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Allée du Parc Montaury, F64600 Anglet, France
e-mail: david.gregoire@univ-pau.fr, http://lfc.univ-pau.fr

Key words: Non local model, Non local interactions, Damage, Concrete failure, Quasi-brittle mate-
rials

Abstract. The purpose of this paper is to discuss a new approach to non-local interactions during
failure in quasi-brittle materials. It focuses on the estimation of the non-local weight functions directly
from interactions. The materials is modeled as an assembly of inclusions and the elastic interactions
upon dilation of each inclusion are computed in a similar wayto a classical Eshelby’s problem. A
new interaction-based weight function is then built from these interactions. This new interaction-
based non local model is validated on simple 1D problems and its performances are compared with
the classical integral-type nonlocal model.

1 INTRODUCTION

Classical failure constitutive models involve
strain softening due to progressive cracking and
a regularisation technique for avoiding spuri-
ous strain and damage localisation. Different
approaches have been promoted in the litera-
ture such as integral-type non-local models (e.g.
[1]), gradient damage formulations (e.g. [2]),
cohesive cracks models (e.g. [3] with classical
finite elements and e.g. [4] with extended finite
elements), or strong discontinuity approaches
(e.g. [5]). Such macroscale failure models have
been applied on a wide range of problems, in-
cluding the description of damage and failure
in strain softening quasi-brittle materials [1],
softening plasticity [6–8], creep [9] or compos-
ite degradation [10]. They may exhibit, how-
ever, some inconsistencies such as (i) incor-
rect crack initiation, ahead of the crack tip; (ii )
propagating damage fronts after failure due to
non-local averaging, (iii ) incorrect shielding ef-
fect with non-zero non-local interactions across

a crack surface; (iv) deficiencies at capturing
spalling properly in dynamics, with spalls of
zero thickness when the expected spall size is
below the internal length of the model (see e.g.
[11–14]). Moreover changing geometry, e.g.
from tensile to bending loads or from unnotched
to notched specimens, results generally in the
loss of predictive capabilities of the macro-scale
non-local models [15, 16]. On the contrary, it
has been shown recently [15, 17] that meso-
scale models gave good prospect in the pre-
diction of failure and size effect for notched
and unnotched concrete beams. Indeed meso-
scale results have been compared to a new ex-
perimental database [16] consisting in 3 point
bending failure tests for similar notched and
unnotched concrete specimens of four differ-
ent sizes but made from the same formulation.
Not only the different peack loads for all ge-
ometries are recovered but also the failure soft-
ening phase is well predicted which is a more
challenging issue. It means that the meso-scale
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models intrinsically contain relevant informa-
tion leading to a good description of the size
effect, the boundary effect and the whole fail-
ure process.

At the macro-scale, the prediction of failure
in quasi-brittle materials needs enhancement of
existing non-local damage models and the way
the non-locality is taken into account in the
macro-scale models has to be redefined. Non-
locality finds its origin in the interaction be-
tween material points undergoing damage in the
course of failure [18, 19]. There are several
mechanisms which should be considered when
looking at the non-locality due to the interaction
between damaged points : (i) an interaction ex-
ists if there is damage which produces this in-
teraction. Assuming that damage corresponds
to the growth of micro-cracks, this interaction
grows with the size of the defect ; (ii) shield-
ing effects are also expected : the interaction
between two points located apart from a crack
should not exist ; (iii) on free existing or evolv-
ing boundaries, and along the normal to these
boundaries, non-local interactions should van-
ish as demonstrated in [20]. The internal length
in the non-local model is the parameter inside
the weight function that encompasses the non-
locality and there is a consensus that this quan-
tity may not be constant, but should depend on
the geometry of the specimen or on the state of
damage. Therefore enhanced non-local models
accounting for a variation of the internal length
have been proposed recently [13, 20, 21]. Pro-
posals discussed in [13, 20] are considered on
academic one-dimensional problems. Their im-
plementation and extension to 2D or 3D prob-
lems are really not trivial as they involve the
computation of path integrals, which are tedious
in a finite element setting. The stress-based
model in [21] is more tractable in 2D/3D com-
putations but the evolution of non-locality is
rather empirical.

The purpose of this paper is to discuss a
new approach to non-local interactions dur-
ing failure in quasi-brittle materials and to up-
scale the relevant information present from the
meso-scale to the macro-scale. Therefore, the

paper focuses on the estimation of the non-
local weight function directly from interac-
tions. The materials is modeled as an assem-
bly of inclusions and the elastic interactions
upon dilation of each inclusion are computed
in a similar ways to a classical Eshelby’s prob-
lem [22, 23]. A new interaction-based weight
function is then built from these interactions.
This new interaction-based non local model is
first validated on simple 1D problems and its
performances are compared with the classical
integral-type nonlocal model.

2 A NEW INTERACTION-BASED NON-
LOCAL MODEL

2.1 Non-locality in integral-type macro-
scale models

In classical non-local models, such as the
integral-type [1], the internal length is the pa-
rameter inside the weight function that encom-
passes the non-locality (see Eq. 1). Associated
with a classical gaussian weight function, it set
how and how far the interactions produce in-
side the materials. However, the main draw-
back of the formulation is that this parameter
is constant whatever the geometry and the fail-
ure process. For instance, close to a boundary,
the part of the nonlocal averaging domain that
protrudes outside the boundary is classically
chopped off [1]. Improved models can be found
in the literature, with a different averaging pro-
cess close to the boundary of the solid [12, 24]
or with a varying internal length in the course
of damage [13, 20, 21]. However, even if the
internal length variations are based on micro-
mechanical concepts, such as the crack growth
interaction effect or the transfer of information
through a damaged area, the final choice of the
weigh function and thus the evolution of non-
locality are rather empirical.

ε =
1

Ωr(x)

∫

Ω

ψ0(x, ξ)ε(ξ)dξ

ψ0(x, ξ) = exp

(

−
(

2||x− ξ||
lc

)2
)

Ωr(x) =

∫

Ω

ψ0(x, ξ)dξ (1)
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In Eq. 1,Ω is the volume of the structure,Ωr

is a characteristic volume introduced in such a
way that the non-local operator does not affect
the uniform field far away from the boundary,ε
is the non-local strain,ψ0 is a Gaussian weight
function andlc is the internal length of the non-
local continuum which is related to the size of
the fracture process zone.

2.2 Non-locality in meso-scale models

In meso-scale models, the non-locality is in-
trinsically included by representing the meso-
structure of the materials (e.g. granular, ma-
trix and interfaces in concrete). Therefore, the
non-locality does not behave the same close to
a boundary, close to a damaged area, at initia-
tion or during the failure process. It has been
shown recently that such models are able to
capture challenging issues of quasi-brittle ma-
terials failure such as predicting the peak loads
and even the whole softening load-displacement
responses of notched and unnotched beams in
three-point bending [15, 17]. In the following
we aim at building a new interaction-based non-
local weight function which will evolve intrinsi-
cally when damage occurs inside the materials.

2.3 A new interaction-based non-local
weight function

The purpose of the paper is to discuss a
new approach to non-local interactions during
failure in quasi-brittle materials and to upscale
the relevant information present from the meso-
scale to the macro-scale. Therefore, we aim
at estimating the non-local weight functionψ0

presented in Eq. 1 directly from interactions.

Let us consider two material points(x, ξ)
of a quasi-brittle structure and an infinitesimal
strain perturbation locally produced inξ. Con-
sidering the interaction betweenx and ξ con-
sists in estimating the non-local contribution of
the strain perturbation ofξ on x. This problem
can be mathematically written as:

εξ(x) =

∫

Ω

ψ int
x (u)ε∗ξ(u)du

=

∫

Ω

ψ int
x (u)δ(ξ, u)ε∗(u)du (2)

δ(ξ, u) =

{

0 if u 6= ξ

1 if u = ξ
(3)

In Eq. 2, Ω is the volume of the structure,δ
is the Dirac function,ε∗ is a given strain field
such asε∗ξ = δε∗ represents the local strain per-
turbation centered inξ, ψint

x is the interaction-
based non-local weight function to reconstruct
centered inx andεξ(x) represents the non-local
contribution of the strain perturbation ofξ onx.

Following Eq. 3, Eq. 2 can be rewritten as:

εξ(x) = ψint
x (ξ)ε∗(ξ) (4)

Therefore the interaction-based non-local
weight functionψint

x , centered onx, can be sim-
ply reconstructed by considering on each point
ξ the measure of the non-local contribution seen
by a pointx when a perturbation is produced in
ξ.

Practically, the interaction-based non-local
weight functionψint

x is reconstructed using a
finite element codeCast3M1. The strain per-
turbation is produced by a thermal expansion:
ε∗ = α∆T I. The thermal expansion is im-
posed on each integration points contained in a
sphere centered inξ (see Figure 1). The radius
a of the sphere is a model parameter and is re-
lated to the size of the fracture process zone, i.e.
to the maximum aggregate size. The measure of
the non-local contribution is chosen equal to the
Euclidean norm of the eigenstrains. Finally the
interaction-based weight function writes:

ψint
x (ξ) =

√

∑

i∈J1,3K

|ǫξi (x)|2 (5)

In Eq. 5,ǫξi (x) represents the value at pointx of
theith-eigenstrain when a thermal expansion is
imposed at pointξ.

1http://www-cast3m.cea.fr

3
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Figure 1: Non-local contribution seen by a pointx when
a perturbation is produced inξ.

2.4 Eshelby-like problem
We aim here at validating the numerical im-

plementation in the finite element codeCast3M
of the interaction-based weight function recon-
struction. Therefore we consider here a unique
circular source of perturbationξ in a large struc-
ture (see Fig. 2) and we estimate numerically
the non-local contribution seen by the structure
when a thermal expansion is produced inξ.

−→y

−→x

ξ

Figure 2: Eshelby-like problem

The numerical solution may be compared to
the Eshelby-like solution of a circular inclu-
sion2 in a infinite medium [22, 23]. We will fo-
cus on the strain component along the Y-axis.

From the Eshelby theory, for a circular inclu-
sion of radiusa, an initial dilationε∗ = α∆T I

(eigenstrain, i.e strain at0-stress) and a Poisson
ratio ν, the strain inside (εI) and outside (εE)
the inclusion along the Y-axis are respectively
given in Eq. 6 and 7 (see Eq. 15 and 16 in ap-
pendix for details).
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Figure 3: Comparison between the numerical results and
the analytical Eshelby solution

εI = S
Iε∗ = S

Iα∆T I

= α∆T
1 + ν

2(1− ν)





1 0 0
0 1 0
0 0 0



 (6)

εE = S
Eε∗ = S

Eα∆T I

= α∆T
a2

y2
(1− ν)

2(1− ν)





1 0 0
0 −1 0
0 0 0



 (7)

Fig. 3 presents the comparison between the
numerical results and the analytical Eshelby so-

2A 2D circular inclusion corresponds to a cylindrical inclusion in 3D
3α = 1K−1, ∆T = 1K, a = 1m, ν = 0.21
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lution3. Both strains inside and outside the in-
clusion are recovered.

2.5 Final formulation
Damage is considered to be isotropic. Tem-

perature and time-dependent effects are ne-
glected. Therefore, the stress- strain relation is
classically written as:

σ = (1−D)C : ε (8)

In Eq 8,(σ, ε,C) are the stress, strain and stiff-
ness tensors respectively, andD is the scalar
damage variable which represents the material
degradation (D ∈ [0, 1], D = 0 for a virgin
material andD = 1 for a completely damage
material).

Damage is a function of the amount of ex-
tension in the material, defined locally by the
equivalent strain (Eq. 9), see Ref. [25].

εeq =

√

∑

i∈J1,3K

〈εk〉2+ (9)

In Eq 9,εk are the principal strains (k = 1, 2, 3)
and〈εk〉+ their positive part.

The classical non-local integral formulation
is modified by taking into account the new
integration-based weight function presented in
Eq. 5. Similarly to Eq. 1, a characteristic vol-
ume is introduced in such a way that the non-
local operator does not affect the uniform field
far away from the boundary when no damage
occurs in the structure. Finally the non-local
formulation writes:

εeq =
1

Ωr(x)

∫

Ω

ψint
x (ξ)εeq(ξ)dξ

Ωr(x) =

∫

Ω

ψ0
x(ξ)dξ (10)

In Eq. 10, ψint
x is the new interaction-based

weight function defined in Eq. 5 andψ0
x repre-

sents the same function reconstructed when no
damage occurs in the structure (typically at the
beginning of the computation).

The evolution of damage (Eq. 11) is a func-
tion of the non-local equivalent strain (Eq.10)

and it is governed by the Kuhn-Tucker loading-
unloading condition (Eq. 11a).

Γ(ε, h) = εeq(ε)− h , Γ(ε, h) ≤ 0 ,

ḣ ≥ 0 , ḣΓ(ε, h) = 0

h = max(εD0
,max(εeq)) (11a)

D(εeq, x) =
∑

i∈{t,c}

αi[1− (1− Ai)
εD0

εeq(x)

−Ai exp(−Bi(εeq − εD0
))]

αi =
∑

k∈J1,3K

(

εik 〈εk〉+
ε2eq

)

(11b)

In Eq. 11a,Γ is the loading function which
defines the limit of the elastic (reversible) do-
main, εD0

is the damage threshold,h is the
history variable, the largest ever reached value
of the non-local equivalent strain; in Eq. 11b,
which defines the kinetics of damage growth,
the damage variable is split into two parts to
capture the differences of mechanical responses
in tension(i = t) and in compression(i = c) as
proposed by [25].(αt, αc) are coefficients de-
fined as functions of the principal values of the
strain tensors(εt, εc) due to positive and neg-
ative stresses, i.e. the strain tensors obtained
according to Eq. 8 in which the positive (resp.
negative) principal stresses are retained only.
Note that in uniaxial tension(αt = 1, αc = 0)
and(αt = 0, αc = 1) in uniaxial compression.
(At, Bt, Ac, Bc) are model parameters.

Since the reconstruction process of the
interaction-based weight function is kinemati-
cally driven by the successive thermal expan-
sion imposed on each point of the structure, all
boundary conditions are clamped during the re-
construction process in order to not perturb the
actual kinematics fields on the boundary.

3 VALIDATION AND PERFORMANCES
3.1 Clamped bar in tension

There are several mechanisms which should
be considered when looking at the non-locality
due to the interaction between damaged points:
(i) an interaction exists if there is damage which
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produces this interaction. Assuming that dam-
age corresponds to the growth of micro-cracks,
this interaction grows with the size of the de-
fect; (ii) shielding effects are also expected:
the interaction between two points located apart
from a crack should not exist; (iii) on free exist-
ing or evolving boundaries, and along the nor-
mal to these boundaries, non-local interactions
should vanish as demonstrated in [20]. We pro-
pose here to test all these mechanisms on the
simple problem of a clamped bar in tension (see
Fig. 4). The response of the material is sup-
posed to be purely elastic excepted in a dam-
aged area located in the center of the bar. The
structure is modeled as a succession of circular
inclusions (radiusa) which will be successively
dilated in order to reconstruct the interaction-
based non-local weight function. In order to
study the response on the exact boundary, only
half of an inclusion is used on both sides of the
structure.

a

Figure 4: Simple problem of a clamped bar in tension.

Close to the left boundary, where no damage
occurs, Fig. 5 shows that a local behavior is re-
covered when the size of the inclusions tends to
zero. Therefore the non-local interactions van-
ish as proposed in [20].

Figure 5: Local response close to a boundary for a de-
creasing size of the inclusion size.

Figure 6: Response close to a damaged area.

When the inclusion stays inside the undam-
aged part but get close to a damaged area,
Fig. 6 shows that a shielding effect is observed
with the new formulation whereas the non-
local contribution are higher inside the damaged
area with the original formulation and the phe-
nomenon increases when the damage increases.
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If the size of the damage part decreases, this
may lead to a transfer of information apart
the damaged part with the original formulation
whereas a perfect shielding effect is observed
with the new one. The only restrictive condition
is that the inclusion size stay smaller than the
damaged area size otherwise some information
may be transferred through the inclusion itself.

These first observations on a very simple ex-
ample of a clamped bar in tension give some
insight about the evolution of the size of the
sphere containing the integration points where
the thermal expansion is imposed to reconstruct
the interaction-based weigh function. Indeed,
this sphere has to decrease in size when it get
close to a boundary in order to recover a local
behavior. Moreover, this sphere has to decrease
in size when the local damage increases to en-
sure an efficient shielding effect. Finally, we
choose empirically the following rules:

a(x) = min(a0
√

1−D(x), d(x)) (12)

In Eq. 12, a(x) represents the radius of the
sphere containing the integration points where
the thermal expansion is imposed to reconstruct
the interaction-based weigh function,a0 is a
model parameter related to the maximum ag-
gregate size,D is the local damage,d is the
minimal distance from any boundary of the
structure.

3.2 Dynamic failure of a rod
This example is used to test the relevance of

the proposed model and its capabilities to de-
scribe progressive failure and complete failure.
A bar is submitted at both extremities to con-
stant strain waves, which propagate toward the
center in the linear elastic regime (see Fig. 7 and
Table 1). When the two waves meet at the cen-
ter, the strain amplitude is doubled, the material
enters the softening regime suddenly, and fail-
ure occurs. In all computations, the time step
is chosen to be equal to the critical time step
of the element sizeh, which is kept constant
(∆tc = h√

E/ρ
, whereE is the Young’s modulus

andρ is the density).

t4t3t2t1 t1t3 t2

L0
x

u(x = L, t) = vtu(x = 0, t) = −vt

Figure 7: Dynamic failure of a rod: test description and
time evolution of the strain amplitude repartition along
the rod.

Table 1: Characteristics of the rod dynamic failure test

Parameter L v E ρ

Unit cm cms−1 MPa kgm−3

Value 30 0.7 1 1

Parameter lc / a0 εD0
αt At Bt αc

Unit cm – – – – –
Value 4 1 1 1 2 0

In the course of damage, the crack open-
ing displacement (COD) can be estimated using
the method proposed by [26] and compared to
an ideal crack opening profile obtained from a
strong discontinuity analysis (single crack) (see
Eq. 13). The comparison, e.g., the distance be-
tween the two profiles, indicates how close the
strain and damage distributions are from those
corresponding to a single crack surrounded by a
fracture process zone.

[U ](x) =
ε(x)Ωr(x)

ψ0(x, x)

∆(x) =

∫

Ω
||εsd(x, s)− εeq(x)||ds

∫

Ω
εeq(s)ds

εsd(x, s) =
[U ](x)ψ0(x, s)

Ωr(s)
(13)

In Eq. 13,[U ](x) is the COD computed at the
point of coordinatex that corresponds to the lo-
cation of the crack,∆(x) represents the distance
between an ideal opening profile obtained for
a strong discontinuity (single crack at point of
coordinatex), Ωr is the representative volume,
ψ0 is the weight function,εeq is the nonlocal
strain andεsd is a nonlocal strong discontinuity-
based strain profile resulting from a crack lo-
cated at coordinatex, e.g., the nonlocal strain
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David Grégoire, Laura B. Rojas-Solano and Gilles Pijaudier-Cabot

corresponding to a local strain described by a
Dirac function. Details may be found in [13]
based on [26].
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Figure 8: Dynamic failure of a rod: distance between the
computed COD and an ideal opening profile obtained for
a strong discontinuity versus time.

Figure 8 shows that the failure process is bet-
ter described with the interaction-based model
since the distance between its crack opening
profile and the one corresponding to a strong
discontinuity COD tends rapidly to zero.

At complete failure, the crack opening com-
puted according to the above technique (see
Eq. 13) should be independent of the element
size. In a simple 1D setting, for instance, and
assuming that the crack opening is smeared over
the finite element that contains the discontinu-
ous displacement at complete failure, the crack
opening is equal to the strain distribution times
the element size. Therefore, after complete fail-
ure, the strain in the cracked element should
evolve in inverse proportion of the element size
(for constant strain element) (see Eq. 14).

[U ](x) ≈ εh = constant (14)

In Eq. 14, the COD[U ] has been smeared over
the element that contains the crack (the other el-
ements being completely unloaded at failure),ε

is the strain in this element, andh is its size.
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Figure 9: Dynamic failure of a rod: strain in the cracked
element versus adimensional element size at complete
failure.

Figure 9 shows that the complete failure
is better described with the interaction-based
model since the strain versus adimensional el-
ement size curve follows a linear trend in a log-
arithmic plot. Moreover the slope is coherent
with the CMOD estimated at complete failure.
Note that in the original model, the element size
is dimensioned by the internal lengthlc whereas
in the new model, it is dimensioned by the char-
acteristic lengtha0. For the integration-based
model, a peak discontinuity is observed when
the element size is approximately equal to the
characteristics lengtha0. It means that several
elements are needed inside the inclusion where
is produced the perturbation to well reconstruct
the interaction-based weight function.

3.3 Spalling test
A second 1D example is used to test the

response of the new model close to a bound-
ary. This 1D example consists of a spalling test
presented by [12] based on a split Hopkinson
pressure bar test primarily developed by [27]
for material dynamic behavior characterization,
but often adapted for dynamic fracture testing
[28, 29]. A striker bar generates a square com-
pressive wave that then propagates along the bar
in the linear elastic regime. When this com-
pressive wave reaches the free extremity of the
bar, it is converted into a tensile wave and added
to the incoming compressive wave (see Fig. 10
and Table 2). The resulting wave stays equal
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to zero until the tensile one reaches a distance
from the boundary equal to half the initial signal
length. Failure is initiated at this point if the am-
plitude is greater than the tensile strength, gen-
erating a spall at a controlled distance from the
boundary that depends on the initial compres-
sive signal duration. For all numerical studies,
the time step is chosen to be equal to the critical
time step of the corresponding element size.

0
x

t6

t4t3t2t1

L

d =
t0
√

E
ρ

2

d

t5

u(x = 0, t)

u(x = 0, t) =

{

u(x = 0, t < t0) = vt
u(x = 0, t ≥ t0) = 0

Figure 10: Spalling test: test description and time evolu-
tion of the strain amplitude repartition along the rod.

Table 2: Characteristics of the rod dynamic failure test

Parameter L t0 v E ρ

Unit cm s cms−1 MPa kgm−3

Value 20 4 1.5 1 1

Parameter lc / a0 εD0
αt At Bt αc

Unit cm – – – – –
Value 4 1 1 1 2 0
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Figure 11: Spalling test: damage repartition along the bar
after failure.

Figure 11 shows that the spalling failure
is better described with the interaction-based
model since the spall location is predicted in-
side the bar whereas the damage is maximum
on the boundary with the original model.

4 CONCLUSION
A new interaction-based non-local formula-

tion has been proposed. In this formulation,
the materials is modeled as an assembly of in-
clusions and the elastic interactions upon dila-
tion of each inclusion are computed in a similar
ways to a classical Eshelby’s problem. A new
interaction-based weight function is then built
from these interactions. This new interaction-
based non local model has been first validated
on simple 1D problems and its performances
have been compared with the classical integral-
type nonlocal model.

Different results have been presented in the
paper:

• In the course of damage, the crack open-
ing displacement has been estimated and
the comparisons show that the failure pro-
cess is better described with the new for-
mulation. Indeed the crack opening pro-
file is very close to an ideal opening pro-
file obtained for a strong discontinuity.

• At complete failure, the crack opening
should be independent of the element
size. Therefore, after complete failure,
the strain in the cracked element should
evolve in inverse proportion of the ele-
ment size, assuming that the crack open-
ing is smeared over the finite element that
contains the discontinuous displacement.
It has been shown that for the new for-
mulation, the strain versus element size
curve follows a linear trend in a logarith-
mic plot. Moreover the slope is coherent
with the CMOD estimated at complete
failure.

• Close to a boundary, it has been shown
that the spalling failure is better described
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with the interaction-based model since
the spall location is predicted inside the
bar whereas the damage is maximum on
the boundary with the original model.

Finally, it has been shown that this new
interaction-based formulation fulfill several de-
ficiencies of the classical integral-type nonlo-
cal model and the formulation has to be imple-
mented in 2D in order to test its performance on
more challenging issues of quasi-brittle materi-
als failure such as reproducing the peak loads
and even the whole softening load-displacement
responses of notched and unnotched beams in
three-point experimental bending tests [16].
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APPENDIX
Analytical Eshelby solution of a circular inclusion in an infinite medium

G

−→e 2

−→e 1

M

−→e r

r

−→e 3

eθ

−→e 3

O

Figure 12: Eshelby-like problem of a circular inclusion in an infinitemedium

From the Eshelby theory, for a circular inclusion of radiusa, an initial dilationε∗ (eigenstrain,
i.e strain at0-stress) and a Poisson ratioν, the strain inside (εI) and outside (εE) the inclusion are
respectively given by:

εIij = S
I
ijmnε

∗
mn (15)

∀{i, j,m, n} ∈ {1, 2}
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


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SI
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1

4
δij ; SI
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ν

2(1− ν)
δij ;

SI
3jmn = 0 ;SI

33mn = 0 ; SI
3j33 = 0 ;

SI
ij3n = 0 ; SI

333n = 0 ; SI
3333 = 0

εEij = S
E
ijmnε

∗
mn (16)

∀{i, j,m, n} ∈ {1, 2}
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SE
ijmn =

a2

8(1− ν)x4
[

(4νx2 − 2x2 + a2)δijδmn

+ (−4νx2 + 2x2 + a2)(δimδjn + δinδjm)
− 4(2νx2 − x2 + a2)δmnx

0
ix

0
j + 4(x2 − a2)δijx

0
mx

0
n)

+ 4(νx2 − a2
(

δimx
0
jx

0
n + δinx

0
jx

0
m + δjmx

0
ix

0
n + δjnx

0
ix

0
m

)

+ 8(3a2 − 2x2)x0ix
0
jx

0
mx

0
n

]

SE
i3j3 =

a2

4x2
(

δij − 2x0ix
0
j

)

; SE
ij33 =

ν

2(1− ν)

a2

x2

(

δij − 2x0ix
0
j

)

SE
3jmn = 0 ; SE

33mn = 0 ; SE
3j33 = 0 ;

SE
ij3n = 0 ; SE

333n = 0 ; SE
3333 = 0

where(r, θ) are the polar coordinates:
|x| = r, x01 = cosθ andx02 = sinθ
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