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Abstract. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) structures are emerging

in several engineering applications as their outstanding tensile strength and ductility allow engineers

to develop new structural concepts and overcome construction limits. Optimization of the UHPFRC

fiber ratio, which has significant economic and technical relevance, is critically related to guaranteeing

ductile failure modes of such structures and components, including effects of the scatter of local

material properties and post-cracking fiber contributions. A micromechanical model of UHPFRC

tensile behavior taking into account fiber orientation, fiber volume ratio, and material parameters

concerning the fibers and the cementitious matrix has been implemented in a FEM software.

The constitutive law was developed to describe the fiber pullout and the matrix cracking mecha-

nism within a smeared rotating crack framework. We statistically average the orientation of fibers by

calibrating the model parameters on results from tomography analysis. The obtained constitutive law

is applied to UHPFRC beams with and without reinforcing bars, considering two fiber volume ratios

(1% and 2%). The numerical model has shown the capacity to grasp the specimens behavior with and

without reinforcing bars.

1 INTRODUCTION

Ultra High Performance Fiber-Reinforced

Concrete (UHPFRC) refers to a class of materi-

als with a cementitious matrix, a characteristic

compressive strength in excess of 130 MPa, and

containing fibers in order to achieve a ductile

behavior under tension [1]. Fibers avoid brit-

tle failure compared to ordinary concrete. Un-

fortunately, this behavior severely depends on

fiber orientation, which induces difficulties to

predict the ductility of civil engineering struc-

tures. The K-orientation factors have been in-

troduced to cope with this issue in structural de-

sign [2, 3]. However, its determination is rather

labored consuming and implementation is asso-

ciated with a rough discretization of the struc-

ture [4]. Indeed, the orientation of fibers de-

pends on shear flow, wall effect, casting meth-
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ods, viscous properties of fresh concrete and

eventual vibration [5]. Table 1 shows how frac-

ture energy decreases when fiber orientation di-

verges from principal stress direction. The val-

ues were extracted from tensile and bending

tests, and then divided by the maximal mea-

sured fracture energy [7, 8]. As a consequence,

parameters such as the geometry of the element

to be cast, the rheology of the material and the

casting process are essential [6].

Table 1: Energy release rates as a function of fiber orien-

tation relatively to the principal stress orientation corre-

sponding to 0◦, G/Gϑ=0

Orientation 0◦ 30◦ 45◦ 60◦ 90◦

Traction [7] 1 0.92 0.64 0.38 0.29

Bending [8] 1 0.66 0.32 0.11 0.07

To improve design requirements of UH-

PFRC elements, fiber orientation with regards

of principal stress direction should be taken into

account. Thus, an accurate UHPFRC structural

analysis can only be achieved by correctly mod-

eling fiber orientation effects, crack growth,

hardening and softening behavior.

Several models have been developed with

this aim in using micromechanical approaches.

These models make it possible to locally con-

sider fiber orientation in structure by describing

the pullout mechanism. Fiber orientation was

firstly considered either uniform [9], or unidi-

rectional [10]. The uniform case was then en-

riched using a fiber orientation efficiency fac-

tor [11], considering values from pullout tests

[12, 13]. The anisotropic orientation of fiber

was also considered to model the hardening

uniaxial behavior of UHPFRC [14] thanks to

a Gaussian-like distribution function. Another

technique consists of modeling orientation ef-

fects thanks to an empirical model which pro-

vides the UHPFRC uniaxial pre-peak and post-

peak tensile behavior from the average fiber ori-

entation measured in specimens or structural el-

ements by 2D image analysis [16].

To model crack propagation of UHPFRC,

the constitutive law should eventually be hard-

ening depending on material parameters and

softening afterwards.

In this paper, following previsions simplified

attempt [15], we use a micromechanical based

model which takes into account fiber orientation

using a bivariate normal-like probability distri-

bution. The model reproduces the hardening

of UHPFRC based on the principle of energy

release rates and the softening behavior estab-

lished within the framework of a smeared rotat-

ing crack model. The model is able to repro-

duce fiber orientation effect on results from the

literature. It is then applied to a specific exper-

imental campaign to evaluate its efficiency to

grasp the behavior of reinforced UHPFRC sim-

ple elements where fiber volumetric content and

fiber orientation are informed from tomography

analysis. Main results are summarized and dis-

cussed in the last sections.

2 THE MICROMECHANIC MODEL

The stress-strain law of UHPFRC materials

can be divided into three parts: elastic, harden-

ing and softening. The hardening behavior may

only occur under some conditions in particular

when the volume fiber ratio is high enough and

if the main fiber orientation is close enough to

the principal tensile stress direction.

Micromechanical based models make it pos-

sible to identify whether or not a hardening

phase will develop considering the usual ma-

terial parameters related to fibers, to the ce-

mentitious matrix and their interactions. Indeed

the hardening and softening behaviors are de-

scribed as functions of the extraction law estab-

lished from the pullout mechanism of fibers.

2.1 Pullout mechanism of fibers

Firstly, the pullout force (F ) as to be defined.

It can be distinguished between the debonding

force (Fd) and the post-debonding force due to

friction (Fp). The relationship between the ex-

traction forces with respect to the crack opening

displacement (w) is derived [9].

For 0 < w ≤ w0:

Fd (w) =
1

2
φfπ

√

(1 + χ)τ0Efφf

√
w, (1)
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and for w0 < w ≤ Lf/2:

Fp (w) = πφfτ0(1 + χ) (L− w + w0) , (2)

with

χ =
Ef vf

Em(1− vf )
and w0 =

4(1 + χ)τ0 L
2

Ef φf

(3)

where φf : fiber diameter; Ef : fiber elastic mod-

ulus ; Em: matrix elastic modulus; vf : volume

of fibers; L: embedded length of fiber; τ0: bond

strength of fiber-matrix interface and w0 is the

crack opening displacement at which the fiber

is fully debonded. The debonding effect due

to the Poisson’s ratio is not considered in the

model [9], while the group effect of fibers is in-

directly taken into account in the calibration of

the fiber bond strength.

Secondly, the cohesive stress across the

crack (σc) is derived from the integration of the

fiber pullout forces and the probability (p) that

fibers intercept the crack plane [9]. p can be de-

composed by the product of pz and pAz,El which

respectively account for the fiber dispersion in

space and the fiber orientation defined by az-

imuth (Az) and elevation (El).

σc (w)=
4 vf
π φ2

f

∫ 2π

0

∫ π
2

0

∫ z0 cosEl cosAz

0

F (w) pz pAz,El dS

dS=cosEl dz dEl dAz, (4)

where z is the distance of the centroid of the

fiber from crack plan and pz its probability dis-

tribution. pz(z) = 2/Lf is chosen uniformly

distributed in the representative element vol-

ume. The integrals in Eq. 4 simply count the

number of fibers bridging the crack considering

their embedded length and orientation toward

the crack plane.

2.2 Fiber orientation distribution

The casting process has an important effect

on fiber orientation [6, 17]. In this work we use

a general bivariate π-periodic normal-like prob-

ability density function (pAz,El = pµ,Σ) to con-

sider the local fiber orientation:

pµ,Σ(x) =
1

2π
√

|Σ|
e[−

1

2
(x−µ)tΣ−1(x−µ)]

µ =

(
µAz

µEl

)

(5)

where x = 〈El, Az〉 is the vector of ran-

dom variables elevation and azimuth, µ is the

column-vector representing the center of the

function and Σ is the covariance matrix (ζ is

the rotation angle):

Σ11 = (σAz cos ζ)2 + (σEl sin ζ)
2

Σ22 = (σAz sin ζ)2 + (σEl cos ζ)
2

Σ12 = Σ21 = (σ2
Az − σ2

El) sin ζ cos ζ (6)

The azimuth and elevation are linked to Carte-

sian coordinates as shown in Fig. 1; σAz and σEl

are respectively the standard deviation of the az-

imuth and the elevation.

y

z

x

El
Az

Figure 1: Azimuth and Elevation Coordinates

By simplifying Eq. 4, one can identify

the standard orientation factor (defined by

Krenchel) following direction z. Figure 2

shows values of the orientation factor α in func-

tion of µEl (µAz = 0) and σEl (= σAz).

αz =

∫ 2π

Az=0

∫ π
2

El=0

pµ,Σ(El,Az) dS,

dS = cos2 El cosAz dEl dAz. (7)

−π
−π

2 0
π
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1
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3
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0.5

1
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α
z

Figure 2: Orientation factor of the model function of pa-

rameters (σAz = σEl) and µEl (µAz = 0)
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This probability density function is able to

reproduce typical values of fiber orientation fac-

tors identified in literature [17] (1D, 2D and

3D uniform orientation distribution). Corre-

spondence between the orientation factor α and

the disparity parameters of fibers (σAz, σEl) are

shown in Table 2. The first column stands for

the perfect uniform orientation of fibers in 3D,

the second column reproduces the case of uni-

form planar orientation of fiber and the last col-

umn is the case when fibers are considered per-

fectly aligned in direction z.

Table 2: Correspondence between parameters (σEl, σAz)

and orientation factor αz (for µAz = µEl = 0)

uniform orient. in 3D 2D 1D

αz 0.500 0.637 0.999

σAz 15.81 100.00 0.03

σEl 15.81 0.02 0.03

2.3 Hardening behavior

The elastic and hardening behavior are de-

scribed by the following equation:

σ = C(ǫ) : ε, (8)

where C is the fourth order stiffness tensor, ǫ
stands for the anisotropic damage parameter, σ

and ε are respectively the stress and strain ten-

sors. The stiffness tensor (C) is derived consid-

ering the cracked material as a perfectly elastic

cementitious matrix containing inclusions with

no rigidity and playing the role of cracks. The

matrix and the inclusions are homogenized by

the means of the Mori-Tanaka homogenization

scheme, which takes into account the interac-

tion of inclusions within the matrix as follows:

C = C0 :

(

I+
4

3
π (ǫ− ǫ0)T(n)

)−1

, (9)

where constant ǫ0 represents the initial isotropic

damage threshold, we note that ǫ ≥ ǫ0 is al-

ways true and I is the fourth order identity ten-

sor. The inclusions are considered as a fam-

ily of parallel penny-shaped cracks with orien-

tation n [18] and are mathematically modeled

by the fourth order tensor T(n). The crack ori-

entation is always collinear with the principal

maximum strain direction : only mode I frac-

ture is modeled. The tensor C is therefore a se-

cant transverse-isotropic stiffness matrix.

Within the energy-based framework of Lin-

ear Elastic Fracture Mechanics (LEFM), the

model considers the external loads and the fiber

bridging forces as external forces applied on an

elastic medium. For this loading scheme, the to-

tal stress intensity factor is the difference (con-

sidering the convention of the load direction

with respect to the work-conjugate displace-

ment) of the stress intensity factor of each load.

In using Irwin relationship (G = K2/E), the

energy release rate can be formulated as [19,

Sec. 3.5.2]:

f = GA + GB − 2
√

GA GB −Gc, (10)

where

GA = −∂Ψ

∂ǫ
= −1

2
ε :

∂C

∂ǫ
: ε (11)

is the energy release rate of external loads: it

is defined as the derivative of the free energy

Ψ, by damage parameter ǫ ≡ Nc a
3, defined by

Budiansky, and assuming inclusions of penny-

cracked shape of radius a;

GB =
dW (a)

da
= Nc

∂a

∂ǫ

∂W (ǫ)

∂ǫ
(12)

is the energy release rate which takes into ac-

count the contribution of fibers [9], where W (a)
is the amount of energy dissipated by fibers

being extracted from the matrix by a penny

cracked-shaped of radius a. Assuming the max-

imum opening of the crack (w) is inferior to
Lf

2
,

the amount of energy is :

W (a) = 2 π

∫ a

0

∫ w

0

σc(w) r dw dr. (13)

And

Gc =
2π

3

(Nc

ǫ

) 1

3

Gf (14)

is the equivalent fracture energy of the repre-

sentative element volume written as a function

of the damage parameter (ǫ), Gf is the specific
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fracture energy of the matrix and Nc is the num-

ber of cracks per unit volume.

The evolution of damage is controlled by

Eq. 10 thanks to the Kuhn-Tucker conditions :

f(ǫ) ≤ 0; f(ǫ) dǫ = 0; dǫ ≥ 0. (15)

The resolution of this system, for a given strain

history along with the consistency condition

df = 0, gives the stress-strain material law of

the material beyond the elastic part.

2.4 Softening rotating crack model

Once the maximum cohesive stress (σc,max),

computed from Eq. 4, is reached, a softening

behavior follows based on F = Fp. The cohe-

sive stress (σc) controls the softening part of the

constitutive law expressed by:

σ = C(ǫmax) : (ε− p1 ⊗ p1 ε
c
nn

︸ ︷︷ ︸

εc

), (16)

where C(ǫmax) is the stiffness tensor at peak, ε

the total strain tensor, p1 is the direction of max-

imum principal tensile stress, n is the crack nor-

mal, and εcnn the normal crack strain [20]. The

model is implemented according to a classical

rotating crack model, i.e., the crack orientation

is allowed to evolve during loading. Unit vector

n is constrained to be collinear with p1 so that

no shear can be developed on the crack plane.

To avoid well-known issues of mesh size de-

pendency, the stress-strain law is made depen-

dent on the mesh size to guarantee that the den-

sity energy dissipation is constant [19]. Hence,

the cracking strain (εc) is obtained thanks to the

inverse of the cracking law:

εcnn =
w

hc

href

L0

=
σc(snn)

−1

hc

href

L0

(17)

where snn is the maximum principal stress, L0

is a characteristic length, hc = 3
√
V is the reg-

ularization parameter with V being the element

volume and href a constant equal to 1 mm. To

ensure an efficient regularization with this def-

inition, the mesh should be composed of cubes

as far as possible. The model is implemented

in the open source Code Aster finite element

code [21]. Futher details are given in [24].

3 Model Validation

The model was validated using uniaxial ten-

sile tests on UHPFRC [7], where fibers are

oriented along a preferential direction by con-

straining fibers with steel molds. The spec-

imens were unnotched with a dimension of

600× 50× 20 mm [7].
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Figure 3: Results of calibration, after [7]

In a first step, model parameters have been

calibrated in using results from the case where

fibers are aligned to the loading direction (see

Fig. 3). The elastic matrix modulus (Em) is

used to capture the elastic phase, the bond

strength of fiber-matrix interface (τ0) to cali-

brate the maximal tensile stress, the initial crack

damage parameter (ǫ0) to set the strain corre-

sponding to maximal stress, the specific frac-

ture energy of the matrix (Gf ) to set the elastic

limit, the characteristic length (L0) to capture

the softening curve and finally the disparity of

fiber orientation (σAz = σEl) is chosen consid-

ering the crack interface profile. Some other pa-

rameters are given: volume of fibers (vf ), fiber

length (Lf ), fiber elastic modulus (Ef ) and fiber

diameter (φf ). Table 3 reports all the parameters

values.

Table 3: Fibers and matrix model parameters

vf = 2.7% Ef = 210 GPa

Lf = 13.0 mm φf = 0.20 mm

ν = 0.18 a0 = 1 mm

Em = 45 GPa ft = 8.0 MPa

σEl,Az = 10.0 µEl = 0◦

L0 = 350 mm τ0 = 8.0 MPa

Nc = 0.0003 cracks/mm3
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In a second step, we compared the simulated

and experimental stress-strain curves for other

experimental cases where the preferential fiber

inclination with respect to load directions was

varied [7]. In the model, we only changed the

angle of the fiber orientation (µAz). Figure 4

shows that the model globally captures the ex-

perimental results and therefore the effect of

fiber orientations.
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Figure 4: Validation for different orientation of fibers, af-

ter [7]

Fracture energy and maximal stress are well

estimated whereas elastic limit stress is slightly

overestimated. This means that the fracture en-

ergy of the matrix, in terms of damage, see

Eq. 14, can be improved using different crack

shapes or other definitions of damage parame-

ter.

4 FEM ANALYSIS OF BENDING TESTS

To verify the ability of the model to accu-

rately reproduce the behavior of UHPFRC rein-

forced structures, we first carried out four point

bending tests on 40 × 100 × 1400 mm beams

made of UHPFRC with 1% and 2% volumetric

fiber content [22]. Half of them were reinforced

with an 8 mm diameter steel bar (Fig. 5). The

loading control of the test was accomplished

by completing the test in a servohydraulic load

frame. The control signal for all tests was the

stroke with the imposed rate equal to 0.3 mm

per minute before crack localization and, then,

increased to 0.6 mm/min after crack localiza-

tion. The mid-span deflection was measured on

one beam side by a LVDT with a range of about

50 mm, supported by an aluminum yoke hanged

on the beam supports so that support settlement

was eliminated. The other side of beams was

used for digital image correlation.

d~y

100 400 400 400 100

10081

y
z

Figure 5: Experimental setup [22]

Additional specimens were cast to saw

prisms from them and to measure the real fiber

orientation at the corresponding position of the

macroscopic localized crack by means of X-

rays tomography [23]. The analysis was per-

formed over four heights levels for either 1%

and 2% samples without rebars; as an example,

Fig. 6 shows the first top level with 1% fiber ra-

tio (all other cases are presented in [24]).
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Figure 6: Fiber orientation on top of the beam resulting

from tomography analysis
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The 1D and 2D histograms show the disper-

sion of fiber orientation with respect to the az-

imuth and the elevation. From the tomography

analysis, we were able to obtain the fiber ori-

entation coefficient from top to bottom of the

beam: 0.88, 0.89, 0.93, and 0.95. These values

show that fibers are more aligned in the bottom

of the mold rather than on top, which is con-

sistent with wall effects. Moreover, the tomog-

raphy analysis revealed a segregation of fibers

varying from top to bottom : vf = 0.7%, 0.9%,

1.1%, and 1.3%. This information was used

as input data for the model (similar dispersions

were obtained for 2% of fibers [24]).

For the simulation of the four point bending

tests, we used a mesh of 3520 linear hexaedrons

elements. We reproduced the difference in dis-

placement of East and West cylinders thanks to

data from digital image correlations. In order to

initiate the localized crack at the correct posi-

tion, we specified to the closest element a fiber

volume of 3% fewer fibers than neighboring el-

ements (see Fig. 7).

Pre-damaged element
Pure elastic elements

dy = 0

dy = 0

dx = 0
dy = −dwest
dz = 0

dy = −deast

Midspan deflection

z
y

x

Figure 7: Mesh and group of mesh used to model the four

points bending test

The bond strength of fiber-matrix interface

(τ0) was calibrated for both 1% and 2% volu-

metric fiber content ; the mean values (on three

and four beams) are respectively: 12.56 MPa

and 8.82 MPa. The values for 2% of fibers are

lower because it takes into account the group

effect of fibers; those results are very close to

literature [25, 26]. Concerning the characteris-

tic length (L0), one beam was simulated con-

sidering the real displacement of East and West

cylinders for each of the 1% and 2% fiber volu-

metric cases: we respectively obtained 1.0 mm

and 1.3 mm.

The material parameters were calibrated on

experimental data as shown in Fig. 8. The

approximate discrete position of the simulated

crack with the corresponding simulated cylin-

ders displacement produced some time steps

that did not converge even though fifteen New-

ton iterations were enabled; these outlier results

correspond to dots out of the trend of the global

beam behavior. For those time steps, the global

residual did not diverge but the convergence

was very slow or oscillating. This was certainly

due to multiple integration points changing state

from opening to decreasing crack width. Nev-

ertheless, the model makes it possible to cap-

ture experimental data when adjusting material

parameters (Nc for the hardening length, τ0 for

the maximum resistance and L0 for the soften-

ing curve).
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Figure 8: Calibration on experimental results
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Figure 9: Modeling the reinforced beam
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Considering the obtained material parame-

ters, we also simulated the beams containing the

reinforced bars. The same mesh was used with

the addition of 1D linear isotropic strain harden-

ing bar elements with von Mises yield criterion

to model the reinforcement. Figure 9 shows

that the simulation overestimates the beam re-

sistance.

This can be attributed to the modeling of

the interface between UHPFRC and the rebar

which was considered as perfectly anchored.

The difference of strength between simulation

and the experimental results is smaller for UH-

PFRC with vf = 2% because the assumption

of perfect bonding between UHPFRC and rebar

is less irrelevant. Moreover, in the simulation,

the fiber orientation and distribution have been

considered similar to beams with and without

rebars. Nevertheless, the fiber orientation is dis-

turbed by the reinforcement.

5 CONCLUSIONS

A model has been developed combining

fracture-micromechanics and smeared rotating

cracks to reproduce the behavior of UHPFRC

under tension. The constitutive law is soft-

ening and eventually hardening depending on

material parameters. The model takes into ac-

count fiber orientation and distribution, fiber

volume and geometry, matrix fracture energy,

and fiber-matrix interface characteristics. The

orientation of fibers is modeled by a bivariate π-

periodic normal-like probability density distri-

bution which makes it possible to simulate var-

ious casting process. This parameter can easily

be linked to the traditional orientation factor.

The resulting model is able to reproduce four

point bending tests of rectangular cross-section

UHPFRC beams, with different fiber volumet-

ric contents. The preliminary FEM analysis is

encouraging as a refined tool for predicting the

maximum load considering fibers effect on the

global behavior, and needs to be extended to

grasp more accurately the bar reinforcement ef-

fect.
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métalliques, pp. 233–240. Revue française

de génie civil.

[9] Lin, Z. and Li, V. C. 1997. Crack bridg-

ing in fiber reinforced cementitious com-

8



Thomas Guénet et al.
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