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Abstract. The Thick Level Set (TLS) approach applied to damage models allows for a nonlocal
treatment that prevents from spurious localization problems. In previous works, isotropic damage
models with a single scalar parameter were adopted. Under these conditions, a single level set was
used to separate the undamaged zone from the damaged zone, and damage growth was expressed as
a level set propagation. Schematically, in the damaged zone, the damage variable directly depended
on the level set through an explicit function. Beyond a critical length, material was assumed as
fully damaged, thus allowing for a natural transition from damage to localized cracking (i.e., strain
localization). In this paper, a first step toward the extension of the TLS approach to “bi-dissipative”
isotropic damage models is presented. In the adopted formulation, degradation of material properties
under prevailing compressive/tensile loading conditions is separately treated. Two distinct damage
variables and activation criteria are used. This allows taking into account the degradation of material
properties in tension due to compressive damage (for the moment, no unilateral effect is accounted
for). In the article, the local damage model and its mathematical properties are discussed first. A
strategy for dealing with bi-dissipative damage in the framework of a TLS approach is then presented.

1 INTRODUCTION

Continuum damage models are often used
to simulate fracture of quasi-brittle materials in
reason of their relative simplicity and well es-
tablished theoretical framework (see e.g. [1]).
However, from a mathematical viewpoint, it is
well known that when the material softens the
mechanical problem exhibits solutions that are
not realistic from the physical point of view.
From a numerical viewpoint, this leads to a

strong dependency on the mesh adopted for the
spatial discretization of the computational do-
main.

Different methods were presented in the lit-
erature in order to regularize the damage evo-
lution. One should cite, among others, inte-
gral non-local models [2, 3], gradient-enhanced
models [4–6], phase-field models [7, 8]. Some
open questions concerning their capabilities
in properly predicting damage initiation and
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growth, up to the formation of localized cracks
still exists.

The Tick Level Set (TLS) method [9]
provides an alternative theoretical/numerical
framework for the regularization of the me-
chanical problem through the introduction of
a characteristic length. Furthermore, by cou-
pling continuum damage mechanics, level set-
approaches and strong discontinuity methods
(XFEM) the TLS approach provides a natural
way for modeling damage growth up to fracture
(i.e., cracking) [10–15].

In previous works on the TLS method, sim-
ple isotropic damage models with a single
scalar parameter were adopted to represent the
material response. However, as shown by many
authors, more complex damage laws are needed
for properly model damage process in cracking
concrete and concrete structures. In particular,
one would represent at least [16, 17]: 1) dif-
ferent degradation processes under compression
and tension; 2) some stiffness recovering asso-
ciated with crack re-closure (i.e., the so-called
unilateral effect).

The formulation of a TLS damage model
accounting for these complex mechanical re-
sponses is the main finality of the present work.

The paper is structured in four parts as fol-
lows. The basic aspects of the TLS method are
presented first. A well-posed bi-dissipative con-
tinuum damage model for quasi-brittle materi-
als is then presented (no unilateral effect is ac-
counted for in this phase, for sake of simplicity).
The term bi-dissipative is used to denote that
mechanical responses of the material under pre-
vailing compressive and tensile conditions are
separately modeled through two distinct dam-
age variables and activation criteria. This model
is then used to develop a TLS damage formula-
tion coupling local and non-local damage evo-
lutions, and allowing to deal with multiple dam-
age variables and activation criteria. In the final
part of the paper a completely explicit solution
procedure is presented and discussed. Some
conclusive remarks close the paper.

2 THICK LEVEL SET (TLS) METHOD
The main ingredients of the TLS method are

provided in this section. For further details con-
cerning the theoretical basis and numerical for-
mulation, the interested reader can refer to cited
works by Moës and co-workers.

2.1 Main idea
Consider a solid body Ω composed by a ma-

terial which is supposed to behave according to
a scalar isotropic damage model with a single
damage parameter d ∈ [0, 1]. It rises from zero
(sound material) to unity (completely damaged
material) respecting the following Kuhn-Tucker
conditions:

f ≤ 0, ḋ ≥ 0, f ḋ = 0 (1)

where f is a damage activation criterion and ḋ
denotes the rate of change of the damage pa-
rameter.

The main idea of the TLS method applied to
quasi-brittle fracture is to impose that the spa-
tial gradient of damage field on Ω is always
bounded [14]:

||∇d|| ≤ g(d) on Ω (2)

where g(d) is a damage dependent function (it
a data function in the model).

The above condition implies that whenever
the field d has no sharp gradients (i.e., it is suf-
ficiently smooth) the local model is considered
valid, while non-locality comes into play when
the inequality is violated. This allows reducing
the computational cost related to non-locality:
non-locality is activated only in the localization
zone (i.e., where ||∇d|| = g(d)) while the dam-
age evolution model remains local in the com-
plementary part of the computational domain
(i.e., where ||∇d|| < g(d)).

2.2 Damage shape function
In the TLS method the crack is defined as the

sub-domain Ωc ⊂ Ω such that d = 1. Finding
numerically this set of points may however re-
veal quite expensive and tedious. To overcome
such a problem, the TLS method expresses the
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damage variable d as a function of a surrogate
(upperly unbounded) variable φ ∈ [0,+∞[:

d = d(φ) (3)

As illustrated in Figure 1, this choice naturally
leads to the introduction of characteristic length
scale `c. This allows for defining the crack Ωc

by the set of points:

Ωc = {x ∈ Ω : φ ≥ `c} (4)

The boundary Γc of this zone defines the lips of
the crack:

Γc = {x ∈ Ω : φ = `c} (5)

Figure 1: Example of damage shape function.

Function d(φ) (3), the so-called “damage
shape function”, is an user-defined input data
of the model. It is chosen to be monotonically
increasing with respect to φ and to ensure the
following properties:

d(φ) ∈ C0]0,+∞[

d(φ) = 0 if φ = 0

d(φ) = 1 if φ ∈ [`c,+∞[

d(φ) ∈ C1]0, `c[

(6)

Using the change of variables (3), the dam-
age rate ḋ can be expressed as:

ḋ = d′(φ)φ̇ (7)

where d′(φ) = dd/dφ ≥ 0 is the derivative
of d with respect to φ, and φ̇ denotes the rate
of change of function φ. As d′(φ) is known
and positive, the whole damage model can be
now rewritten by making figuring φ̇ instead of ḋ
(condition ḋ ≥ 0 is now replaced by φ̇ ≥ 0).

2.3 Coupling local and non-local damage
Provided that g(d) = d′(φ), condition (2)

can be rewritten as ||∇φ|| ≤ 1. The non-
locality activation condition is thus expressed
through the Eikonal equation:

||∇φ|| = 1 (8)

while the damage model remains local in the
zones where:

||∇φ|| < 1 (9)

In the following, we denote Ω− the local
zones, while Ω+ is for sub-domains where the
condition (8) is satisfied (i.e., non-locality is
active). Furthermore, we define the so-called
damage front (i.e., the evolving interface be-
tween the local and nonlocal zones) as:

Γ = Ω̄+ ∩ Ω̄− (10)

Figure 2: Local Ω− and non-local Ω+ domains. Γc de-
notes the lips of the crack, i.e., the contour of the zone
where d = 1 (or equivalently φ ≥ `c). Note that ∇φ is
discontinuous along the dashed line (i.e., the skeleton of
the distance function)

As a direct consequence of (8), φ can be seen
as a signed Cartesian distance function. Fur-
thermore, to preserve this property, its rate of
change φ̇ must satisfy the following condition
[18]: ∇φ̇·∇φ = 0. In other words, φ̇ is uniform
on each segment aligned with ∇φ. We denote
this space as:

φ̇ ∈ A
= {a ∈ L2(Ω) : ∇a · ∇φ = 0 on Ω+} (11)
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2.3.1 Non-local damage evolution model

Once these ingredients are introduced, the
non-local damage evolution model is obtained
by decomposing Ω+ into a set of segments, in-
dependent and aligned with ∇φ, and finding a
value φ̇ ∈ A over each of them.

The local constitutive model is now ex-
pressed in terms of non-local quantities:

f̄ ≤ 0, φ̇ ≥ 0, f̄ φ̇ = 0 (12)

were f̄ denotes some averaged value (over each
segment) of the damage activation criterion.
This is the sole non-local quantity of the model,
while remaining quantities are always local.

In variational form, the averaging procedure
corresponds to finding f̄ ∈ A such that:∫

Ω\Ωc

f̄d′(φ)a dω

=

∫
Ω\Ωc

fd′(φ)a dω ∀ a ∈ A (13)

Note that this does not means that f̄ = f
on the whole domain Ω\Ωc, because f̄ and f
on Ω+ does not belong to the same functional
spaces. To illustrate this aspect, consider a
mono-dimensional domain Ω. Under these con-
ditions f̄ ∈ A and a ∈ A are constant over each
segment [x1, x2] ∈ Ω+, while f is not. Averag-
ing formula (13) thus reads:

f̄ =

∫ x2
x1
fd′(φ) dx∫ x2

x1
d′(φ) dx

(1D case) (14)

The equality f̄ = f is however ensured on
Ω− because, due to definition (11), they now
belong to the same space. Kuhn-Tucker condi-
tions (12) are thus completely general and valid
for the whole domain Ω\Ωc.

In previous works [9, 11, 12, 15], the TLS
method was applied to the regularization of
very simple scalar isotropic damage models.
A first attempt in extending this theoreti-
cal/numerical framework for introducing more
complex isotropic damage laws is presented in
the following.

3 BI-DISSIPATIVE DAMAGE MODEL
A well-posed bi-dissipative damage model is

presented briefly. It is mainly based on the for-
mulation originally proposed by [16,17]. Some
modifications were however introduced in order
to enhance damage activation criteria to ensure
the existence and unicity of damage rates. Fur-
thermore (in this phase) the unilateral effect is
not modeled for sake of simplicity.

3.1 Free energy
With dt ∈ [0, 1] and dc ∈ [0, 1] the damage

variables representing material degradation un-
der prevailing actions of tension and compres-
sion, the free energy density ψ = ψ(ε, dt, dc) of
the material is written as follows:

ψ =
1

2
(1− dt)(1− dc)[

2µ e : e +K(trε)2
]

(15)

where µ andK are the shear and bulk moduli of
the sound material, ε is the small strain tensor
and e is its deviatoric part. Symbol “:” denotes
the contraction operator between fourth-order
tensors, while “tr” is the trace operator. The
corresponding Cauchy stress tensor σ reads:

σ = ∂εψ

= (1− dt)(1− dc) [2µ e +Ktrε1] (16)

where symbol ∂η denotes the partial derivative
operator with respect to the variable η and 1 is
the second order identity tensor.

According to equations (15)-(16), material
stiffness vanishes when dt → 1 and/or dc → 1
(i.e., no unilateral effect associated with crack
re-closure can be modeled). Note, that it could
be reintroduced easily into (15), e.g. by split-
ting the volumetric deformation into its positive
and negative parts, and assuming that the free
energy under hydrostatic compression depends
on dc only [16].

3.2 Damage activation criteria
Dissipative processes under prevailing states

of tension and compression are treated sepa-
rately by introducing two distinct damage ac-
tivation criteria (ft, fc). Evolutions of the scalar

4



G. Rastiello, N. Moës and C. Comi

damage variables (dt, dc) satisfy Kuhn-Tucker
conditions:

ft ≤ 0, ḋt ≥ 0, ftḋt = 0 (17)

fc ≤ 0, ḋc ≥ 0, fcḋc = 0 (18)

3.2.1 Damage criteria in stress space

Damage activation criteria are defined in the
stress space as follows:

ft(σ, dc, dt) = J2(σ)− atI2
1 (σ)

+ btI1(σ)mt(dt, dc)− ktm2
t (dt, dc) (19)

and

fc(σ, dc) = J2(σ) + acI
2
1 (σ)

+ bcI1(σ)mc(dc)− kcm2
c(dc) (20)

where J2(σ) denotes the second invariant of
the stress tensor, I1(σ) is its first invariant, and
at, bt, kt, ac, bc, kc are non-negative material
parameters. Finally, functions mt(dt, dc) and
mc(dc) are:

mt(dt, dc) = (1− dc)rt(dt) (21)
mc(dc) = rc(dc) (22)

where rt and rc are isotropic hardening-
softening functions. They are computed accord-
ing to the following relationship (for i = t, c):

ri(di) =1−
(

1− σei
σ0i

)(
1− di

d0i

)2

, di < doi[
1−

(
di−d0i
1−d0i

)ci]βi
, di ≥ doi

(23)

where σei/σ0i denotes the ratio of the stress
at elastic limit to the stress at peak in an uni-
axial tension/compression test, d0i is the dam-
age level corresponding to peak-stress, ci is a
scalar parameter controlling the slope of soften-
ing branch of ri(di), and βi is a material param-
eter (assumed equal to 3/4). For more details
on representative values of material parameters
introduced above, one can refer to [16].

The intersections of surfaces ft(σ, dc, dt) =
0 and fc(σ, dc) = 0 with the plane (I1,

√
J2)

are respectively a hyperbola and an ellipse, both
symmetric with respect to the horizontal axis I1.
A schematic representation of the initial linear
elastic domain, and its evolution with damage is
provided in Fig. 3.

Figure 3: Schematic representation of the linear elastic
domain and its evolution with damage

Finally, note that according to equations
(19)-(20) tensile damage activation criterion is
influenced by compressive damage while not
vice-versa.

3.2.2 Damage criteria in strain space

Criteria (19) and (20) are rewritten in strain
space as follows:

f ∗t (ε, dt) = J2(ε)− a∗t I2
1 (ε)

+ b∗t I1(ε)m∗t (dt)− k∗tm∗2t (dt) (24)

and

f ∗c (ε, dt, dc) = J2(ε) + a∗cI
2
1 (ε)

+ b∗cI1(ε)m∗c(dc, dt)− k∗cm∗2c (dc, dt) (25)
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where (for i = c, t):

f ∗i (ε, dt, dc) =
fi(σ, dc, dt)

4µ2(1− dt)2(1− dc)2
(26)

a∗i =
9K2

4µ2
ai (27)

b∗i =
3K

4µ2
bi (28)

k∗i =
1

4µ2
ki (29)

m∗t (dt) =
rt(dt)

(1− dt)
(30)

m∗c(dt, dc) =
rc(dc)

(1− dt)(1− dc)
(31)

These criteria will be used in next sections to
formulate the TLS damage model.

3.3 Existence/unicity of damage rates
Damage activation functions (24) and (25)

are slightly different from those proposed by
[16]. Minor enhancements were introduced in
order to ensure a priori the existence and unic-
ity of tensile and compressive damage rates for
a given strain rate.

To prove this property, consider the problem
starting from a point belonging to both of the
damage activation surfaces. When both criteria
are active, one can write:

f ∗t ≤ 0 ḋ∗t ≥ 0 ḟ ∗t ḋt = 0 (32)

f ∗c ≤ 0 ḋ∗c ≥ 0 ḟ ∗c ḋc = 0 (33)
(34)

or, equivalently, in matrix form:
z = Hḋ + b(ε̇) ≥ 0

ḋ ≥ 0

z · ḋ = 0

(35)

where matrix H and the unknown solution vec-
tor ḋ are:

H =

[
htt 0
hct hcc

]
=

[
−∂dtf ∗t 0
−∂dtf ∗c −∂dcf ∗c

]
, (36)

ḋ = [ḋt, ḋc]
T . (37)

Provided the form of matrix H, a solution
ḋ of the Linear Complementary Problem (LCP)
(35) exists and is unique (for any ε̇) if matrix H
is definite positive. For the considered model,
this condition can be easily proved after some
simple algebraic passages. In other words:

htt > 0 hcc > 0 (38)

for any admissible set of model/material param-
eters [16]. Positiveness of damage rates also en-
sures the positiveness of the total dissipation D.

4 TLS BI-DISSIPATIVE DAMAGE
MODEL

Due to a separate treatment of degradation
processes under tension and compression, the
constitutive model presented in previous section
provides a good starting point for developing
TLS damage formulations accounting for multi-
dissipative processes. This section provides the
main aspects of the TLS model proposed to deal
with two damage variables (and evolution crite-
ria) using a single level-set function.

4.1 Equivalent damage variable
According to standard TLS arguments (see

Sec. 2), the damage variable d is computed
as a function of a surrogate function φ. Using
two distinct damage variables (dt, dc) should
therefore require the use of two distinct level-
set functions. Although this could appear to be
a quite natural choice, it may reveal complex in
terms of theoretical formulation and numerical
implementation. That’s why, in this paper, we
propose to control the evolution of two damage
variables through a single level-set function φ.

For this purpose, we introduce an “equiva-
lent damage variable” d ∈ [0, 1] which is sup-
posed to evolve as a function of φ:

1− d(φ) = (1− dt)(1− dc) (39)

Note that similar splits are used to formulate
continuum damage models for composite ma-
terials and laminates.

This choice allows for strongly simplifying
model formulation, but has an important con-
sequence: a unique characteristic length `c can
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be introduced in the model through the damage-
shape function d(φ). For quasi-brittle materials
(and in particular for concrete) this could rep-
resent a strong limitation, as different authors
evidenced that the characteristic length in com-
pression is larger than those in tension (up to 10
times larger). Some modifications might there-
fore be needed for enhancing the model on this
point.

4.2 Non-local damage evolution
According to (39) the TLS framework pre-

sented in Sec. 2 remains still valid. Some con-
siderations concerning the way for dealing with
multiple damage rates and criteria using a sin-
gle function φ are however needed. Indeed,
for each segment aligned with ∇φ, the equiv-
alent damage rate ḋ is proportional to the rate
of change of the level-set function:

ḋ = d′(φ)φ̇ = (1− dc) ḋt + (1− dt) ḋc (40)

but no information concerning (ḋc, ḋt) are avail-
able.

As a first attempt to overcome this problem,
we propose to write tensile and compressive
damage rates as follows:

ḋt =
α

1− dc
ḋ =

d′(φ)

1− dc
αφ̇ (41)

ḋc =
1− α
1− dt

ḋ =
d′(φ)

1− dt
(1− α)φ̇ (42)

where α ranges between 0 and 1 and is sup-
posed uniform over the segment considered
(i.e., α ∈ A). In particular, α is null (equal to
unity) when only compressive (tensile) damage
occurs, and is in between these extreme values
when both activation criteria are satisfied at the
same time:

α = 1 ḋt > 0 ḋc = 0

α = 0 ḋt = 0 ḋc > 0

α ∈]0, 1[ ḋt > 0 ḋc > 0

(43)

Using decomposition (41)-(42) allows for
rewriting the constitutive model in non-local

form as follows:

f̄ ∗t ≤ 0 φ̇t ≥ 0 f̄ ∗t φ̇t = 0 (44)

f̄ ∗c ≤ 0 φ̇c ≥ 0 f̄ ∗c φ̇c = 0 (45)

where:

φ̇t = αφ̇ φ̇c = (1− α)φ̇ (46)

and f̄ ∗t and f̄ ∗c denote the averaged damage ac-
tivation criteria on segments aligned with∇φ.

The constitutive model is thus reformulated
in terms φ̇ ∈ A and α ∈ A. As for the mono-
dissipative damage model, Kuhn-Tucker condi-
tions (44)-(45) are valid on both Ω+ and Ω−.

4.3 Boundary value problem
Once the non-local damage model is written,

one can define the boundary value problem. For
this purpose, consider a solid body occupying a
domain Ω. Its external boundary ∂Ω comprises
two non-overlapping parts ∂Ωu and ∂Ωt. They
are such that displacements u = λu0 are im-
posed on ∂Ωu and loadings t = λt0 are applied
on ∂Ωt. Parameter λ is a loading factor and up-
script “0” denotes some reference value.

Under quasi-static conditions in the absence
of body forces, solving the boundary value
problem corresponds to finding an admissible
displacement field1:

u ∈ U = {u∗ regular enough :∫
Ω\Ωc

ψ(ε(u), d(φ)) dω < +∞,

u∗ = λu0 on ∂Ωu} (47)

and an admissible level-set function:

φ ∈ Φ = {φ∗ ∈ C0(Ω) :

||∇φ∗|| = 1 on Ω+

||∇φ∗|| < 1 on Ω−} (48)

1As in [14], we request that the energy is finite. This space is not simply H1, as in elasticity, since the stiffness is
allowed to vanish on Γc.
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such that the following conditions are satisfied
as a whole:

u ∈ U , φ ∈ Φ

divσ = 0 on Ω\Ωc

σ = ∂εψ on Ω\Ωc

ε = Sym(∇u) on Ω\Ωc

u = λu0 on ∂Ωu

σ · n = λt0 on ∂Ωt

σ · n = 0 on Γc

Eqs. (44)− (45) on Ω\Ωc

(49)

In previous equations, symbol “Sym” denotes
the symmetric part operator. Furthermore, note
that the crack is considered stress-free (second-
last condition).

5 CONCLUSIVE REMARKS
This paper presented some elements of a

novel TLS damage formulation allowing for the
implementation of complex constitutive equa-
tions accounting for multi-dissipative degrada-
tion mechanisms.

A well-posed bi-dissipative continuum dam-
age model for quasi-brittle materials was pre-
sented first. Mechanical responses of the mate-
rial under prevailing compressive/tensile condi-
tions were separately modeled through two dis-
tinct damage variables and activation criteria.

This model was then used to develop a TLS
formulation coupling local and non-local dam-
age evolutions. It allows for dealing with mul-
tiple damage variables and activation criteria
though a single level set function. The bound-
ary value problem was finally presented.

Numerical computations are actually in
progress.
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[9] Moës, N., Stolz, C., Bernard, P.-E., and
Chevaugeon, N. (2011). A level set based
model for damage growth: The thick level
set approach. International Journal for Nu-
merical Methods in Engineering, 86(3),
358380.

8



G. Rastiello, N. Moës and C. Comi

[10] Stolz, C., and Moës, N. (2012). A new
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geon, N. (2012). Damage growth model-
ing using the Thick Level Set (TLS) ap-
proach: Efficient discretization for quasi-
static loadings. Computer Methods in Ap-
plied Mechanics and Engineering, 233-
236, 1127.

[12] Cazes, F., and Moës, N. (2015). Com-
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