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Abstract. This paper presents a meso-macro numerical approach for the determination of macro-
scopic diffusivity tensors in heterogeneous materials such as concrete. These macroscopic tensors
account for important features of heterogeneous materials: (1) cracking process (evolution from dif-
fuse cracks in the bulk to localized macro-crack), (2) tortuosity and connectivity of the crack, (3)
induced-anisotropy and (4) presence of aggregates. We present numerical examples in the context of
concrete-like materials. We show how the crack pattern and the presence of aggregates induce the
anisotropy of the macroscopic diffusivity tensor.
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1 INTRODUCTION
Regarding reinforced concrete civil engineer-

ing facilities, some corrosive external agents, –
sea water and spray, – are susceptible to pen-
etrate cement materials and deteriorate its me-
chanical performances. Consequently, because
of deteriorated mechanical performances, the struc-
ture durability and service life are affected. The
most corrosive penetrating agents with regards
to concrete are chloride ions. A considerable
amount of effort has been devoted to the mod-
elling of chloride ions transport mechanisms (dif-
fusion, migration, convection) and behaviour within
cement materials. However, chloride transport
modelling is reliable only if the main degrada-
tion factor of concrete structures into service,
i.e., cracking, is considered (see ([6]) and ([7])).

A survey of the literature reveals that during
the last couple of years, some research work
has been devoted to the numerical simulation
of the coupling† between chloride ion transport
and concrete crack formation mechanisms. Con-
cerning the coupling, researchers link an equiv-
alent diffusion coefficientDe to a crack width
parameter. They propose models depending on
this coefficient fitted in experimental data (see
([11]), ([6]) and ([8])). ([11]) and ([6]) suggest a
linear relationship between the crack width and
the equivalent diffusion coefficientDe. They
show that only over a threshold crack width value
of 80 µm, the diffusion coefficient starts to in-
crease. In addition, in ([6]), a important step
forward is made: the authors propose a relation-
ship between the crack width and the diffusion
coefficient through the crackDcr. This informa-
tion is of great interest for the mesoscale cou-
pled approach detailed in this paper. In ([5]),
the author proposes an equivalent diffusion co-
efficient of a power function of the crack width.
The author finds that for a crack width higher
than 135µm the equivalent diffusion coefficient
increases rapidly.

Regarding the numerical simulation of this
coupling, some studies are particularly relevant.
In ([12]), the authors integrate the diffusion co-
efficient through the crack obtained in ([6]) in
their numerical model of diffusion based on the

FE method. Then they compare their numeri-
cal results with the experimental ones of ([10]).
Note that in ([12]), only artificial cracks are con-
sidered (no mechanical simulations are performed).
([29]) consider a lattice-type model (see ([9])
for details) as numerical model of diffusion. They
fit in the experimental results of ([10]) to find
an equivalent diffusion coefficient. Then ([29])
consider a mesoscale lattice-type model with three
phases (ITZ, aggregates, mortar) in order to gauge
the influence of the ITZ and the aggregates on
the depth of chloride penetration. Here again
only artificials crack are taken into account. In
([4]) and ([3]), the authors propose a numeri-
cal coupling between two models: for mechan-
ical and diffusion simulations respectively, the
Delft lattice model (see ([23]) for details) and
the transport lattice model (see ([4]) for details).
Contrary to the prior numerical works, mechan-
ical simulations are performed leading to real
cracks. In ([3]), according to findings of ([34]),
the authors impose a chloride concentration only
on cracks wider than 12µm obtained after the
numerical simulation of a splitting test. In ([4]),
the authors assess their numerical model with
the experimental results of ([5]) and ([10]) for
cracked mortar samples by consideringDcr of
([6]).

However, regarding this literature, none of
the models are capable of giving macroscopic
quantities depending on the cracked state of con-
crete and more globally on its heterogeneous
aspect. This limitation may be due to: either
because they do not consider real cracks and
thus avoid connectivity, tortuosity aspects of the
crack pattern and crack width heterogeneities
in the computation and/or either because they
consider an equivalent diffusion coefficientDe

that can be seen as a phenomenological variable
such as damage or plasticty in mechanics ([22]).
In this case,De does not account explicitely of
the crack pattern failure and the heterogeneous
aspect of the material.

From a civil engineering point of view, this
information is crucial regarding durability and
service-life problems of civil engineering facil-
ities. We propose in this paper a method based
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on an upscaling process in order to provide a
macroscale diffusivity (mean diffusivity tensor)
accounting for the heterogeneous mesoscale struc-
ture of concrete, and correlate to the crack pat-
tern and to the crack width values of numerically-
induced cracks. In this context, important fea-
tures of the cracking process are taken into ac-
count in the macroscopic diffusivity: (1) the evo-
lution from diffuse cracks in the bulk to local-
ized macro-crack(s), (2) the tortuosity of the crack
and (3) the induced-anisotropy. To the author’s
knowledge, only the work of ([17]) provides such
macroscopic information.

In this paper, we model concrete at the mesoscale
as an heterogeneous quasi-brittle two-phase ma-
terial based upon the work of ([1]). This model
is presented in Section 2. In Section 3, we in-
troduce a simple chlorides ions transport model
relying on Fick’s law. The mesoscale coupling
is then examined. In Section 4, the upscaling
method for the determination of the mean diffu-
sivity tensor is presented, based upon the work
of ([20]). Finally, in Section 5, we show the ca-
pability of the approach to determine mean dif-
fusivity tensors in the context of concrete-like
materials.

2 MECHANICAL MODEL: TWO-PHASE
QUASI-BRITLLE MATERIAL

In this section, we give a brief description
of the mechanical model. For the readers in-
terested in more details, a complete description
of the model, its numerical implementation and
a number of illustrative examples of the model
predictive capabilities can be found in [1].

2.1 Meso-model features

The numerical model for the mechanical sim-
ulations is based upon a two-phase (stiff aggre-
gates embedded into a mortar matrix) quasi-brittle
model capable of representing the behavior of
concrete-like materials under complex loading
paths. In order to take into account the influ-
ence of the shape, the size, the distribution and
the mechanical properties of aggregates on the
mechanical behavior of concrete, the mesoscale
([32], [2]) is chosen to be the scale of computa-

tion. The numerical approach we work with, at
the mesoscale, is based upon a 3D lattice finite
element model ([25], [24], [33] and [14]) whose
truss elements kinematics is enhanced by two
discontinuities.

The first discontinuity is a weak discontinu-
ity – continuous displacement field and discon-
tinuous strain field, ([18]) – introduced because
of the non-adaptated meshing process ([16]). This
process consists in a unique homogeneous mesh
whose nodes are placed independently from the
morphology of the aggregates. A significant
amount of computation time is saved at this stage.
However, some truss elements are cut into two
parts, each having different elastic properties.
That’s why in order to take into account this
special kinematics in the truss elements, this weak
discontinuity is introduced.

The second discontinuity is a strong discon-
tinuity – discontinuous displacement field and
unbounded strain field, ([27]) – introduced in
order to represent micro-cracks that may occur
in any of different phases (aggregates or mor-
tar matrix for two-phase materials) and to cap-
ture the interface failure (debonding). More-
over, the key point pertains to strong discon-
tinuities capability to model softening behav-
ior without any mesh dependency which is the
major issue dealing with failure of quasi-brittle
materials.

The weak discontinuity is present only for
the truss elements split into two parts, each hav-
ing a different Young modulus. The strong dis-
continuity is introduced by means of a yield func-
tionΦ which is triggered only in traction. Thus
two constitutive models appear for a truss el-
ement: a continuum one (outside the discon-
tinuity) which is elastic (see Figure 1(a)), and
a discrete one (over the discontinuity) which is
quasi-brittle (see Figure 1(b)). We denote by
tΓ the traction vector over the discontinuity and
[|u|] the crack width which belongs to the set of
unknowns.

The yield function is such as:

Φ = tΓ − (σu − q), (1)
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(a) behavior outside the discontinuity

tΓ

[|u|]

σu

(b) behavior at the discontinuity

Figure 1: Elastic–quasi-brittle behavior

whereq is the stress-like variable

q = k([|u|])

with k([|u|]) = σu

(

1− exp

(

−[|u|]
σu

Gf

))

.

(2)

In summary, there are altogether eight model
parameters: the Young modulusE⊕ for the mor-
tar matrix andE⊖ for aggregates, for the con-
tinuum model and the ultimate tensile strength
before softening,σui

and the fracture energy,
Gfi (i = 1, 2, 3 for respectively the mortar ma-
trix, aggregates and interfaces) for the discrete
model. We noteGfi the area under the curve
tΓ − [|u|].

2.2 Mathematical framework
Having at end the weak and strong disconti-

nuities, the total strain is written in the context
of the EAS (Enhanced Assumed Strain, [28])
method such as:

ε = ∇
s
ū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong

, (3)

where∇s
ū is the symmetric gradient of the dis-

placement field. As in ([28]), we refer tõε and
ε̂ as the enhanced parts of the strain field. The
notation•̃ (resp.•̂) refers to weak (resp. strong)
discontinuity.

In the context of a truss element,̃ε and ε̂

have the following form:

ε̃ = G
⊕/⊖
w [|ǫ|] and ε̂ = Gs[|u|], (4)

whereG
⊕/⊖
w and Gs are enhanced functions.

[|ǫ|] and[|u|] are the enhanced interpolation pa-
rameters and belong to the set of unknowns.

This strain field (equation (3)) is then intro-
duced in the Hu-Whasizu variational formula-
tion ([30]) leading to the FE problem to be solved
in terms of the displacement fieldd and the en-
hanced interpolation parameters[|ǫ|] and [|u|]
for the weak and strong discontinuities, respec-
tively . The solving procedure is achieved by a
local-global solving process:[|ǫ|] and [|u|] are
computed by means of a return mapping algo-
rithm ([26]) and after a static condensation of
[|ǫ|] and[|u|] ([31]), the displacement fieldd is
computed for each iterationk + 1 of a typical
time stepn + 1.

2.3 Important feature for the mesoscale cou-
pling procedure

We recall that[|u|] is nothing but the crack
width value. It is quite clear that such an infor-
mation is crucial for the computation of mass
transport within mesoscale cracks and thus to
achieve fine couplings at the mesoscale. In ad-
dition, the set of cracks orientations clearly gather
the whole information dealing with the fracture
pattern anisotropy inducing the anisotropy of the
macroscopic diffusivity. These two important
features (crack width values and crack orienta-
tions) are the key points for the mesoscale cou-
pled approach between the mechanical model
and the chlorides ions transport model. This
coupled approach is detailed in the next section.

3 MESOSCALE COUPLED APPROACH

As presented in Section 2, the mechanical
model is based upon the Strong Discontinuity
Approach (SDA). This leads to the representa-
tion, in terms of displacement jump, of the fine
scale cracks and to the computation of this jump
as the crack width[|u|]. Thus at the end of each
mechanical time step, the crack width values for
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each finite element are given by the mechani-
cal model. These crack width values are then
used as input data in the chlorides ions trans-
port problem leading to a weak coupling at the
mesoscale with the mechanical problem. In this
Section, we first present the chloride ions trans-
port model retained in this work and then show
how the aforementioned weak coupling is per-
formed.

3.1 Chloride ions transport model
Transport by diffusion, resulting of a differ-

ence of concentration in various zones, has been
retained for the chloride ions transport model.
Thus it relies on Fick’s law such as:

~q(~x) = −Dm · ~∇c(~x), (5)

where~q(~x) is the mass flux [kg/(m2s)], Dm the
mesoscale diffusion coefficient [m2/s], ~∇ the
gradient operator [1/m] andc(~x) the mass con-
centration [kg/m3].

Remark:Chloride ions transport simulations
are performed considering the same mesh as for
mechanical simulations, namely a 3D lattice fi-
nite element model. Equation (5) has therefore
a 1D form.

Injecting equation (5) in the mass balance
equation ([19]) and considering the aforesaid
remark, Fick’s second law is obtained such as:

∂c

∂t
= −Dm ·

∂2c

∂x2
. (6)

Equation (6) represents the problem to be solved
in terms of mass concentration field. The reso-
lution is achieved by means of the Finite Ele-
ment Method ([15]) leading the following dis-
cretised form of (6):

[K +
M

∆t
]
(k)
n+1∆c

(k+1)
n+1 = −R

(k)
n+1, (7)

whereM is the mass matrix,K the diffusion
matrix andR the residual. A Euler-backward
integration scheme is used for the time depen-
dent term.

In the next section, we expose how the cou-
pling with the mechanical problem is performed.
As suggested in the introduction, it is based upon
the experimental work of ([6]).

3.2 Mesoscale coupled approach through ([6])

In the present paper, the mesoscale coupling
is addressed by considering the mesoscale dif-
fusion coefficientDm as a function of the crack
width [|u|]. This consideration relies on the ex-
perimental results of ([6]). The authors pro-
vide a relation between the diffusion coefficient
through the crackDcr and the crack width[|u|]
such as:







Dcr(m
2/s) = 1.8× 10−12,

when [|u|] < 30µm
Dcr(m

2/s) = 2× 10−11[|u|]− 4× 10−10,
when 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10,

when [|u|] > 80µm
(8)

Finally, concerning the coupling, it is as fol-
lows: in a first time, mechanical simulations are
performed by means of the model presented in
Section 2. At the end of each mechanical time
step, the crack width values for each finite ele-
ment are computed. In a second time, chloride
ions transport simulations are performed with
these crack width values used as input data in
the mesoscale diffusion coefficientDm with the
form of (8). The models are therefore chained
and not explicitly coupled.

Having at end the mesoscale coupling, we
now turn to the upscaling method leading to the
computation of the macroscopic diffusivity ten-
sor (mean diffusivity tensor).

4 UPSCALING METHOD: MEAN DIFFU-
SIVITY TENSOR COMPUTATION

In the former Section, the mesoscale coupled
approach between the mechanical and chlorides
ions transport models was presented. In this
Section focus is made on a upscaling method
leading to the computation of the macroscopic
diffusivity tensor. Thus at the end of this Sec-
tion, a meso-macro numerical approach account-
ing for crack-induced diffusivity in heteroge-
neous materials will be built.
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4.1 Mean gradient of concentration and mean
flux

We define the mean concentration gradient
~G [kg/m4] and the mean flux~Q [kg/(m2s)]
within a domainΩ by the following relation-
ship:

~G =
1

V

∫

Ω

~∇c(~x)dΩ, (9)

~Q =
1

V

∫

Ω

~q(~x)dΩ, (10)

whereV is the volume ofΩ. We remind that
~q(~x) is Fick’s velocity at point~x and ~∇c(~x) is
the concentration gradient at this point such as
the Fick’s law gives:

~q(~x) = −Dm · ~∇c(~x), (11)

whereDm is the mesoscale diffusion coefficient
with the form of equation (8).

In order to determine the mean diffusivity
tensor, the authors follow the method proposed
in ([20]) and ([21]) for hydraulic transport prob-
lem (incompressible flow) in heterogeneous me-
dia and developped for gas transport problem
(compressible flow) in cracked media such as
concrete in ([13]). Herein we extend the method
to chlorides ions transport problem in heteroge-
neous media. Note that the term heterogeneous
gathers both inclusions such as aggregates in
concrete and cracks. The mean concentration
gradient~G and the mean flux~Q are computed
from the values of concentration and flux on the
frontier∂Ω of the domainΩ such as:

~G =
1

V

∫

∂Ω

c(~x)~n(~x) dS, (12)

~Q =
1

V

∫

∂Ω

(~q · ~n) ~x dS, (13)

where~n is the outward unit vector from the sur-
faceS anddS is a surface element of∂Ω.

As we’ll see hereafter, equations (12) and
(13) are well adaptated for numerical simula-
tions and their form provide an efficient way
to compute the mean diffusivity tensor when

boundary conditions are applied. These equa-
tions respectively represent the concentration gra-
dient and the flux computed from the values of
concentration and flux on the contour for any
heterogeneous media – presence of cracks and/or
inclusions –, any boundary condition – Dirich-
let or Neumann-type – and, any frontier shape.

4.2 Boundary conditions: linear concentra-
tion

In the present paper, Dirichlet-type boundary
conditions are assumed. We consider condition
of linear pressure at the contour such as:

c(~x) = ~A · ~x+ c0, ∀~x ∈ ∂Ω, (14)

where ~A is a constant vector andc0 a constant
scalar.

Following the development made in ([20])
for hydraulic transport problem under the con-
dition of linear pressure at the contour, we ob-
tain: the equality~G = ~A and a direct link be-
tween the mean concentration gradient~G and
the mean flux~Q such as:

~Q = −D · ~G, (15)

whereD represents the mean diffusivity tensor
of the domainΩ.

Incorporing the equality~G = ~A in (15) yields:

~Q = −D · ~A. (16)

Finally, equation (16) provides a straightfor-
ward way for the numerical computation of the
mean diffusivity tensorD. Indeed, the nine com-
ponents of the tensorD are obtained by com-

puting ~Q for three distincts directions of the vec-
tor ~A present in (14). These directions are shown
in Figure 2 for a 100×100×100mm cubic do-
main: Figure 2(a) corresponds to X direction,
Figure 2(b) to the Y direction and Figure 2(c)
to the Z direction of the domain.

As demonstrated in ([21]), two properties of
D are worth noting: it is symmetric and positive-
definite. These properties as well as the imple-
mentation of the method will be assessed in the
next section by means of numerical examples.
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(a)

(b)

(c)

Figure 2: Condition of linear pressure on the contour in
the X, Y and Z directions

5 NUMERICAL EXAMPLES

In this Section, the upscaling method pre-
sented in the previous section is illustrated by
means of numerical examples. We consider concrete-
like materials with two types of heterogeneities
(cracks and/or aggregates). We show how the
anisotropy of the mean diffusivity tensorD is
induced by the the failure pattern anisotropy.

5.1 Artificially cracked domain

The first example deals with a 100×100×100
mm cubic domain cut by a perfect plane crack.
The crack is located in the plane Y = 50mm.
The value of the crack width[|u|] is imposed,
ranging from 0 to 500µm. For each value of
the crack width, the method presented up above
is applied ; the nine components of the mean
diffusivity tensor are computed. We remind that
the mesoscale coupling is performed by means
of the experimental law of ([6]) presented in
Section 3.

Figure 3 shows the position of the crack in

the cubic domain.

Figure 3: 100×100×100 mm cubic domain withκ
equals to 0: the crack (colored in red) is in the plane Y =
50mm

The numerical results are illustrated in Fig-
ures 4 and 5. They show the components of the
mean diffusivity tensorD as a function of the
crack width[|u|] for the 100×100×100mm cu-
bic domain.

The anisotropy of the mean diffusivity ten-
sor can be observed in Figure 4 since the diag-
onal components ofD do not increase in value
with the same magnitude.Dxx andDzz have the
same value and increasing because the macro-
scopic crack is perpendicular to theY -direction.
In contrast,Dyy remains invariant to the crack
width. The value of this component is equal to
the one for an homogeneous domain, namely
1.8×10−12 m2/s. These results are consistent
with the work of ([17]).

Figure 5 plots the off-diagonal components
of D. Physically speaking, these terms corre-
spond to crossed-interactions. For instance,Dxy

is the value ofD in the X-direction when a
gradient of concentration is applied in theY -
direction. Dxy andDzy have the same level of
magnitude in terms of value whereasDxz has
higher value. This result is consistent regarding
the location of the crack, namely in theX − Z
plane.

For sake of clarity, we present the form of
D for different crack width[|u|] corresponding
to the three different ranges defined by equation
(8) (we have omitted×10−12 m2/s due to the
lack of space in the column):

D
0µm =

(
1.78 1.45× 10−5 −4.51× 10−6

1.45× 10−5 1.77 5.48× 10−6

−4.51× 10−6 5.45× 10−6 1.77

)
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Figure 4: Diagonal components ofD in relation with the
crack width
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Figure 5: Off-diagonal components ofD in relation with
the crack width

D
30µm =

(
2.51 1.79× 10−3 −2.30× 10−2

1.79 × 10−3 1.81 2.67× 10−3

−2.30× 10−2 2.67× 10−3 2.48

)

D
90µm =

(
6.65 2.41× 10−3 −1.97× 10−1

2.41 × 10−3 1.87 5.27× 10−3

−1.97× 10−1 5.27× 10−3 6.51

)

In respect of the form ofD, we conclude
that it is symmetric with real coefficients so it
is diagonalisable. We find the sets of following
eigenvalues (1.78, 1.77, 1.77)0µm, (2.52, 1.81,
2.47)30µm and (6.79, 1.87, 6.37)90µm (note that
we have omitted×10−12 m2/s). They are all
positive soD is positive-definite.

The eigenvalues ofD0µm andD30µm are equal
to the diagonal values ofD0µm andD30µm. Con-
sequently, the off-diagonal terms ofD0µm and
D

30µm are negligeable (terms in 10−14 m2/s and

10−15 m2/s). However forD90µm, this conclu-
sion cannot hold. We conclude that when the
crack width increases, the induced-anisotropy
of D increases. This is accompanied with non
negligeable off-diagonal terms.

Last but not least, the two important prop-
erties ofD aforementioned are checked:D is
symmetric and positive-definite (positive eigen-
values).

These two points are consistent with the the-
oretical results of ([20]). They assess the nu-
merical accuracy of the upscaling method pre-
sented in Section 4 and its implementation in
the context of the Finite Element Method.

The numerical examples presented above con-
sider an artificial crack as heterogeneity. In this
part, we propose a step beyond for the numeri-
cal simulations, where both mechanically-induced
cracks and aggregates are considered. We first
present the mechanical results and then we turn
to the mean diffusivity tensor determination. Note
that the mesoscale coupling is performed again
by means of the experimental law of ([6]) pre-
sented in Section 3 and already used in the first
simulation. As we will see hereafter this law
is slightly modified to account for a two-phase
material.

5.2 Two-phase mechanically-induced cracked
domain

5.2.1 Tensile test simulation:

The 100×100×100mm cubic domain is again
regarded. It is composed this time of a mortar
matrix with 35% of spherical aggregates. Two
aggregate diametersΦ are regarded: 4 and 16
mm. Cracking is mechanically-induced by a
tensile test. Once again, the numerical model
presented in Section 2 is used for the simulation
of the mechanical problem.

Considering a two-phase material where stiff
aggregates are embedded into a mortar matrix,
we remind that three sets of elements are present
in the simulation: those entirely lying inside the
matrix or inside the aggregates (with the same
elastic modulus and no strain discontinuity) and
those that are split by a physical interface and
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whose strain discontinuity is activated.
Table 1 summarizes the mesoscale material

properties pertaining to the mechanical model,
for the different phases of the domain. Note that
the aggregates are stiffer than the mortar matrix
and remain in the elastic regime. The compu-
tation is made under displacement control ac-
cording to the second spatial axisY . We obtain
a macroscale Young modulus and a macroscale
limit stress equal to 29060 (28700) MPa and
2.05 (2.10) MPa forΦ equals to 4 (16) mm, re-
spectively.

phase E
(GPa)

σu

(MPa)
Gf

(J/m2)
mortar
matrix

18 3 5

aggregates127 elastic elastic
interfaces - 2 5

Table 1: Mesoscale material properties for the numerical
simulations

The crack evolution for the cubic domain is
shown in Figures 6 and 7 forΦ equals to 4 and
16mm, respectively. It corresponds to the micro-
cracked bar elements for which the strong dis-
continuity has been activated. The crack is ini-
tiated around the aggregates in the interface el-
ements corresponding to a weak zone (Figures
6(a) and 7(a)). As the applied macroscale strain
increases, this crack is bridged over around the
elastic aggregates (Figures 6(b) and 7(b)) lead-
ing to a kind of macro-crack in the direction
roughly orthogonal to the imposed displacement
and passing around the aggregates (Figures 6(c)
and 7(c)).

Finally, we can conclude that (1) the maxi-
mum crack opening values are very close what-
ever the size of the aggregates is, (2) regarding
Figures 6(c) and 7(c), the macro-crack pattern is
more tortuous for an aggregate diameter equals
to 16mm and is rotated around theX andZ
axis. Last but not least, one macro-crack is suf-
ficient to drive the macroscale response into the
softening regime.

Having in hands the results of the mechani-
cal simulation, we now turn to the mean diffu-

(a) Micro-crack initiation
around the aggregates

(b) Micro-crack coalescence
process

(c) Macro-crack formation

Figure 6: Crack pattern evolution and crack width values
for the tensile test withΦ equals to 4mm
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(a) Micro-crack initiation
around the aggregates

(b) Micro-crack coalescence
process

(c) Macro-crack formation

Figure 7: Crack pattern evolution and crack width values
for the tensile test withΦ equals to 16mm

sivity tensor computation as presented in Sec-
tion 4.

5.2.2 Mean diffusivity tensor computation:

First of all, the experimental law of ([6]) is
slightly modified to account for a two-phase ma-
terial such as:







Dcr(m
2/s) = θD1 + (1− θ)D2,

when [|u|] < 30µm
Dcr(m

2/s) = 2× 10−11[|u|]− 4× 10−10,
when 30µm ≤ [|u|] ≤ 80µm

Dcr(m
2/s) = 14× 10−10,

when [|u|] > 80µm
(17)

whereD1 andD2 are the diffusion coeffi-
cient in the mortar matrix and in the aggregates,
respectively andθ, the spatial position of the in-
terface in an element computing in the mesh-
ing process (see ([1]) for details). Note that
when an element is in the mortar matrix,D1 is
equal toD2 and the original expression of ([6])
is found again.

Models parameters pertaining to the diffu-
sion problem are given in Table 2. The aggre-
gates are chosen impermeable such as their dif-
fusion coefficient isD2 = D1/100. Note that
D1 has the value of1.8 × 10−12m2/s and cor-
responds to the mortar matrix diffusion coefffi-
cient.

phase Dm (m2/s)
mortar ma-
trix

equ. (17):D1 = D2 = 1.8 ×
10−12

aggregates D2 = 1.8× 10−14

interfaces equ. (17):D1 = 1.8 × 10−12

andD2 = 1.8× 10−14

Table 2: Mesoscale material properties for the numerical
simulations

Figure 8 shows the diagonal components of
the mean diffusivity tensor as a function of the
maximum crack width and the aggregates size.

Firstly, we can note a threshold value in terms
of the maximum crack width around 0.25mm
corresponding to the micro-crack coalescence

10
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process leading to the macro-crack (see Figures
6(b) and 7(b) ). Around this threshold, the local-
ized macro-crack takes over the advantage from
the diffuse cracks in the bulk, in terms of path
flow. This macro-crack gives an increase in the
values of the diagonal components of the mean
diffusivity tensor as observed in Figure 8.

Secondly, we note an increase of 8%, 16.4
% and 4.7% betweenDxx,4mm andDxx,16mm,
Dyy,4mm andDyy,16mm, Dzz,4mm andDzz,16mm,
respectively. Note that these values are only
given for the last time step corresponding to a
maximum crack opening equals to 0.52mm for
Φ equals to 4mm and 0.53mm for Φ equals to
16 mm. Indeed this comparison holds only if
the crack opening are very close. This increase
in the diagonal components forΦ equals to 16
mm could be explained by the rotation of the
macro-crack around theX andZ axis with a
rotation more important around theX axis. Be-
cause the quantification of this rotation is not
easy, the proposed explanation has to be seen
as more qualitative than quantitative. Never-
theless the authors have proved the capability
of the proposed method, even in the context of
mechanically-induced cracks and aggregates, to
determine macroscopic diffusivity tensors.
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Figure 8: Diagonal components in relation with the max-
imum crack width and the aggreagtes size

6 CONCLUSIONS
We have presented in this paper a meso-macro

numerical approach accounting for crack-induced
diffusivity in heterogeneous materials. This nu-

merical approach relies on (1) a mesoscale model
where the diffusion coefficient is linked to the
crack opening and (2) a macroscale model where
a macroscopic concentration gradient is linked
to a macroscopic flux, in the spirit of the porous
media flow theory. The information from the
mesoscale to the macroscale are upscaled by means
of an homogeneisation method based on the work
of ([20]). This presented framework leads to the
computation of a macroscopic diffusivity tensor
accounting for the evolution from diffuse cracks
in the bulk to localized macro-crack(s), the tor-
tuosity of the crack, and the induced-anisotropy.

The Strong Discontinuity Approach is the key
point of this work in regards with the mesoscale
coupling. This approach is an elegant method
to model cracks within a medium. In addition,
it gives the crack opening values for each Finite
Element, at each time step. At the mesoscale,
each crack is a path for an oriented flow in which
the coefficient of diffusion follows the experi-
mental law of ([6]). We have presented several
numerical examples showing the ability of the
numerical upscaling process to model anisotropic
macroscopic diffusivity tensor. These examples
confirm the intuitive idea that the whole set of
fine cracks cannot lead to an isotropic diffusiv-
ity tensor.
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