

Cnrs

Gilles Pijaudier-Cabot

Université de Pau et des Pays de l'Adour Institut Universitaire de France

D. Grégoire, L. Verdon, V. Lefort

Berkeley, May 2016

Stain and damage localisation

Mesh dependent solution 2

Berkeley, May 2016

Fracture of quasi-brittle materials

Fracture test

Fracture approach:

- Linear elastic fracture mechanics, cohesive crack models
- XFEM implementation, phase fields and variational approach of fracture

Continuum-based approach:

- Continuum damage, enhanced continua (non local, gradient)
- Standard FE models, TLS approach

Lattice approach:

 Physical aspects of fracture (continuum = thermodynamic limit), scaled lattices

$$\varepsilon_{ij} = \frac{1+\nu}{E(1-D)}\sigma_{ij} - \frac{\nu}{E(1-D)}\left[\sigma_{kk}\delta_{ij}\right]$$

Limitations can be still observed in continuum-based approaches

- incorrect crack initiation, ahead of the crack tip;
- propagating damage fronts after failure due to non-local averaging;
- incorrect shielding effect with non-zero non-local interactions across a crack surface;
- deficiencies at capturing spalling properly in dynamics, with spalls of zero thickness when the expected spall size is below the internal length of the model

Non-locality in classical non-local models (such as integral-type):

→ The internal length is the parameter that encompasses the non-locality

$$ar{arepsilon} = rac{1}{\Omega_r(x)} \int_{\Omega} \psi_0(x,\xi) arepsilon(\xi) \mathrm{d}\xi$$
 $\psi_0(x,\xi) = \exp\left(-\left(rac{2||x-\xi||}{l_c}
ight)^2
ight)$
 $\Omega_r(x) = \int_{\Omega} \psi_0(x,\xi) \mathrm{d}\xi$

This parameter should not be constant:

Non-locality in classical non-local models (such as integral-type):

→ The internal length is the parameter that encompasses the non-locality

$$egin{array}{rcl} \overline{arepsilon} &=& rac{1}{\Omega_r(x)} \int_\Omega \psi_0(x,\xi) arepsilon(\xi) \mathrm{d}\xi \ \psi_0(x,\xi) &=& \exp\left(-\left(rac{2||x-\xi||}{l_c}
ight)^2
ight) \ \Omega_r(x) &=& \int_\Omega \psi_0(x,\xi) \mathrm{d}\xi \end{array}$$

This parameter should not be constant:

Non-locality in classical non-local models (such as integral-type):

→ The internal length is the parameter that encompasses the non-locality

$$ar{arepsilon} = rac{1}{\Omega_r(x)} \int_{\Omega} \psi_0(x,\xi) arepsilon(\xi) \mathrm{d}\xi$$
 $\psi_0(x,\xi) = \exp\left(-\left(rac{2||x-\xi||}{l_c}
ight)^2
ight)$
 $\Omega_r(x) = \int_{\Omega} \psi_0(x,\xi) \mathrm{d}\xi$

This parameter should not be constant:

Non-local models with varying internal length:

- D: damage $(0 \le D \le 1)$
- Ic = f(D,d) d: boundary distance
- Stress-based non local damage model

→ Sometimes rather empirical

Let us define an interaction as the effect on a given point x of the strain perturbation ϵ^* located on a point $\xi.$

The strain induced may be estimated energetically by:

$$A(x,\xi,arepsilon^*,a) = \sqrt{\sum_{i=1}^3 |arepsilon_i(x)|^2}$$
 (Euclidean norm)

The interaction at x due to ξ may be given by:

$$A^*(x,\xi,a) = \frac{A(x,\xi,\varepsilon^*,a)}{||\varepsilon^*||}$$

Assuming that this interaction governs the non-locality averaging, we get:

$$\overline{\varepsilon}_{\rm eq}(x) = \frac{1}{\Omega_r} \int_{\Omega} \psi(x,\xi) \varepsilon_{\rm eq}(\xi) d\xi \quad \text{with} \quad \psi(x,\xi) \equiv A^*(x,\xi,a) \quad \text{and} \quad \Omega_r = \int_{\Omega} A^*_0(x,\xi,a) d\xi$$

Berkeley, May 2016

interaction-based non-local model

Isotropic damage: $\sigma = (1 - D)\mathbb{C} : \varepsilon$ Equivalent strain: $\varepsilon_{eq} = \sqrt{\sum_{i \in [\![1,3]\!]} \langle \varepsilon_k \rangle_+^2}$ Mazars, 1986 Nonlocal averaging: $\overline{\varepsilon}_{eq}(x) = \frac{1}{\Omega_r} \int_{\Omega} \psi(x,\xi) \varepsilon_{eq}(\xi) d\xi$ $\psi(x,\xi) \equiv A^*(x,\xi,a) \quad \Omega_r = \int_{\Omega} A_0^*(x,\xi,a) d\xi$ **Damage evolution:** $D(h,x) = \left[1 - (1 - A_t)\frac{\varepsilon_{D_0}}{h(x)} - A_t e^{(-B_t(h(x) - \varepsilon_{D_0}))}\right]$ 🌉 Mazars, 1986 Kuhn-Tucker condition: $\Gamma(\varepsilon,h) = \overline{\varepsilon}_{eq}(\varepsilon) - h, \quad \Gamma(\varepsilon,h) \leq 0,$ $\dot{h} \geq 0, \quad \dot{h}\Gamma(\varepsilon,h) = 0$ $h = \max(\varepsilon_{D_0}, \max(\overline{\varepsilon}_{eg}))$

Efficient shielding effect and assembly of small aggregates on the boundary: $a(x) = \min(a_0\sqrt{1-D(x)}, d(x))$

Berkeley, May 2016

IVERSITÉ DE PAU ET DES

Damage:

DYERSITÉ Dynamic failure of a bar

At complete failure, the crack opening should be independent of the element size. Assuming that the crack opening is smeared over the cracked finite element, we get: $[U](x) \approx \varepsilon h = {\rm constant}$

Meso-scale lattice model

Berkeley, May 2016

Damage Process

Experiments

 Microcracks localization by acoustic emission

Grégoire et al., Int. J. Num. and Anal. Meths. Geomechanics, 2015

Numerical Model

 Identification of elements whose damage increase during the time step

Ripley's functions

Points concentrated in 9 discs 1cm radius, spaced 2cm

Half notched beam 700mm x 200mm

IVERSITÉ DE PAU ET DES PAYS DE L'ADOUR

COMPARISON SIMULATION vs EXPERIMENTAL DATA

- Need to introduce at least a length in order to bridge the gap between Continuum and fracture models
- Nonlocality is a complex issue !
- Interaction-based model provide some background
- The lattice meso-scale approach provides a consistent description of fracture
- Ripley's functions provide the evolution of a characteristic length upon localization of damage during the fracture process

Lattice approach may be implemented in more complex configurations

Hydraulic fracturing

Hydraulic fracturing

Joint at 0°

Aknowledgements

Failflow Advanced Grant (27769)

Thank you for your attention

Thank you so much Zdenek...