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Abstract:  Combining the use of finite element analysis and a discrete element approach, this 
contribution aims at proposing a new post-treatment technique to help one in computing the 
cracking openings in complex reinforced concrete structures subject to mechanical loadings. 
 

 

1 INTRODUCTION 

Concerning civil engineering structures 
issue, the prediction of cracking remains a 
main concern regarding the behaviour of 
concrete elements, or reinforced concrete 
elements. The effects of a crack on the 
durability of a structure are a major concern as 
long as the predictivity improvement for the 
numerical analysis is required. Not only the 
crack pattern but also the crack features such 
as spacing, openings, rugosity and tortuosity 
have to be addressed at a structural scale. 

The purpose of the present study is 
therefore to propose an original technique [1] 
allowing the use of finite element models [3] 
at a structural scale and a decoupled local 
analysis of some interesting zones for which a 

discrete element model is relevant [2]. Two 
distinct numerical analyses are performed 
emphasising their respective efficiency. First, 
a three dimensional non linear finite element 
analysis using damage mechanics based 
constitutive equations is introduced. From the 
damage pattern and the nodal displacement 
field, a second analysis is performed in order 
to evaluate discrete crack opening values, 
considering some critical zones. The discrete 
element method is here employed as a post-
processing operator allowing focusing the 
analysis on some critical parts of the whole 
structure which has been entirely evaluated at 
a coarse and large scale. Each family of 
models is employed in its better application 
field: macroscopic nonlinear description of the 
structure concerning the continuous method 
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and mesoscopic analysis of a crack for the 
discrete model. Any characteristic length is no 
longer introduced in the region of interest for 
cracking analysis. 

In a first part of the contribution, the 
theoretical and numerical frameworks of the 
developments are presented. The second part 
of the paper is devoted to a numerical case-
study. The relevancy of the use of such a non-
intrusive and decoupled method for a two 
scale analysis is appreciated within a non 
linear analysis of a reinforced concrete beam 
subject to bending moments (CEOS.fr 
project). The relevancy of this approach for 
combining finite element and discrete 
modelling is emphasised through comparisons 
with experimental results. 

2 NUMERICAL TOOLS 

The method developed here is inspired by 
the sub-modeling techniques often used for 
industrial problems because of their simplicity. 
Those methods consist in a global analysis of 
the structure and a local analysis of the Region 
Of Interest (ROI). The boundary conditions 
applied on the local model are displacements 
which are interpolated from the global 
solution. The method is non-intrusive because 
it only uses available input and output (nodal 
displacements). 

2.1 General method 

The sub-modeling technique is composed 
of the following steps: 
 

• Global analysis of the whole structure 
with a non-linear finite element model 
including damage; 

• Identification and cutting of the ROI, 
which is the region of damage 
concentration; 

• Extraction and interpolation of the 
displacements from the global mesh to 
the local mesh; 

• Local analysis of the ROI with a 
discrete element model. 

 
No global correction from the local model 

to the global one, through forces for example, 

is performed. Indeed, the local analysis is 
considered as a post-processing tool which 
only gives valuable data on the kinematic and 
features of the crack. That local description 
does not give any more information on the 
global mechanical behavior than what the 
global model has already given. Indeed, the 
two models complete each other by describing 
in their own different way the same 
phenomenon, namely the crack. The global 
behavior of the crack, its effect on the stress 
field, is taken into account through the damage 
variable of the non-linear finite element 
model. The reanalysis with the discrete 
element model generates not only a refinement 
around the crack but also a fine representation 
of the local behavior of the crack. 

The boundary conditions of the local 
computation are obtained from the global 
computation all along the non-free surfaces 

uR∂  of the ROI. Those boundary conditions 

are Dirichlet boundary conditions, which is 
common for sub-modeling techniques. The 
natural way to transfer the displacement field 
from the global to the local mesh is to use the 
shape functions ( jN ) of the finite elements 

used at the global scale. Then, the 
displacement )( D

k
D xU  at each nuclei D

kx  of 

the cells related to the discrete element model 
along the ROI boundary are directly obtained 
by: 
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The advantage of this strategy, where the 

computation is performed twice on the region 
of interest (first with the global model and then 
with the local model), is that an estimator of 
the gap between both models is not limited to 
the ROI boundaries but can be extended over 
the whole region. Then, one can distinguish 
the different areas where the models are more 
or less in agreement with each other. It must 
be noted that by imposing the global 
displacements on the local boundaries, the two 
models are always in agreement on those 
regions and the comparison is in fact only 
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relevant on the rest of the region. We propose 
a gap estimator based on the displacement 
fields obtained with the two models. As the 
displacement field at the local scale is only 
computed at the cells’ nuclei, we compute the 
gap estimator field at the cells’ nuclei, using 
the shape functions of the finite elements in 
order to compute the global scale 
displacement. The gap at the point D

kx  is: 
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2.3 Finite element constitutive equations 

Concerning the model at the macroscopic 
and continuous finite element scale, a three 
dimensional set of constitutive equations for 
modelling quasi-brittle materials such as 
concrete is presented. It is formulated within 
the framework of irreversible processes 
thermodynamics in order to fulfil physical 
consistency [4]. A single scalar damage 
variable has been introduced in order to take 
into account nonlinearities due to micro-
cracking. The sliding influence and the partial 
stiffness recovery have been considered for 
cyclic loadings. 

To separate the difficulties, the cracked 
behaviour will be assumed to be separable into 
two independent behaviours [3]. For the 
hydrostatic strain mechanisms, only cracks 
opening and closing are considered. The 
frictional sliding is only treated on the 
deviatoric part of the strain and stress tensors. 
Figure 1 gives a schematic representation of 
such a hypothesis. These considerations lead 
to a decomposition of the strain energy into 
two different parts respectively due to the 
spherical and the deviatoric components. This 
feature is one of the key points for taking into 
account damage and sliding properly as 
discussed below. 

( )
( )( ) }

2 21
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(3) 

 
where ρ  is the material density, κ  and µ  

are the bulk and shear coefficients 
respectively. ijε  is the second order total strain 

tensor, ijδ  is the second order Kronecker’s 

tensor, 
1

3
D
ij ij kk ijε = ε − ε δ  is the second order 

deviatoric total strain tensor and d  is the 
scalar damage variable (0 for virgin material 
and 1 for failed material). ij

πε  is the second 

order sliding tensor. It can be noted that the 
sliding tensor needs to be purely deviatoric in 
order to preserve the consistency of the 
formulation. γ  is a material parameter, ijα  is 

the second order tensor associated to the 
kinematics hardening, z  is the internal 
variable corresponding to the isotropic 
hardening and H  its consolidation function. 

The state laws are obtained by simple 
derivation of the thermodynamic potential 
regarding the state variables (strain, sliding 
strains and damage). For example concerning 
the Cauchy stress tensor: 

 

ij
ij ε

ρσ
∂

Ψ∂=  
(4) 

 
The evolution of the internal variables are 

subject to complementary equations based on 
the respect of threshold functions. For damage, 
based on an energy type criterion, one can 
define the following criterion: 

0( )df Y Y Z= − +  (5) 

where Y  denotes energy-type variable 
driving damage and 0Y , an initial threshold. 

In order to manage sliding and kinematic 
hardening, a surface without any threshold is 
introduced in order to manage sliding 
mechanism associated to kinematics 
hardening. It takes the form of a Von Mises 
criterion (without hydrostatic effects) 
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expressed as: 

3
( )( )

2 ij ij ij ijf s X s Xπ = − −  
(6) 

where ijs  is the deviatoric part of the 

Cauchy’s stress tensor. Differently from the 
previous case, the flow rules are supposed not 
to be associated ones. From the maximum 
dissipation principle, the plastic potential can 
be defined as [5]: 

3
( )( )

2 2ij ij ij ij ij ij

a
s X s X X Xπϕ = − − +  

(7) 

 
The cyclic response of this model for a 

compressive state of stresses is presented in 
figure 1. 
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Figure 1: Comparison between numerical and 
experimental results related to a local cyclic 

compression stress state. 

More details concerning the model, its 
numerical implementation as well as its 
identification can de found in [3]. 

2.3 Discrete element model 

A particle-based discrete model is used in 
order to compute a fine description of the 
crack. With this approach, the material is 
described as a particle assembly. A crack is 
naturally obtained if a bond linking two 
particles breaks. A Voronoi tessellation is 
used, allowing an efficient and easy mesh 
generation. The particle nuclei are randomly 
generated on a grid [2] in order to control the 
boundary conditions. Cohesion forces can be 
equally represented either by springs at the 

interface of neighboring particles or by beams 
linking the nuclei of the particles (lattice 
model). Euler-Bernoulli beams are chosen in 
the model used in this study. Then, four 
parameters have to be identified: the length ℓb, 
the cross section area Ab, the inertia Ib (or the 
adimensional parameter α = Ib/I0 where I0 is 
the inertia of the equivalent circular section) 
and the elastic modulus Eb of the beam. The 
first two parameters are prescribed by the 
mesh geometry and are different for each 
beam. The last two parameters are supposed 
equal for all beams and are identified in order 
to obtain the elastic properties of the material, 
E and ν, respectively Young’s modulus and 
Poisson’s ratio. Note that if necessary, one can 
compute contact forces between unlinked 
particles, for example for cyclic loading with 
crack opening and closing. 

The non-linear behavior of the material is 
obtained by considering that the beam obey a 
brittle behavior. The displacements of the 
particle nuclei are the primary measure in this 
model. Hence, a displacement-based breaking 
threshold ijP  is used here. Only two 

mechanisms contribute to the breaking of the 
beam: elongation and flexion. Thus, the 
breaking threshold depends on the beam strain 
and on the rotations of the particles 
(respectively i and j) linked by the beam. It is 
written as: 
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(8) 

The critical strain cr
ijε  and the critical 

rotation cr
ijθ  of the beam i − j  are assigned to 

the beam i − j  using a random number 
generator according to the Weibull 
distribution, as proposed by [6]. 

2.4 Model calibration 

The global model requires eight material 
parameters: two related to the elasticity 
mechanism, three related to the isotropic 
damage mechanism, two related to the internal 
sliding and one related to the non-local 
mechanism. In order to provide the best set of 
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parameters, they are all identified with respect 
to the available experimental information from 
tensile tests, compressive tests and three- point 
bending tests. Structural tests are used to allow 
for the calibration of the internal length (due to 
the nonlocal damage theory used). 

The local model has two parameters related 
to elasticity and four parameters related to 
fracture. A tensile test on a dog-bone shaped 
specimen is performed first with the global 
model and then with the local model. Hence, 
the parameters of the local model are 
calibrated by fitting the local response—
namely the complete load-displacement curve 
and the dissipated energy-displacement 
curve—and the global response. The complete 
load-displacement curves and dissipated 
energy-displacement curves obtained with the 
global and the local models on the dog-bone 
shaped specimen are reported in figure 2 and 
3. A good agreement between the two models 
is obtained with the local modelling.  
 

 
 

Figure 2: Comparison between Finite Element and 
Discrete Element model for a dog-bone specimen 

(load-displacement comparisons) 

This calibration corresponds to a classical 
concrete material showing a Young’s modulus 
E = 34 GPa, a Poisson’s ratio of 0.2, a tensile 
strength of 3.5 MPa and a compressive peak 
load of 53 MPa. 

 
 

Figure 3: Comparison between Finite Element and 
Discrete Element model for a dog-bone specimen 

(dissipated energy comparisons). 

 

3 REINFORCED CONCRETE CASE-
STUDY 

3.1 Experimental set-up description 

To illustrate the possibilities offered by the 
approach to handle 3D problems, a reinforced 
concrete beam has been considered. The beam 
has been experimentally investigated within 
the framework of the project CEOS.fr 
supported by the French national agency for 
research. The specimen is 1600 mm large, 800 
high and 6100 long. It has been reinforced by 
8 steel bars (8HA16) in the top part 
(compression part) and by 16 steel bars 
(16HA32) in the bottom part (tension part). 19 
stirrups (HA16) have also been considered 
with spacing equal to 350 mm far from the 
supports and equal to 200 close to them. 
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Figure 4: General experimental set-up 

The reinforced concrete specimen has been 
clamped to a reaction reinforced concrete 
block through rigid bars. Two lines of jacks 
have been put between the specimen and the 
support in order to create a four point bending 
loading. A sketch of the loading conditions can 
be observed in figure 4. The loading is 
controlled by prescribing the loads through the 
jacks.  

3.2 Finite element analysis 

As the geometric dimensions of the 
specimens are rather high, 3D effects may play 
a preponderant role regarding the mechanical 
behavior. The choice to consider a 3D finite 
element model has therefore been made. For 
symmetry reasons, only a quarter of the beam 
has been modeled. The longitudinal 
reinforcing steel bars have been modeled by 8-
node finite elements although the stirrups have 
been considered as bar elements. The concrete 
is meshed by 8-node finite elements. Some 
pictures of the finite element mesh can be 
observed in figure 5. The reinforced concrete 
beam has been assumed as being simply 
supported (figure 6). Additional boundary 
conditions related to the symmetry have also 
been taken into account. The concrete is 
modeled by the constitutive law that has been 
exposed in section 2 and the steel reinforcing 
bars are assumed to follow an elastic-plastic 
constitutive law. 

 
 

Figure 5: ¼ of the beam using 8 node meshing 

 

 
 

Figure 6: 3D meshing of the steel rebar 

 
The global response is compared to the 

experimental results in the following figure. 
Three levels of loading have been analysed in 
terms of damage field and cracking (figures 8, 
9 and 10). 
 

 
 

Figure 7: Load-displacements comparisons 

1 

2 

3 
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Figure 8: Damage map for the level 1 

 
 

Figure 9: Damage map for the level 2 

 
 

Figure 10: Damage map for the level 3 

3.2 Discrete element local re-analysis 

A first attempt has been maid to evaluate 
the possibility of using such an approach to 
observe the discrete cracking in such 
structures. The three main cracks have been re-
analysed using the previous methodology as 
shown in figure 11. 

In figure 12, the cracks are superimposed 
with the damage map emphasizing the good 
agreement between a discrete quantity and the 
continuous one obtained using standard 
numerical tools dedicated to nonlinear 
structural analysis. In the same way, the 
relevancy of the approach is shown by plotting 

the cracks on the longitudinal displacement 
field obtained thanks to the global and 
continuous finite element analysis. 
 

    
 

Figure 11: ROI definition regarding the 3 main 
damage areas 

 

         
 

Figure 12: Cracks regarding continuous 
displacement field and damage pattern. 

 
 

4 CONCLUSIONS 

A general procedure aiming at analyzing 
finite element results in terms of discrete 
quantities such as cracks has been presented. 
The continuous and macroscopic nonlinear set 
of constitutive equations based on damage 
mechanics as well as the discrete element 
approach used at the local level have been also 
addressed. The link between the two levels of 
modeling is ensured thanks to kinematic 
constraints. A parameters identification 
procedure based on the level of dissipated 
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energy between the two approaches has been 
established. First results obtained on concrete 
structures and reinforced concrete structures 
confirm the capability of such a framework to 
handle discontinuous cracks within continuous 
media. 

In the near future, more efforts should be 
paid in quantitative comparisons with 
experimental data regarding crack openings 
for the discrete model and strains for the 
continuous one. For cracking in reinforced 
concrete structure, the 3D behaviour of the 
concrete near the reinforcement bars is of 
major importance. We expect that such a 3D 
local reanalysis will help one to better 
understand the crack propagation kinematic 
under monotonic loading but also when 
sustaining cyclic loading. 
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