expansion for 
HPC mixes, αc) were used as input to the 
Abaqus model. 

To obtain the right response of the front 
plate, the analysis has to include autogeneous 
shrinkage of the front plate as well as an effect 
of differential shrinkage between front plate 
and back plate. The effect of differential 
shrinkage between front plate and back plate 

was extracted from experimental setup in 
Section 3.5 as the largest effective shrinkage 
difference between 3 cylinders of the same 
mix. The load induced by autogenous 
shrinkage was applied homogenously over the 
plate. In order to model autogenous shrinkage, 
this can be achieved using an extension of 
Hooke’s law for temperature as: 

 
, ( )s e

c

t
T




    (5) 

 
Figure 4: The front plate with an arrangement of the 

shear connectors. 
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modelling work leads to the present 
conclusions. 

The risk of cracking due to autogenous 
shrinkage rapidly rises after 3 days in case  
of regular HPC mixes and after 7 days in case  
of mixes with fibers. The stresses due to 
autogenous shrinkage have a large role to play 
also but minor compared to the one of the 
environmental conditions. The combination of 
autogenous shrinkage and thermal load from 
outside environment may lead to massive 
structural cracking. Furthermore, the stiffness 
of the shear connectors have a significant role 
in design of HPCSE. Therefore their stiffness 
should be studied in detail and new types of 
shear connector for HPCSE should be 
developed to avoid of structural cracking. 
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