A Finite Element approach for mesoscopic modelling of fracture

C. La Borderie & collaborators

SIAME-EA4581 University of Pau, France

Berkeley, May 29, 2016

(日)

1 Introduction

2 Damage model

3 Applications

- Macroscopic behavior
- Young age concrete
- Scale effects

4 Conclusions

(日)

臣

Introduction : Scales of modelling

Scales of Modelling

- Structure > 10m
- Macroscopic $\approx 1 10n$
- Mesoscopic pprox 1 10cm
- Microscopic< 1 cm

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Introduction : Scales of modelling

Scales of Modelling

- Structure > 10m
- Macroscopic $\approx 1 10m$
- Mesoscopic \approx 1 10*cm*
- Microscopic< 1 cm</p>

臣

Introduction : Scales of modelling

Scales of Modelling

- Structure > 10m
- Macroscopic $\approx 1 10m$
- Mesoscopic $\approx 1 10$ cm
- Microscopic< 1 cm</p>

D Crack width

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Introduction : Scales of modelling

Scales of Modelling

- Structure > 10m
- Macroscopic $\approx 1 10n$
- Mesoscopic ≈ 1 10*cm*
- Microscopic< 1 cm</p>

Cement paste E/C = 0.45

from D.P. Bentz (NIST, CEMHYD3D)

Introduction : mesoscopic models

- Witmann 1988 : Application to drying of concrete
- Mounajed, Menou & La Borderie ≈ 2002 : Symphonie, concrete at high temperatures
- Implementation into Cast3M : 2007

Smooth method : 2010

ヘロト ヘロト ヘヨト

Introduction : mesoscopic models

• Witmann 1988 : Application to drying of concrete

- Mounajed, Menou & La Borderie \approx 2002 : Symphonie, concrete at high temperatures
- Implementation into Cast3M : 2007

• Smooth method : 2010

Introduction : mesoscopic models

- Witmann 1988 : Application to drying of concrete
- Mounajed, Menou & La Borderie ≈ 2002 : Symphonie, concrete at high temperatures
- Implementation into Cast3M : 2007

Smooth method : 2010

Introduction : mesoscopic models

- Witmann 1988 : Application to drying of concrete
- Mounajed, Menou & La Borderie ≈ 2002 : Symphonie, concrete at high temperatures
- Implementation into Cast3M : 2007

Smooth method : 2010

specifications

- 2D or 3D random generation
- granular compactness
- ITZ
- Shape of aggregates

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Introduction : mesoscopic models

- Witmann 1988 : Application to drying of concrete
- Mounajed, Menou & La Borderie ≈ 2002 : Symphonie, concrete at high temperatures
- Implementation into Cast3M : 2007

Smooth method : 2010

specifications

- 2D or 3D random generation
- granular compactness
- ITZ
- Shape of aggregates

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

The smooth meshing method

Meshing methods

Exact method

- Each aggregate is meshed separately, then the matrix is meshed
- Doesn't work in case of small and large aggregates, particularly in 3D
- ITZ can be modelled (but which parameter ?)

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Meshing methods

Discrete method

- Aggregates properties are projected on the mesh elements
- Costless method, irregularities at the boundary
- Total volume of aggregates is badly modeled

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Meshing methods

Smooth method

- Aggregate properties are projected on the Gauss points
- Each Gauss point owns the material properties of paste or aggregate
- Costless method, unable to model ITZ

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Meshing methods

Smooth method

- Aggregate properties are projected on the Gauss points
- Each Gauss point owns the material properties of paste or aggregate
- Costless method, unable to model ITZ

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Aggregate drawing

C. La Borderie & collaborators FE Meso Fracture

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Mesh samples

$$\Phi_{min} = 1 mm$$

C. La Borderie & collaborators FE Meso Fracture

$$\Phi_{min} = 2.5 mm$$

Damage model

Damage model

- Isotropic but unilateral (Fichant et al, 1999)
- Indirect effect of damage on en compression
- Softening in tension
 - Mazars' equivalent strain $\tilde{\varepsilon}$
 - mesh size h
 - parameters ft et Gf

•
$$\bar{\sigma}_{ij} = \frac{E}{1+\nu} \varepsilon_{ij} + \frac{E\nu}{(1+\nu)(1-2\nu)} \varepsilon_{kk} \delta_{ij}$$

• $\sigma_{ij} = (1 - d) \langle \bar{\sigma} \rangle_{ij}^{+} + (1 - d)^{\alpha_1} \langle \bar{\sigma} \rangle_{ij}^{-}$
• $d = 1 - \frac{f_t}{E\tilde{\varepsilon}} exp\left(\frac{hf_t}{G_f} \left(\frac{f_t}{E} - \tilde{\varepsilon}\right)\right)$

	E(GPa)	ν	$f_t(MPa)$	$G_f(J/m^2)$	α_1			
Paste	15	0.2	3	20	10			
Aggregates	60	0.2	6	60	30			
Characteristics of components								

Characteristics of components

크

Macroscopic behavior Young age concrete Scale effects

・ロト ・四ト ・ヨト ・ヨト

臣

Application to macroscopic behavior

Macroscopic behavior Young age concrete Scale effects

Uniaxial tension

Macroscopic behavior

Crack width

æ.

Macroscopic behavior Young age concrete Scale effects

臣

Uniaxial tension

Macroscopic behavior Young age concrete Scale effects

Uniaxial compression

Comportement macroscopique

Ouverture de fissure

(日)

臣

Macroscopic behavior Young age concrete Scale effects

・ロ・ ・ 四・ ・ 回・ ・ 日・

э

Uniaxial Compression

Macroscopic behavior Young age concrete Scale effects

Effects of hydration on inner stresses

Hydration

- Thermo-activation (UIm)
- Hydration heat
- Endogenous shrinkage

 $\dot{\xi} = \tilde{A}(\xi) e^{-\frac{E_a}{RT}}$

- ξ hydration degree
- $\tilde{A}(\xi)$ Normalized affinity function
- *E_a* is the activation energy (*Jmol*⁻¹)
- *R* is the constant of perfect gas (8.314*Jmol*⁻¹*K*⁻¹)
- T is the temperature in kelvin

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Macroscopic behavior Young age concrete Scale effects

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

E

Effects of hydration on inner stresses

Macroscopic behavior Young age concrete Scale effects

Effects of hydration on inner stresses

Hydration

- Thermo-activation (Ulm)
- Hydration heat
- Endogenous shrinkage

 $C\dot{T} = \nabla(K\nabla T) + L\dot{\xi}$

- C specific heat capacity
- *K* thermal conductivity (*Wm*⁻¹*K*⁻¹)
- *L* is the total activation energy (*Jm*⁻³)

・ロ・・ (日・・ (日・・ 日・)

Macroscopic behavior Young age concrete Scale effects

Effects of hydration on inner stresses

Hydration

- Thermo-activation (Ulm)
- Hydration heat
- Endogenous shrinkage

$$\dot{\varepsilon}_{au_{ij}} = -k\dot{\xi}\delta_{ij}$$
 for $\xi > \xi_0$

- ε_{au} autogenous shrinkage
- k shrinkage coefficient
- ξ₀ is the setting value of ξ for which the paste becomes to be elastic

$$\dot{\varepsilon}_{th_{ij}} = \alpha \dot{T} \delta_{ij}$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

- ε_{th} thermal strain
- α coefficient of expansion

Macroscopic behavior Young age concrete Scale effects

ξ...

э

Coupling

Macroscopic behavior Young age concrete Scale effects

Coupling

Evolution of the mechanical parameters (from de Schutter)

- Effective coef of hydration $\bar{\xi} = < \frac{\xi \xi_0}{\xi_{\infty} \xi_0} >_+$
- Young's modulus $E(\xi) = E_{\infty} ar{\xi}^{eta}$
- Poisson's ratio $\nu = \nu_{\infty} \sin \frac{\pi * \bar{\xi}}{2} + 0.5 e^{-10 * \bar{\xi}}$
- Tension strenght $f_t(\xi) = f_{t\infty} \bar{\xi}^{\gamma}$
- Fracture energy $G_f = G_\infty ar{\xi}^\gamma$

Macroscopic behavior Young age concrete Scale effects

Hydration of concrete

Temperature T(K)

degree of hydration ξ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Macroscopic behavior Young age concrete Scale effects

(日)

E

Hydration of concrete

Macroscopic behavior Young age concrete Scale effects

Hydration of concrete

Along the middle line

E

meso-stress σ_{XX}

Macroscopic behavior Young age concrete Scale effects

Hydration of concrete

Along the middle line

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

E

meso-stress σ_{yy}

Macroscopic behavior Young age concrete Scale effects

Application to scale effects

Dimensions

Thick	L ₂	L	D	Notch
(<i>m</i>)	(<i>m</i>)	(<i>m</i>)	(<i>m</i>)	Height (m)
0,05	1,4	1	0,4	0,5D

Size of the beam

- Experiments from Rojas, Grégoire & Pijaudier-Cabot
 - Homothety ratio : $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$

Macroscopic behavior Young age concrete Scale effects

Modeled problem

Grading curves

・ロト ・四ト ・ヨト ・ヨト

臣

Macroscopic behavior Young age concrete Scale effects

Model

Meshing strategy

- Notched beams of different homothety ratios $\frac{1}{2}$; $\frac{1}{4}$; $\frac{1}{8}$.
- Mix meso-macro model

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

• 3 different drawings are used for each beam.

Macroscopic behavior Young age concrete Scale effects

FE Modeling

Meshing strategy

- Nodes do not match.
- Cinematic coupling.

・ロ・ ・ 四・ ・ 回・ ・ 日・

æ.

Macroscopic behavior Young age concrete Scale effects

æ.

FE Modeling

Mechanic parameters

	Young's	Poisson's Tension		Fracture
	modulus E	Ratio ν	strenght ft	energy G _f
	(GPa)		(MPa)	(J/m^2)
Paste	25	0,2	3	20
Aggregates	55	0,2	6	60
Homogenized	39,61	0,2	-	-

Macroscopic behavior Young age concrete Scale effects

(日)

E

FE Results

CMOD / load from experiments and simulations

Macroscopic behavior Young age concrete Scale effects

Results

Damage at the peak load for different homothety ratio

臣

Macroscopic behavior Young age concrete Scale effects

Scale effect law (Bažant, 1976)

Nominal stress :

$$\sigma_n = \frac{3PL}{2eD^2}$$

Nominal notch opening : $U_n = \frac{U}{D}$

Macroscopic behavior Scale effects

Scale effect law (Bažant, 1976)

Intrinsic size :

 $\bar{D} = 0.15637481182436 * D$ Intrinsic nominal stress $\bar{\sigma}_{nu} = 4.35395101484703 * \sigma_{nu}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Conclusions

Smooth FE method for mesoscopic scale

- Can be used in 2D or 3D even if 3D needs long computation time
- Take into account the granular compacity
- Useful for couplings
- Easy to use with any model as long as it is the same for aggregates and paste

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Conclusions

Smooth FE method for mesoscopic scale

- Can be used in 2D or 3D even if 3D needs long computation time
- Take into account the granular compacity
- Useful for couplings
- Easy to use with any model as long as it is the same for aggregates and paste

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Conclusions

Smooth FE method for mesoscopic scale

- Can be used in 2D or 3D even if 3D needs long computation time
- Take into account the granular compacity
- Useful for couplings
- Easy to use with any model as long as it is the same for aggregates and paste

臣

Conclusions

Smooth FE method for mesoscopic scale

- Can be used in 2D or 3D even if 3D needs long computation time
- Take into account the granular compacity
- Useful for couplings
- Easy to use with any model as long as it is the same for aggregates and paste

Conclusions

Smooth FE method for mesoscopic scale

- Can be used in 2D or 3D even if 3D needs long computation time
- Take into account the granular compacity
- Useful for couplings
- Easy to use with any model as long as it is the same for aggregates and paste

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Thanks ! ! !

- Ghassan Mounajed, Abdellah Menou, Hocine Boussa
- Claire Lawrence, Olivier Maurel, Atef Daoud
- Farid Benboudjema, Matthieu Briffault
- The Dung Nguyen, Wen Chen, Mohammed Matallah
- Gilles Pijaudier-Cabot, David Grégoire
- Stéphane Morel, Alexandre Gangnant, Hatem Kallel
- Olivier Nouailletas, Laurie Buffo-Lacarrière

・ロ・ ・ 四・ ・ 回・ ・ 回・

1