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Abstract: Fracture energy, defined as the amount of energy necessary to create one unit area of a
crack, is a very important parameter in analyzing the behavior of quasi-brittle materials such as
concrete, mortar, rock, et al.. The size-independent fracture energy of concrete and mortar can be
obtained according to boundary effect theory. The intention of this paper is to determine the size-
independent fracture energy of granite by virtue of the peak loads of three-point-bending notched
beams. An analytical model was presented to correlate the peak loads with the crack-tip local
fracture energy in granite beams. A fracture test was then carried out on granite beams with two
depths, i.e., 30 mm and 70 mm. For the beams with depths of 30 mm, the notches are cut with
lengths from 3 mm to 18 mm. For the beams with depths of 70 mm, the notch lengths vary from 2
mm to 53 mm. The average value of the maximum tensile stress at the fictitious crack-tip is adopted
as 8 MPa. Upon the comparison between the analytically predicted peak loads and the
experimentally determined ones, the correlation between the crack-tip local fracture energy and
notch length can be obtained. It can be found that the value of crack-tip local fracture energy almost
keeps 300 N/m without free boundary effect for the notch lengths from 9 mm to 18 mm in the
beams with depths of 30 mm and for the notch lengths from 10 mm to 53 mm in the beams with
depths of 70 mm. Thus, the size-independent fracture energy is 300 N/m for this type of granite.

1 INTRODUCTION
Fracture energy, defined as the amount of

energy necessary to create one unit area of a
crack, is a very important parameter in
analyzing the behaviors of cementitious
materials or quasi-brittle materials, such as
concrete, mortar, rock, etc. It is usually
determined based on the work-of-fracture
method recommended by RILEM [1]. But it is
found to be much dependent on the sizes and

shapes of the specimens. Various studies
attempted to explain the size effect in fracture
energy. The size effect model by BaŽant et al.
[2, 3] and the multi-fractal scaling law by
Carpinteri et al. [4-6] gave much valuable
explanations on the size effect. But both of the
models only concentrate the effect of the width
or depth of the tested specimen and the notch-
to-depth ratio is invariable. Based on the FCM
[7], Hu et al. [8-13] emphasize that the key
mechanism for the size effect should be the
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interaction between the FPZ and the boundary
of specimen not the physical size itself, and
then develop the theory of boundary effect.
The width and length of the FPZ related to
local fracture energy are found to vary along
the ligament of specimen and decreases
sharply towards the back free boundary [8-10].
Thus, a bi-linear model for the local fracture
energy distribution is presented including a
horizontal line with the value of size-
independent or true fracture energy GF and a
linearly descending part approaching zero at
the back free boundary of specimen [14]. The
boundary effect phenomenon was verified
experimentally by Abdalla and Karihaloo [15]
and the GF is simply determined by testing a
single size specimen with only two distinctly
different notch-to-depth ratios.

Muralidhara et al. [16] pointed out a
fictitious boundary effect at the initial notch
tip using acoustic emission data recorded from
three-point-bending notched concrete beams
and presented a tri-linear local fracture energy
distribution model which consists of an
ascending line from zero at the initial crack-tip,
a horizontal line and a descending portion
approaching zero at the back free boundary.
The tri-linear model has been verified
experimentally by other researchers [17, 18].
Moreover, the size-independent fracture
energy of high strength concrete is determined
by the tri-linear model [19, 20]. The authors
proposed an analytical approach to correlate
the load-carrying capacity of three-point-
bending notched concrete [21] or mortar [22]
beams with local fracture energy at the
cohesive crack-tip region, and determine the
variation of the crack-tip local fracture energy
with the initial crack length. A modified tri-
linear local fracture energy distribution model
was presented, which indicates the front
boundary effect. The bi-linear model by Duan
et al. [14] is accurate enough only if the initial
crack length is longer than 30% of the
specimen depth [22].

The boundary effect and size-independent
fracture energy have been well determined for
concrete and mortar. As another type of quasi-
brittle materials, the fracture properties of rock
are very similar to those of concrete and

mortar [23]. Fracture energy is also a very
important parameter in describing the quasi-
brittle fracture process in rock. The intention
of this paper is to determine the boundary
effect and the size-independent fracture energy
of granite. An analytical model is first
proposed in this paper to correlate the crack-
tip local fracture energy with the peak loads of
three-point-bending notched granite beams.
The regions affected by the front and back free
boundary effects and the size-independent
fracture energy are then obtained based on the
comparison between the analytically predicted
and experimentally measured peak loads.
2 ANALYTICAL MODEL

A three-point-bending notched granite
beam with an initial crack length a0 at the mid-
span is shown in Fig. 1. b and h are the width
and depth of beam, respectively. L represents
the span of beam and L=4h.

Figure 1: Three-point-bending notched granite beam

Figure 2: Single-linear model for σw-w relationship
When the initial crack starts to propagate in

the granite, a fracture process zone appears
ahead of the crack-tip for quasi-brittle
materials and can be described based on FCM
[7]. The relationship between the cohesive
stress σw and crack opening width w in the
fictitious crack is assumed to be single-linear
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as shown in Fig. 2, which reads




  wg

ff
f

tt 21 maxmaxw (1)
Herein, the area underneath the σw-w curve is
the local fracture energy gf of granite. ftmax is
micro-critical stress at the fictitious crack-tip.
w0 is the maximum crack opening width when
the cohesive stress is reduced to zero.

The distributions of stress and strain along
the depth of granite beam in the critical cross-
section before the ultimate state are shown in
Fig. 3.

Figure 3: Distributions of stress and strain in the
critical cross-section

where Eg is the elastic modulus of granite and
a is the effective crack length after the first
cracking initiation. Moreover, it is assumed
that the gf is constant as the cohesive crack-tip
local fracture energy in the quasi-brittle crack
growth region.

According to the linear strain's distribution
in Fig. 3, we have

maxc t
c

c fh
hah  (2)

The equilibrium condition of forces in the
critical section gives
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where wt is the width of the initial crack-tip.
Moreover, the bending moment M can be
obtained as follows according to the
equilibrium condition of forces in Fig. 3, i.e.,
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Substituting Eqs. (1)-(3) into Eq. (4), the

bending moment M can be expressed as a
function of a and wt, i.e., M(a, wt).Moreover, the crack mouth opening
displacement CMOD is given as follows by
Tada et al. [24].
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The relationship between CMOD and wt is

0aa
awCMOD t (6)

Inserting Eqs. (1), (2), (3), (4) and (6) into
Eq. (5) yields an equilibrium equation with
respect to a and wt as follows.

0),(1 twaM (7)
Based on the Lagrange Multiplier Method, a

Lagrange function Φ(a, wt, λ) should be
established as follows.

),(),(),,( 1 ttt waMwaMwa   (8)
Herein, λ is a unknown parameter to be solved.
By applying the following conditions,

0





twa (9)
three equations are given. The critical effective
crack length ac and the critical crack-tip
opening width CTODc are obtained by solving
the three equations. Then the maximum
bending moment Mmax can be given by
inserting a=ac and wt=CTODc into Eq. (4).
The peak load Pmax is yielded by Eq. (10) as
follows.

2
4 maxmax

W
L

MP  (10)
where W is the self-weight of the granite beam.

Obviously, the Pmax is determined by two
important material parameters, i.e., the micro-
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critical tensile stress ftmax and the crack-tip
local fracture energy gf.
3 DETERMINATION OF SIZE-
INDEPENDENT FRACTURE ENERGY

The intention of this paper is to correlate
the peak load Pmax with the local fracture
energy gf and determine the size-independent
fracture energy GF. The crack-tip local fracture
energy may affect the Pmax as discussed above.
To study the influence of the crack-tip gf on
the Pmax, fracture tests of three-point-bending
notched granite beams are carried out first to
obtain the experimentally measured maximum
fracture loads.
3.1 Experimental programme

The granite used in the experiment is
medium-grain granite with an average grain
size between 2-3 mm and tensile strength of 8
MPa. Two groups of 3-p-b samples are
prepared with beam depth of 30 mm in Group
I and 70 mm in Group II. The span of all the
beams is 4 times of the depth. All the
specimens have a width of 25 mm.

In Group I (h=30 mm), the initial crack
length is set as 3 mm, 6 mm, 12 mm and 18
mm. In the other group (h=70 mm), the notch
length is 2 mm, 3 mm, 4 mm, 6 mm, 10 mm,
21 mm, 30 mm, 38 mm, 45 mm, 53 mm.
3.2 Results and discussions
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 Solid line: ftmax=8MPa, gf=300N/m

P ma
x (kN

)

a0 (mm)
Figure 4: Pmax versus a0 in Group I (h=30 mm)
The experimentally measured peak loads

Pmax of all the granite beams are shown in Figs.
4 and 5, respectively. In the proposed

analytical approach, the ftmax is adopted as 8
MPa and the crack-tip gf is 300 N/m. Then the
analytically predicted Pmax versus the initial
crack length a0 and its comparison with the
experimentally determined Pmax are given in
Figs. 4 and 5, respectively.
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Figure 5: Pmax versus a0 in Group II (h=70 mm)
There are distinctly two parts in Figs. 4 and

5 according to the comparison between the
analytically predicted and experimentally
determined maximum fracture loads. When the
a0 is smaller than 9 mm, most of the scattered
points fall below the solid line. It means the
analytically predicted Pmax is apparently lower
than the experimentally measured Pmax in this
part. In the other part, however, all the
scattered points distribute symmetrically along
the solid line and good agreement appears
between the analytically predicted and
experimentally determined Pmax.As discussed above, the ftmax and gf are two
important parameters affecting the load-
carrying capacity. Therefore, the
underestimation of Pmax for a0<9 mm is mainly
due to the lower value of ftmax or gf. Although
the value of the ftmax is random and variable, it
should be a material constant statistically
irrelevant to the a0. Thus, the only factor is the
crack-tip local fracture energy gf. When a0 is
longer than 9 mm, the analytically predicted
Pmax show good agreement with the
experimentally determined one and the
adopted value of gf, i.e., gf=300 N/m, is
rational. When a0 is shorter than 9 mm, the
value of gf must be smaller than 300 N/m. The
value of a0 actually reflects the distance from
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the front free boundary according to the
literature [21]. When a0 is shorter than 9 mm,
the crack-tip is very near the front free
boundary, and the front free boundary effect
on the crack-tip gf becomes significant [21].
Thus, the value of the gf is relatively low in
this part. In addition, the maximum scope
affected by the front free boundary effect is
about 9 mm equal to 3 times of the maximum
grain size dmax (3 mm) for the medium-grain
granite. When a0 is longer than 9 mm, the
front free boundary effect gradually disappears
and the crack-tip gf keeps 300 N/m as constant.
The maximum scope affected by the back free
boundary effect should be approximately equal
to that by the front free boundary effect [21].
But the longest initial crack lengths are 18 mm
and 53 mm, respectively, in the two groups.
Thus, the back free boundary effect can not be
detected in the test in this paper. The
maximum local fracture energy, i.e., gf=300
N/m, is also the size-independent fracture
energy GF without any boundary effect for this
type of granite. Moreover, a tri-linear model
for the local fracture energy distribution along
the beam depth can be proposed as follows.

Figure 6: Tri-linear model for local fracture energy
distribution of granite

4 CONCLUSIONS
Fracture energy, defined as the amount of

energy necessary to create one unit area of a
crack, is a very important parameter in

analyzing the behavior of quasi-brittle
materials such as concrete, mortar, rock, et al..
The present study is aimed to determine the
size-independent fracture energy of granite by
virtue of the peak loads of three-point-bending
notched beams. An analytical model was
presented to predict the maximum fracture
load of granite beams by using Lagrange
Multiplier Method. The peak load is then
correlated with the crack-tip local fracture
energy.

Fracture tests were then carried out on
granite beams with two depths, i.e., 30 mm
and 70 mm. For the beams with depths of 30
mm, the notches are cut with lengths from 3
mm to 18 mm. For the beams with depths of
70 mm, the notch lengths vary from 2 mm to
53 mm. The average value of the maximum
tensile stress at the fictitious crack-tip is
adopted as 8 MPa. Upon the comparison
between the analytically predicted peak loads
and the experimentally determined ones, the
correlation between the crack-tip local fracture
energy and initial crack length can be obtained.
It can be found that the value of crack-tip local
fracture energy almost keeps 300 N/m without
any boundary effect for the notch lengths from
9 mm to 18 mm in the beams with depths of
30 mm and for the notch lengths from 10 mm
to 53 mm in the beams with depths of 70 mm.
Thus, a tri-linear model for the local fracture
energy distribution with the size-independent
fracture energy of 300 N/m is proposed for this
type of granite. The maximum scope affected
by the front or back free boundary effect is
about 3 times of the maximum grain size of
granite.
ACKNOWLEDGEMENT

The authors gratefully acknowledge funding
from the National Natural Science Foundation
of China (Grant 51378481).
REFERENCES

[1] RILEM 50-FCM Draft Recommendation.
1985. Determination of the fracture energy
of the mortar and concrete by means of

GF

gf

≈3dmax ≈3dmax

Backfreeboundary

Front free boundary



S. Yang and X. Hu

6

three-point bend tests on notched beams.
Materials and Structures 18(106): 287-290.

[2] BaŽant, Z.P. 1984. Size effect in blunt
fracture: concrete, rock, metal. Journal of
Engineering Mechanics 110(4): 518-535.

[3] BaŽant, Z.P., and Kazemi, M. 1990.
Determination of fracture energy, process
zone length and brittleness number from
size effect, with application to rock and
concrete. International Journal of Fracture
44(2): 111-131.

[4] Carpinteri, A., Chiaia, B., and Ferro, G.
1995. Size effects of nominal tensile
strength of concrete structures:
multifractality of materials ligaments and
dimensional transition from order to
disorder. Materials and Structures 28(180):
311-317.

[5] Carpinteri, A., and Chiaia, B. 1995.
Multifractal nature of concrete fracture
surfaces and size effects on nominal fracture
energy. Materials and Structures 28(182):
435-443.

[6] Carpinteri, A., and Chiaia, B. 1996. Size
effects on concrete fracture energy:
dimensional transitions from order to
disorder. Materials and Structures 29(189):
259-266.

[7] Hillerborg, A., Modeer, M., and Petersson,
P. 1976. Analysis of crack formation and
crack growth in concrete by means of
fracture mechanics and finite elements.
Cement and Concrete Research 6(6): 773-
782.

[8] Hu, X.Z. and Wittmann, F.H. 1992.
Fracture energy and fracture process zone.
Materials and Structures 25(6): 319-326.

[9] Hu, X.Z. and Wittmann, F.H. 2000. Size
effect on toughness induced by crack close
to free surface. Engineering Fracture
Mechanics 65(2): 209-221.

[10] Hu, X.Z. 2002. An asymptotic approach
to size effect on fracture toughness and
fracture energy of composites.
Engineering Fracture Mechanics 69(5):
555-564.

[11] Hu, X.Z. and Duan, K. 2004. Influence of
fracture process zone height on fracture
energy of concrete. Cement and Concrete
Research 34(8): 1321-1330.

[12] Hu, X.Z. and Duan, K. 2008. Size effect
and quasi-brittle fracture: the role of FPZ.
International Journal of Fracture 154(1-
2): 3-14.

[13] Hu, X.Z. and Duan, K. 2010. Mechanism
behind the size effect phenomenon.
Journal of Engineering Mechanics 136(1):
60-68.

[14] Duan, K., Hu, X.Z. and Wittmann, F.H.
2003. Boundary effect on concrete
fracture and non-constant fracture energy
distribution. Engineering Fracture
Mechanics 70(16): 2257-2268.

[15] Abdalla, H.M. and Karihaloo, B.L. 2003.
Determination of size-independent
specific fracture energy of concrete from
three-point bend and wedge splitting tests.
Magazine of Concrete Research 55(2):
133-141.

[16] Muralidhara, S., Raghu Prasad, B.K.,
Karihaloo, B.L. and Singh, R.K. 2011.
Size-independent fracture energy in plain
concrete beams using tri-linear model.
Construction and Building Materials
25(7): 3051-3058.

[17] Saliba, J., Loukili, A., Grondin, F. and
Regoin, J.P. 2012. Experimental study of
creep-damage coupling in concrete by
acoustic emission technique. Materials
and Structures 45(9): 1389-1401.

[18] Vydra, V., Trtík, K., Vodák, F. 2012. Size
independent fracture energy of concrete.
Construction and Building Materials
26(1): 357-361.

[19] Karihaloo, B.L., Murthy, A.R. and Iyer,
N.R. 2013. Determination of size-
independent specific fracture energy of
concrete mixes by the tri-linear model.
Cement and Concrete Research 49: 82-88.

[20] Murthy, A.R., Karihaloo, B.L., Iyer, N.R.
and Raghu Prasad, B.K. 2013.
Determination of size-independent
specific fracture energy of concrete mixes
by two methods. Cement and Concrete
Research 50: 19-25.

[21] Yang, S.T., Hu, X.Z. and Wu, Z.M. 2011.
Influence of local fracture energy
distribution on maximum fracture load of
three-point-bending notched concrete



S. Yang and X. Hu

7

beams. Engineering Fracture Mechanics
78(18): 3289-3299.

[22] Yang, S.T., Hu, X.Z., Leng, K.Z. and Liu,
Y.L. 2014 Correlation between cohesive
crack-tip local fracture energy and peak
load in mortar specimens. Journal of
Materials in Civil Engineering 26(10):
04014069(1-8).

[23] Vasconcelos, G., Lourenço, P.B. and
Costa, M.F.M. 2008. Mode I fracture
surface of granite: measurements and
correlations with mechanical properties.
Journal of Materials in Civil Engineering
20(3): 245-254.

[24] Tada, H., Paris, P. C., and Irwin, G. R.
1985. The stress analysis of cracks
handbook, Paris Productions, St. Louis,
MO.




