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Two meshes... … and two responses 

Mesh dependent 
solution 
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Fracture of quasi-brittle materials 

Fracture approach: 
•  Linear elastic fracture mechanics, cohesive crack models 
•  XFEM implementation, phase fields and variational approach of 

fracture 

Continuum-based approach: 
•  Continuum damage, enhanced continua (non local, gradient) 
•  Standard FE models, TLS approach  

Lattice approach: 
•  Physical aspects of fracture (continuum = thermodynamic limit), 

scaled lattices 

Fracture test 
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Comparison between local and non 
local computations 
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“Classical nonlocal models” 

Limitations can be still observed in continuum-based approaches 

•  incorrect crack initiation, ahead of the crack tip; 

•  propagating damage fronts after failure due to non-local averaging; 

•  incorrect shielding effect with non-zero non-local interactions across 
a crack surface; 

•  deficiencies at capturing spalling properly in dynamics, with spalls of 
zero thickness when the expected spall size is below the internal 
length of the model  

•  incorrect crack initiation, ahead of the crack tip; 

•  propagating damage fronts after failure due to non-local averaging; 

•  incorrect shielding effect with non-zero non-local interactions across 
a crack surface; 

•  incorrect crack initiation, ahead of the crack tip; 

•  propagating damage fronts after failure due to non-local averaging; 

•  incorrect crack initiation, ahead of the crack tip; 
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Classical nonlocality 
 
Non-locality in classical non-local models (such as integral-type): 
 

è The internal length is the parameter that encompasses the non-locality 
 

This parameter should not be constant: 
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Classical nonlocality 
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Classical nonlocality 
 
Non-locality in classical non-local models (such as integral-type): 
 

è The internal length is the parameter that encompasses the non-locality 
 

This parameter should not be constant: 
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Non-local models with varying internal length: 
 

  D: damage (0≤D≤1) 
•  lc = f(D,d)   

  d: boundary distance 
 
 
•  Stress-based non local damage model 

•  … 
 

Krayani et al., 2009 
Pijaudier-Cabot and Dufour, 2010 
Grégoire et al., 2012 
Bažant et al., 2010  

Giry et al., 2011 

è Sometimes rather empirical 

Modified nonlocality 
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interaction-based non-local model 

Let us define an interaction as the effect on a given 
point x of the strain perturbation ε* located on a point ξ. 

 

The strain induced may be estimated energetically by: 

 

        (Euclidean norm) 
A(x, ⇠, "⇤, a) =

vuut
3X

i=1

|"i(x)|2

The interaction at x due to ξ may be given by: 

 

Assuming that this interaction governs the non-locality averaging, we get: 

A
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Efficient shielding effect and assembly of small aggregates 

on the boundary: 
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Isotropic damage: 

Equivalent strain: 

Nonlocal averaging: 

 

Damage evolution: 
 

Kuhn-Tucker condition: 

Mazars, 1986 

"eq(x) =
1

⌦r

Z

⌦
 (x, ⇠)"eq(⇠)d⇠ with  (x, ⇠) ⌘ A

⇤(x, ⇠, a) and ⌦r =

Z

⌦
A

⇤
0(x, ⇠, a)d⇠

�(", h) = "eq(")� h, �(", h)  0, ḣ � 0, ḣ�(", h) = 0

Mazars, 1986 

interaction-based non-local model 
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Damage: 

Dynamic failure of a bar 
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Damage: 

Dynamic failure of a bar 
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Damage: 

Weight function 
close to the 
damaged zone: 

Dynamic failure of a bar 
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Local 
Strain: 

Damage: 

Dynamic failure of a bar 
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At complete failure, the crack opening should be independent 

of the element size. Assuming that the crack opening is 

smeared over the cracked finite element, we get: 
[U ](x) ⇡ "h = constant

Dynamic failure of a bar 
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Meso-scale lattice model 
Meso-scale approach Each bond 

Grassl and Jirasek, Solids & Struct., 2010 

Grassl, Grégoire, Rojas-Solano and Pijaudier-Cabot, Int. 
J. Solids Struct., 2012 

Grégoire et al., Int. J. Num. and Anal. Meths. 
Geomechanics, 2013 

Description of size effect 
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Grégoire et al., Int. J. Num. and Anal. Meths. 
Geomechanics, 2015 

Damage Process 
Experiments 
• Microcracks localization by 

acoustic emission 

Numerical Model 
•  Identification of elements 

whose damage increase 
during the time step meso-scale

region

  damage 
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Ripley’s functions 
Points concentrated in 9 discs 1cm radius, spaced 2cm 

The abscissa of each peak 
depends on the radius of the 

disks and their spacing 
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meso-scale
region

Load vs CMOD 

Half notched beam 700mm x 200mm 
COMPARISON SIMULATION vs EXPERIMENTAL DATA 

Abscissa of the maximum 

Position of events occurring during the time step 

Ripley’s function ”L(r)-r” (L=H=0,4m) 
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Concluding remarks 
•  Need to introduce at least a length in order to bridge the gap 

between Continuum and fracture models 

•  Nonlocality is a complex issue ! 

•  Interaction-based model provide some background 

§  The lattice meso-scale approach provides a consistent description 
of fracture 

§  Ripley’s functions provide the evolution of a characteristic length 
upon localization of damage during the fracture process 

Lattice approach may be implemented in 
more complex configurations   



Berkeley, May 2016                          22 

22	

P 

Joint 

Notch (no fluid) 

120cm 

120cm 

5cm 

20cm 60cm 

60cm 

Hydraulic	fracturing	

(a)  No joint 
(b)  New model 0° 
(c)  New model 45°  

45° 
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Joint at 0° 

Hydraulic	fracturing	
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