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Abstract. In the field of experimental solid mechanics, conventional strain measurement devices such
as LVDT and strain gauges provide mean values of strains and displacements at selected locations and
gauge lengths; this result is inadequate for the evaluation of a non homogeneous material behaviour.
Consequently, during the last decades various full-field non-contact measurement techniques have
been proposed for the material characterization and have become more and more popular in the exper-
imental mechanics community. In this work, the Digital Image Correlation (DIC) non-interferometric
technique has been used to monitor experiments on aluminum flat bars and to measure displacement
distribution on the surface of the specimen for further evaluation and calculation of strains.

The results obtained by a Digital Image Correlation System are assessed and the error associated
with the post processing of the experimental field data, obtained through the use of the Aramis soft-
ware, is evaluated and analyzed with the aid of a least square approximation code. This code uses
a finite element approximation of the displacement field in order to cover all the target points. A
least square approximation of these data is performed and the best nodal displacement values are de-
termined. Based on the nodal data, infinitesimal and finite strain distributions are determined over
the surface image window of the specimen. It is observed that this post processing technique pro-
vides better results near perforations and edges that are not sensitive to the density of the captured
displacement data.

1 INTRODUCTION

Digital Image Correlation system is used in
the scientific community for a wide variety of
applications. Chu et al. [1] explained the theory
of deformation and digital correlation to form
a measurement technique and used interpola-
tion techniques to extend the range of measure-
ments. Lava et al. [2] analyzed the errors from
different implementation of digital image cor-

relation by imposing FE displacement fields on
an undeformed image. Yang et al. [3] monitored
the decrease in crack spacing with the increase
in FRP reinforcement ratio in reinforced con-
crete by using digital image correlation system.
Corr et al. [4] used DIC as a fracture mechan-
ics tool to examine the bond between CFRP and
concrete. Pan et al. [5] reviewed the methodolo-
gies of the 2D DIC technique for displacement
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and strain estimation. Ghiassi et al. [6] used
DIC to investigate the strains and deformation
for uniaxial test and shear debonding of FRP
and Masonry. Images from DIC can be also
used into expert systems to investigate damage
causes. Champiri et al. [7, 8] developed an ex-
pert system for concrete structures. Roncella
et al. [9] conducted a comparative analysis be-
tween cross-correlation and least square match-
ing by performing a test on a brick mounted on
a micrometric sledge.

This paper proposes an alternative method-
ology to post process the displacenent data ac-
quired by a photogrammetric non-contact dig-
ital image correlation system. This is a lateral
outcome of several studies on cementitious and
metallic material where digital image correla-
tion was used to capture strain and displace-
ment distributions [10–16]. During these stud-
ies, it was observed that the post processing
software of the DIC system is very sensitive to
facet size near perforations and edges. In order
to resolve this problem, a method is introduced
which is based on finite element analysis and
least square method. This method uses the ex-
tracted displacement data and maps it on a finite
element mesh using a least square approxima-
tion. This paper is divided into three parts. The
first part explains the experiments performed on
metallic specimen. The second part explains
the methodology that processes the raw data ob-
tained by DIC and the last part compares the
results obtained by the new technique with the
strains obtained from the Aramis post process-
ing.

2 Experiments on Metallic Flat Bars
This section provides an overview of the ex-

periments that were performed on metallic flat
bars and explains the process of data acquisi-
tion using a Digital Image Correlation (DIC)
system. Several perforated and unperforated
flat bar specimens made of mild steel and alu-
minum were prepared based on ASTM B557
[17], ASTM A370 [18] and ASTM E8 [19]
standards. The geometrical dimensions of these
flat bars are presented in Figure 1. Each mate-

rial had five different sets of coupons, one non-
perforated and four perforated coupons. The
circular perforations range from 1/16 to 1/4 of
an inch. Each test configuration consists of four
flat bars. Two flat bars were tested under uni-
axial tension for each case, if the results were
not consistent and/or different from existing in-
formation, the third and fourth coupons were
tested.

The Tinius Olsen and Shore Western testing
machines were used to perform uniaxial ten-
sile experiments on these coupons. DIC sys-
tem was used to measure the displacement and
strain distributions on the surface of these spec-
imens. These uniaxial experiments were dis-
placement controlled and the rate of the defor-
mation was kept constant in order to eliminate
possible strain rate effects. The test setup is
shown in Figure 1. The flat bars were placed
inside the grips and the photogrammetric non-
contact digital image correlation system was
mounted in front of the specimen according to
the instructions of the GOM optical measuring
techniques company [20].

Figure 1: Dimension of the flat bars and test setup

The specimens were painted in white and
then speckles of black paint was sprayed on the
specimen. The speckle pattern of a painted mild
steel specimen is depicted in Figure 2. Two
cameras were placed in front of the specimen
in order to have a 3D measurement field. These
cameras observe the deformation of the speci-
men through the images captured at time inter-
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vals by various rectangular image details known
as facets. These facets are quadrilaterals that
include a portion of the specimen in form of
pixels that cover n by n pixels of the specimen
which are equally distanced from one another.
The 2D coordinates of the facets are calculated
based on the corners points of the quadrilateral
and center of the facet is calculated by aver-
aging the four corners. Using the information
from left and right cameras, the 3D coordinates
of the facet points are calculated.

Figure 2: Speckle pattern on the specimen, white back-
ground with black dots

In order to examine the accuracy of the dis-
placement data obtained by the DIC system,
linear variable differential transformer (LVDT)
was used in conjunction with the DIC. A series
of uniaxial tensile experiments were performed
using both LVDT and DIC. The comparison of
the displacement data obtained by these instru-
ments is presented in Figure 3. Test 1 represents
the sample without perforation and tests 2 to 5
are for the perforated samples.

Figure 3: Comparison of the deformation data obtained
by DIC and LVDT

Root mean square deviation between the
global displacement data obtained by using DIC

and LVDT measurements demonstrates a very
good agreement. Therefore the displacement
data obtained by DIC are considered valid and
LVDT was not used for the remainder of the ex-
periments. The root mean square deviation data
is presented in Table 1.

Table 1: Root mean square deviation of LVDT and DIC
displacement data

Test 1 2 3 4 5
RMSD [in] 0.0005 0.0005 0.0006 0.0002 0.0004

After the experiments were completed and
the images were processed in Aramis software,
it was observed that the strain distribution was
significantly different from case to case as can
be observed in Figure 4. In order to investi-
gate this difference in strain, two aluminum flat
bars were examined, one with no perforation
and one with the largest perforation. As dis-
cussed earlier, the GOM Aramis software spec-
ifies facets on the surface of the specimen and
calculates strains using the displacement val-
ues of the facet centers. The method that is
used in this paper extracts the facet data from
Aramis software and considers them as the in-
put data for calculating strains via least square
technique, but first these displacement data has
to be mapped onto a finite element mesh.

Figure 4: Longitudinal strain distribution on the alu-
minum specimen
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3 Finite Element Approximation
The facet data which are the displacement

data obtained by DIC are extracted from the
Aramis software post processing. These data
are imported into MATLAB. A finite element
mesh is generated on the imported facet data
for both the initial and final configurations. The
mesh for the final configuration of the displace-
ment data is presented in Figure 5.

Figure 5: Finite element mesh on the facet data

After the mesh was generated on the im-
ported data, a least square method was used to
find the best nodal displacement of the element.
In order to be able to perform the least square
approximation, all the elements have to include
at least n+1 facets, where n represents the num-
ber of element nodes. This procedure is briefly
described here. The goal is to minimize the
squared displacement differences as described
in the following equation

F =
NrElm∑
i=1

NFP∑
j=1

(∆ū∗ −∆uDIC)2j , (1)

where NFP stands for number of facet points,
∆ū∗ is the smoothed displacement over an ele-
ment and ∆uDIC is the vector of facet data in-
side each element. For each element ∆ū∗ is ex-
pressed as

∆ū∗j = Nji∆u∗i or ∆ū∗ = N .∆u∗, (2)

where ∆ū∗ is the vector of nodal displacement
values which is unknown at this stage. The min-
imum error is achieved when the derivative of
the error function F is set to zero,

∂F

∂∆u∗
= 0 =⇒

2(∆ū∗j −∆uDIC
j )

∂∆ū∗j
∂∆u∗k

= 0 =⇒

(Nji∆u∗i −∆uDIC
j )Njk = 0. (3)

In this equation N is the matrix of shape func-
tions associated with the element and number of
facet data inside the element. Finally this equa-
tion is expressed in terms of nodal displace-
ments as

∆u∗ = (N ·N )−1 · (N ·∆uDIC). (4)

In order to solve this equation and find the best
nodal displacement values, a search algorithm
is used to locate the facet data associated with
each element. To find the error of this method
and find out what types of element could best
represent the facet data, three types of elements
were chosen: a four node quadrilateral element
(Q4), an eight node serendipity element (Q8)
and a nine node Lagrange element (Q9). The
shape functions (N ) are defined as P ·C−1. As
an example for a Q9 element C and P are de-
fined as

C =



1 x1 y1 x1y1 ... x2
1y

2
1

1 x2 y2 x2y2 ... x2
2y

2
2

1 x3 y3 x3y3 ... x2
3y

2
3

1 x4 y4 x4y4 ... x2
4y

2
4

1 x5 y5 x5y5 ... x2
5y

2
5

1 x6 y6 x6y6 ... x2
6y

2
6

1 x7 y7 x7y7 ... x2
7y

2
7

1 x8 y8 x8y8 ... x2
8y

2
8

1 x9 y9 x9y9 ... x2
9y

2
9


,P =



1
x
y
xy
x2

y2

xy2

x2y
x2y2


.

(5)

In above equations xi and yi are x and y coor-
dinates of the nodes of the elements and x and
y define the spatial position of the facet data in-
side the element. Finally the multiplication of
matrixC−T and vector P provides the value of
the shape functions at the facet point of inter-
est. The nodal positions are depicted in Figure
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6. In order to find out which type of element
has a better representation of the facet data with
less error, an error analysis was performed for
Q4, Q8 and Q9 element types based on the data
of the non-perforated aluminum sample at the
initial and final stage of the experiment.

Figure 6: Q4, Q8 and Q9 quadrilateral elements

The error analysis was performed for differ-
ent number of elements starting from two and
increasing to 128 elements as shown in Figure
7.

Figure 7: Finite element mesh with different number of
elements

The results of error analysis for these three
different element types is depicted in Figure 8.
It should be noted that the horizontal axis of
Figure 8 is a logarithmic axis in order to pro-
vide better presentation of the results. It is ob-
served from this figure that error is decreasing
by increasing the number of elements, however
if the facet data inside the element are less than
the number of nodes, the error is going to in-
crease, i.e., increasing number of elements will
only help if the number of facet data is sufficient
for each element. It is also observed that the er-
ror associated with the Q9 element is lower than

the two other element types and therefore it is a
better choice, however if number of elements is
sufficiently large, the difference is minimal.

Figure 8: Error analysis based on least square for bilinear
and biquadratic elements

Having the best nodal displacement values
based on the DIC facet data, it is possible to
calculate infinitesimal and finite strain distribu-
tions. In order to calculate small strain the gra-
dient of the shape functions are calculated in
each element and then multiplied by the nodal
displacements as

εele = B.∆uele, (6)

where

B =

∂N1

∂x 0 ∂N2

∂x 0 ... ∂Ni

∂x 0

0 ∂N1

∂y 0 ∂N2

∂y ... 0 ∂Ni

∂y
∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x ... ∂Ni

∂y
∂Ni

∂x


(7)

and

∆uele =
(
∆ux1 ∆uy1 ... ∆uxi ∆uyi

)T
. (8)

In order to calculate the finite strains two stages
of the experiment are required, one defines the
initial configuration and the other one the cur-
rent configuration. Having the nodal coordi-
nates of initial and current stages, the deforma-
tion gradients of displacements are calculated

5



Shahriyar Beizaee, Kaspar J. Willam, Giovanna Xotta and Reza Mousavi

as

F (1 : 2, 1 : 2) =

(
x1

y1

)(
∂N1

∂x
∂N1

∂y

)
+(

x2

y2

)(
∂N2

∂x
∂N2

∂y

)
+ ... +

(
xi

yi

)(
∂Ni

∂x
∂Ni

∂y

)
(9)

and F (3, 1 : 2) and F (1 : 2, 3) are zero and
F (3, 3) is equal to one. Therefore the Green’s
(Lagrangian) finite strain tensor is expressed as

EG =
1

2
(F · F − 1). (10)

Having the proper formulation, the facet data
of an aluminum flat bar with circular perfora-
tion of 1/4 of inch is extracted in order to per-
form the least square analysis. The finite ele-
ment mesh and facet distribution in the vicinity
of the perforation for the finite element mesh
are depicted in Figures 9 and 10.

Figure 9: Initial and final mesh to cover the facet data in
the initial and final stage

Figure 10: Facet distribution in the vicinity of perforation
at the final stageThe comparison of the displacement distri-
bution obtained by DIC and least square anal-
ysis is presented in Figure 11. the top two fig-
ures show the value of axial displacement of the
DIC and LS approximation and the bottom two
figures present the transverse displacement dis-
tribution.

(a) Axial displacement

(b) Transverse displacement

Figure 11: Axial and transverse displacement distribution
based on DIC and least square analysis

For this comparison, 128 elements and Q4
element type were used. It is observed that
the least square approximation of the DIC facet
data reproduces the displacement field with
very small errors according to Figure 8.

In order to compare the calculated strain of
the Aramis software with the one predicted by
the proposed method, two different facet sizes
and distributions are used. These facets are se-
lected to represent a fine and coarse displace-
ment data over the experimental sample. The
finite element mesh is kept the same for both
of the cases. Finite strain distributions for the
fine and coarse facet data were calculated by
Aramis software is presented in Figure 12. It
is observed that the finite strain distribution for
the same experiment in the vicinity of the perfo-
ration is significantly different for the fine and
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coarse facet distribution.

Figure 12: Axial large strain distribution, coarse and fine
facet data in the left and right

The strain values in the fine case are 2.6
times greater than the strains in the coarse case.
Now in order to check how these facet data are
predicted by the proposed method in this re-
port, least square analysis is performed for both
cases. The result of this analysis is presented
in Figure 13. As it can be seen, the predicted
strain distribution for both of the input data is
very similar. This shows that as long as there
are enough facet data to perform a least square
analysis and find the nodal displacements, the
finite element approximation can calculate the
strains with no sensitivity to facet density.

Figure 13: Axial large strain distribution calculated by
finite element and least square analysis

4 Concluding Remarks
It was observed that the displacement data

obtained by DIC system were similar to the re-
sults obtained by LVDT, as presented in Figure

3 and Table 1. The least square approxima-
tion of the finite element discretization cover-
ing the facet data for different element types, it
was observed that the error associated with this
method decreases while increasing the element
numbers. however this was only true as long as
there were enough facet data inside the element.

It was also observed that the error associ-
ated with Q9 elements was smaller than Q8
and Q4, but as the number of elements in-
creases the difference in the errors were mini-
mal as shown in Figure 8. The results of the
finite and infinitesimal strain obtained by least
square analysis were compared to the ones cal-
culated by Aramis software. It was observed
that although the displacements were in good
agreement for both methods, the strains were
significantly different. Therefore a study was
conducted to see the effect of facet size and
facet number on the strain distribution for these
methods. It was observed that the strains ob-
tained by post processing procedure of Aramis
software is very sensitive to facet density and
size, while the least square approximation pro-
vided very close results, i.e. insensitive results.
The least square approximation of the displace-
ment data provided quantitative results that are
reflecting boundary and edge conditions much
better than the native Aramis software.

The future work on this method is focused
on comparing different stages of the experiment
and calculating the strain distributions based on
an updated Lagrange approach and to come up
with appropriate methodologies to find local-
ized failures on the specimen. This could be
achieved in several ways, one would be to cal-
culate the vorticity, shear and divergence distri-
bution on the surface of the specimen as dis-
cussed by Peterson and Sulsky [21] and find
the onset of discrete failure, in another way
it is possible to calculate the strain rate from
one stage to another stage and find the rank of
the strain tensor by an eigenvalue analysis, if
there exists a rank deficiency in the strain ten-
sor, this could indicate a jump in the strain rate
and therefore a sign of the loss of ellipticity in
the material at that point.
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