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Abstract. MEMS devices typically need to be designed against a very low failure probability, which
is beyond the capacity of histogram testing. Therefore, the understanding of the probabilistic fail-
ure of MEMS devices is crucial for the design process. Currently available probabilistic models for
predicting the strength statistics of MEMS structures are based on classical Weibull statistics. Signifi-
cant advances in experimental techniques for measuring the strength of MEMS devices have produced
data that have unambiguously demonstrated the inadequacy of the Weibull distribution. This paper
presents a robust probabilistic model for the strength distribution of polycrystalline silicon (poly-Si)
MEMS structures. The overall failure probability of the structure is related to the failure probability
of each material element along its sidewalls through a weakest-link statistical model. The failure
statistics of the material element is determined by both the intrinsic random material strength and the
random stress field induced by the sidewall geometry. Different from the classical Weibull statistics,
the present model accounts for structures consisting of a finite number of material elements, and it
predicts an intricate scale effect on their failure statistics. It is shown that the model agrees well with
the measured strength distributions of poly-Si MEMS specimens of different sizes. The present model
also explicitly relates the strength distribution to the size effect on the mean structural strength, and
therefore provides an efficient means of determining the failure statistics of MEMS structures.

1 INTRODUCTION

The early development of Microelectrome-
chanical Systems (MEMS) technology focused
on devices that were subjected to relatively
small stress and stain, and therefore struc-
tural reliability was not a primary considera-
tion for the device design. These devices in-
clude the silicon structural components con-
tained in the guts of Analog Devices’ air bag
accelerometer that are protected also from po-
tential environment-induced material degrada-

tion by hermetic sealing. The failure of but
one of 1,300 of these devices when subjected to
mechanical shock and a range of temperatures
led to their assessment as structurally highly re-
liable [3]. But note that in applications that
require extremely high reliability, a probabil-
ity of fracture of 1/1300 may not suffice. The
Texas Instruments (TI) Digital Micromirror De-
vice (DMD) is another celebrated device con-
sisting of hundreds of thousands aluminum mir-
rors that was tested in excess of one trillion cy-
cles without a single failure [18]. In contrast
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to voltage-compensated accelerometers such as
those developed by Analog Devices do not op-
erate near the strain limits, some devices are de-
signed to operate at high mechanical power den-
sities and/or large deformation levels, in which
the applied stress and strain could reach the
strength and strain limits [26]. Therefore, there
has been a continuing interest in understand-
ing the reliability of MEMS materials and struc-
tures [1, 20, 22, 26, 36].

The work-horse material used to fabricate
surface micromachined MEMS devices is poly-
crystalline silicon (poly-Si) [2, 27]. The frac-
ture strength of MEMS-scale poly-Si volumes
is governed by processing-induced surface de-
fects, and less commonly defects within the vol-
ume. The randomness of the surface flaws and
the resulting spatial distribution of stress lead
to a wide variation in the material’s nominal
tensile strength; from 1 GPa in direct tension
to 6 GPa in the vicinity of stress-concentrating
notches [1]. In direct tension the probability
that all flaws including the largest are subjected
to the highest stress is assured. In a notched
specimen on the other hand the largest flaw may
experience much lower values of stress, or alter-
natively the region of highest stress may contain
relatively small flaws. It is nearly impossible to
eliminate processing-induced defects in MEMS
devices, which leads to the observed variability
of fracture strength of MEMS devices [20, 22].

It has transpired that the proof testing is
critical for reliability analysis of MEMS de-
vices [13]. The main challenge in experi-
mental investigation of structural reliability of
MEMS devices is to due the fact that the de-
sign should target a failure probability on the
order of 10−4 or lower [1]. Early histogram
testing of MEMS materials involved small num-
bers of specimens due to the limitation of test-
ing procedures (e.g. [14, 38–40]), which could
not be used to determine the failure probability
function. To facilitate more efficient histogram
testing, a slack-chain tester was recently devel-
oped at the Sandia National Laboratories that
allows sequential tension tests on a large num-
ber of specimens (∼ 1000 specimens) in a short

time [36]. However, the existing experimen-
tal approaches are still hampered by two diffi-
culties: 1) it is cost prohibitive to experimen-
tally determine the strength corresponding to a
low failure probability (e.g. Pf ≈ 10−4) dur-
ing the design process; and 2) it is unfeasible to
perform histogram testing for MEMS devices
of various kinds of geometries or subjected to
different loading configurations since most ex-
perimental platforms are designed for specific
types of specimen geometries and loading con-
ditions. Therefore, fundamental understanding
of the probabilistic failure of MEMS devices
subjected to high levels of and/or different types
of mechanical forces is needed.
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Figure 1: Measured strength distributions of MEMS
structures made of: a) ta-C, b) single-crystal Si, and c)
Poly-Si.

Currently available probabilistic models for
the failure of MEMS structures are largely
based on classical Weibull statistics. How-
ever, existing histogram testings have demon-
strated that the strength distributions consis-
tently deviate from those predicted by the two-
parameter Weibull distribution. Fig. 1 presents,
on the Weibull scale, the experimentally mea-
sured strength histograms of MEMS structures
made of single-crystal Si [22], hydrogen-free
tetrahedral amorphous carbon (ta-C) [20] and
poly-Si [40]. Even with a limited number of
specimens, it is seen that these histograms can-
not be fitted by a straight line on the Weibull
scale, which indicates the inadequency of the
two-parameter Weibull distribution [16,37]. An
attempt to reconcile experimental histogram
data with the Weibull approach was proposed
using the three-parameter Weibull distribution
[14, 36]. However, recent studies have pointed

2



J.-L Le and R. Ballarini

out that for quasibrittle and brittle materials the
three-parameter Weibull distribution would lead
to incorrect scale effect on the mean structural
strength [30, 33].

It has been generally agreed that the existing
probabilistic models for brittle MEMS struc-
tures are still empirical in nature. This severely
limits the predictability of these models. This
paper presents a robust probabilistic model for
MEMS structures that may lead to eliminating
the need of less preferable costly proof test-
ing approaches to guarantee the structural safety
of devices that will operate at high mechanical
power densities and/or large deformation levels.

2 GENERALIZED WEAKEST LINK
MODEL FOR MEMS DEVICES

Consider a poly-Si MEMS specimen sub-
jected to uniaxial tension, where the sidewalls
of the specimen contain surface grooves re-
sulted from the manufacturing process (Fig.
2a). These surface grooves can be approxi-
mated by V-notches [35, 36]. The applied ten-
sile stress reaches its maximum value σN once
a localized crack starts to propagate from one
of these grooves. Therefore, the overall failure
probability of the specimen can be calculated by
using the weakest link model, i.e.:

Pf (σN) = 1−
N∏
i=1

[1− P1(σN)] (1)

where the function P1(x) represents the prob-
ability of the propagation of a localized crack
from one surface groove (V-notch). We con-
sider that such a failure at the V-notch occurs
when the the average tensile stress σ̄ of the near-
tip region attains the tensile strength ft of the
material. The average near-tip tensile stress is
calculated as

σ̄ = r−1c

∫ rc

0

σyy(x)dx (2)

where σyy(x) = elastic tensile stress along the
notch ligament (Fig. 2b) and rc = size of the
near-tip region in which the average stress is
computed. It is noted that this averaging pro-
cedure can be considered to take into account

the interaction of the sub-scale damage inside
the fracture process zone of the V-notch. There-
fore, the material tensile strength ft used here
should be taken as the tensile strength of the
material element of a size equal to the size of
the fracture process zone (FPZ). In this study,
we assume rc = 5 nm, which is on the order
of the estimated FPZ size of silicon [36, 41]. It
should be noted that the value of rc could be
better determined by employing detailed atom-
istic calculations for the near-tip region, which
provides insights into the various failure mech-
anisms of silicon crystals.
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Figure 2: Analysis of poly-Si tension specimens: a) spec-
imen geometry, and b) geometrical characterization of a
surface groove.

The aforementioned failure criterion indi-
cates that the overall tensile strength of the
specimen can be calculated as

σN = ft/s (3)

where s = dimensionless stress such that σ̄ =
σNs. The probability of crack propagation from
one surface groove can then be calculated as

P1 = Prob(σ̄ ≥ ft) = Prob(ft/s ≤ σN) (4)

Eq. 4 indicates that the failure probability of
one surface groove is governed by both mate-
rial tensile strength as well as the stress field at
the notch tip. Both of these quantities are sub-
jected to a certain level of uncertainty. Accord-
ing to recent studies on the strength statistics of
quasibrittle materials [8–10,30], the probability
distribution of the material tensile strength can
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be approximated by a Gaussian-Weibull grafted
distribution function:

Fft(x) = 1− e−〈x/s1〉m (x ≤ xgr) (5a)

Fft(x) = Pgr +
rf

δG
√

2π

×
∫ x

xgr

e
− (x′−µG)2

2δ2
G dx′ (x > xgr)

(5b)

where m = Weibull modulus (shape pa-
rameter), s0 = Weibull scale parameter,
µG, δG = mean and standard deviation of
the Gaussian core, respectively, Pgr = 1 −
exp[−(xgr/s0)

m] = grafting probability at
which the Weibull tail ends, and rf = normaliz-
ing parameter, which ensures that Fft(∞) = 1.
Furthermore, the probability density function
(pdf) at the Weibull-Gaussian grafting point
must be continuous, i.e. dPft(x)/dx|x=σ−gr =

dPft(x)/dx|x=σ+
gr

.
The randomness of the dimensionless stress

s is caused by the random geometry of the sur-
face V-notch. By assuming that the V-notches
along the sidewall are non-interacting, we may
calculate the elastic field for a strip of the spec-
imen that contains a V-notch on one of its side-
walls, as shown in Fig. 2b. It is noted that the V-
notch on the other side does not affect the near-
tip stress field of the V-notch on this side since
the width of a typical MEMS specimen (on the
order of microns) is much larger than the size
of the near-tip region. Therefore, we only need
to consider one V-notch to compute the near-tip
elastic stress field. The geometry of the V-notch
can be described by the notch angle θ and notch
depth a. With knowing the probability distribu-
tions of these two geometrical parameters, we
can perform a stochastic analysis of the near-
tip stress field to obtain the probability distri-
bution of the dimensionless stress, Fs(x). It is
noted that in this study we did not consider the
random crystal orientation since it has recently
been shown that the mismatch of silicon’s (rel-
atively low anisotropy) crystal orientation has a
mild effect on the near-tip stress field [36].

By considering both material tensile strength
and dimensionless stress field as random vari-
ables, Eq. 4 can be re-written as:

P1(σN) =

∫ ∞
0

Fft(xσN)fs(x)dx (6)

where fs(x) = dFs(x)/dx = probability
density function (pdf) of dimensionless stress
s. The probability distribution of the tensile
strength of the entire specimen can be computed
as:

Pf (σN) = 1−
[
1−

∫ ∞
0

Fft(xσN)fs(x)dx
]2n
(7)

where n = number of V-notches along one side-
wall. It should be noted that here we have as-
sumed that the strength of each material ele-
ment is statistically independent. Such an as-
sumption is reasonable because the size of the
V-notch is considerably larger than the FPZ
size, which is approximately on the same or-
der of the autocorrelation length of random
strength field for brittle and quasibrittle mate-
rials [10, 23].

3 COMPARISON WITH EXPERIMEN-
TAL DATA

The recently developed high-throughput
testing techniques have produced more com-
plete information on the strength statistics of
MEMS devices including its scale effect. Fig.
3 shows the measured strength distributions of
poly-Si tensile specimens of two gauge lengths
(Lg = 20 and 70 µm) [36]. Both specimens
have a nominal width of 2 µm. The specimens
of 70 µm gauge length were tested using an on-
chip tester [24], and the specimens of 20 µm
gauge length were tested using a slack-chain
tester [12]. The detailed experimental proce-
dure for these histogram tests can be found
in [24, 36]. Before comparing the test data
with any probabilistic models, we note that the
present data with a size ratio of 1: 3.5 may not
be sufficient to fully justify the predictability of
any model. Nevertheless, as will be shown later
in this section, histograms of such a limited size
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range have already indicated the limitations of
the classical Weibull models, and the present
model is shown to be capable of capturing some
essential features of these experimental data.=
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Figure 3: Measured strength distributions of poly-Si
MEMS specimens of two gauge lengths.

Finite weakest link model

We now test the present probabilistic model
against this set of experimental data. Accord-
ing to [36], there are approximately 50 surface
grooves along one sidewall of the tensile spec-
imen with a gauge length of 20 µm. There-
fore, we may consider that on average each sur-
face groove is contained in a strip of specimen
with a length of 400 nm (σN = 1). To charac-
terize the random notch geometry, we assume
that the notch angle θ follows a uniform distri-
bution bounded between 20◦ and 140◦ whereas
the notch depth a follows the Type III extreme
value distribution for the maximum value with
an upper bound of 62 nm [36]. The cumulative
distribution functions (cdfs) of θ and a can be
written as

Fθ(x) =
x− 20

120
(8)

Fa(x) = exp

[
−
(〈62− x〉

28

)6.5
]

(9)

where 〈x〉 = max(x, 0). Though the assumed
probability distribution function of the notch
depth extends to unrealistic negative values, the
left tail for the negative notch depth is extremely
short (i.e. Fa(0) = 6.7×10−77). It is also noted
that the aforementioned bounds of notch angle

and depth ensure that, for any combination of
notch angle and depth sampled from the above
distributions, the V-notch can always be con-
tained in a 400 nm long strip of the specimen.
Based on Eqs. 8 and 9, we perform stochastic
elastic analysis of the stress field for the strip
of the tensile specimen with the random notch
angle and depth. In the simulation, the poly-
Si material is modeled as an isotropic material
with a Young Modulus E = 156 GPa and a
Poisson ratio ν = 0.22 [36].

The cdf of material tensile strength, Fft(x),
needs to calibrated by optimum fits of the
measured strength histograms. Since we have
strength histograms of specimens of two gauge
lengths, we can choose one of them to cali-
brate the function Fft(x) and compare the other
one with the model prediction. Table 1 presents
the statistical parameters of Fft(x) calibrated by
optimum fits of 1) strength histogram of speci-
mens of 20 µm gauge length, and 2) strength
histogram of specimens of 70 µm gauge length.
It can be seen that these two calibrations yield
very similar values of the parameters of Fft(x),
which indicates the robustness of the present
model.

Table 1: Calibrated statistical parameters of the finite
weakest link model

Specimens m s0 µG δG
Lg = 20 µm 64 12.60 19.96 3.50
Lg = 70 µm 65 12.79 19.84 3.40

s0, µG, δG are in GPa.

Fig. 4 compares the measured strength his-
togram of the other set of specimens with the
prediction by the present model. It is seen
that, regardless of choice of calibration spec-
imens, the present model can predict reason-
ably well the strength distribution of speci-
mens of the other gauge length. This indi-
cates that the present model is able to capture
the size effect on the strength distribution of
poly-Si MEMS specimens, which is essential
for reliability-based design extrapolation across
different specimen sizes. It is interesting to note
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that the calibrated mean strength of each mate-
rial element is about 20 GPa, which is of the
order of the theoretical strength of silicon [19].
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Figure 4: Comparison between the experimental mea-
sured strength distribution with the prediction by the fi-
nite weakest link model.

It should also be pointed out that the calibra-
tion of function Fft(x) depends on the choice
of the size of the near-tip region rc. As men-
tioned earlier, we choose rc = 5 nm based on
the knowledge of the FPZ size, and it gives a
reasonable estimation of the mean strength of
the material element of poly-Si. The choice of
rc would change the value of the dimensionless
stress s, but not the functional form of the over-
all failure probability Pf (σN). Therefore we ex-
pected that Eq. 7 can still match the histograms
well with a different set of parameters of Fft(x).

Two-parameter Weibull distribution

As a comparison, we also test the commonly
used two-parameter Weibull distribution against
this data set. The two-parameter Weibull dis-
tribution for tensile specimens can be written
as [42, 43]

Pw2(σN) = 1− exp [−2n(σN/sw)mw ] (10)

where sw = Weibull scaling parameter and
mw = Weibull modulus. The values of sw and
mw can be easily obtained by fitting the mea-
sured strength histogram on the Weibull scale
by a straight line. Similar to the aforemen-
tioned calibration procedure, we determine sw
andmw by optimum fitting either one of the two
strength histograms and compare the other his-
togram with that predicted by Eq. 10.

Table 2: Calibrated statistical parameters of the two-
parameter and three-parameter Weibull distributions

Specimens mw sw m1 s1 σ0
Lg = 20 µm 18.25 3.59 5.78 2.22 1.78
Lg = 70 µm 18.45 3.61 3.03 3.66 2.08

sw, s1, σ0 are in GPa.

Table 2 lists the values of sw and mw de-
termined by fitting the strength histograms of
specimens of either of the two gauge lengths. It
can be seen that the calibrated values mildly de-
pend on which strength histogram is used for fit-
ting. Fig. 5 presents the predicted strength his-
togram of specimens of the other gauge length
by the two-parameter Weibull distribution with
the experimental data. Clearly, for either of
the two calibrations, the two-parameter Weibull
distribution cannot well predict the strength dis-
tribution of specimens. The physical reason for
such a deviation is that for these two sets of test
specimens the number of failure points (i.e. V-
notches) inside the specimen is not very large.
Therefore, the two-parameter Weibull distribu-
tion, which is derived on the basis of extreme
value statistics (or infinite weakest link model),
is insufficient.
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Figure 5: Comparison between the experimental mea-
sured strength distribution with the prediction by the two-
parameter Weibull distribution.

Three-parameter Weibull distribution

The three-parameter Weibull distribution has
recently been proposed as a remedy for the two-
parameter Weibull distribution, in which it in-
troduces a finite strength threshold under which
the structure has a zero failure probability. The
three-parameter Weibull distribution for tensile
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specimens can be written as

Pw3(σN) = 1−exp

[
−2n
〈σN − σ0〉m1

s1m1

]
(11)

where σ0 = strength threshold. We can de-
termine m1, s1 and σ0 by fitting the strength
histogram of specimens of any size. Table 2
presents the two sets of values of these three
parameters by optimum fitting of the strength
histograms of specimens of 20 µm and 70 µm
gauge lengths, respectively. It can be seen that,
compared to the present model and the two-
parameter Weibull model, the calibration result
of the three-parameter Weibull model is more
strongly dependent on the choice of the calibra-
tion specimen.
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Figure 6: Comparison between the experimental mea-
sured strength distribution with the prediction by the
three-parameter Weibull distribution.

Fig. 6 compares the predicted strength his-
togram of specimens that is not used for fit-
ting with the experimental result. It is inter-
esting to see that, if we calibrate m1, s1 and
σ0 based on the strength histogram of speci-
mens of 20 µm gauge length, Eq. 11 can pre-
dict well the strength distribution of specimens
of 70 µm gauge length. On the contrary, if we
calibrate m1, s1 and σ0 based on the strength
histogram of specimens of 70 µm gauge length,
Eq. 11 fails to predict the strength distribu-
tion of specimens of 20 µm gauge length. This
illustrates the lack of robustness of the three-
parameter Weibull distribution for prediction of
the size dependence of the failure statistics of
specimens.

Based on the foregoing analysis, we may
conclude that the aforementioned comparison
with the experiment data on poly-Si tensile

specimens of two different gauge lengths fa-
vors the present finite weakest link model over
the classical two- and three-parameter Weibull
distributions, even though the size range of
the experimental data is narrow. It is inter-
esting to further compare the strength distribu-
tions of specimens for a wider range of gauge
lengths predicted by the present finite weakest
link model and the three-parameter Weibull dis-
tribution, as shown in Fig. 7. It can be seen
that for n = 50 two models give a reasonably
similar prediction of the failure probability ex-
cept for the left tail since these two models are
calibrated based on the test results for speci-
mens of 20 µm gauge length. At the small size
limit, it is observed that two models only differ
at the high-probability regime and the extreme
far left tail. At the large-size limit, these two
models give a similar prediction for the high-
probability regime and they deviate from each
other significantly at the low probability regime.
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Figure 7: Comparison of strength distributions of poly-Si
MEMS specimens of different gauge lengths by the finite
weakest model and the three-parameter Weibull distribu-
tion.

The aforementioned observation can be ex-
plained by the fact that the strength distribu-
tion for the high probability regime of large-size
structures is determined by the strength distri-
bution for the low probability regime of small-
size structures, which is an essential feature of
the weakest link model. As seen in Fig. 7b,
the finite weakest link model and the three-
parameter Weibull distribution yield a similar
prediction for the bulk part of the strength dis-
tribution for n = 50. Therefore, we expect that
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these models would also lead to a similar pre-
diction for the strength statistics at the moder-
ately low probability regime for n = 1, as seen
Fig. 7a. Meanwhile, it is observed that these
two models differ from each other at the ex-
tremely low failure probability regime as well
as the high probability regime. As n increases,
we see that the difference in prediction by these
models start to propagate into the intermediate
probability regime. This is because that the dif-
ference in the tail behaviors predicted by these
two models is manifested in the different behav-
ior of the bulk part of the strength distribution as
the specimen size increases.

4 MEAN SIZE EFFECT ANALYSIS
One of the salient features of the finite weak-

est link model (Eq. 7) is that it predicts a
strong size dependence of strength distribution
of MEMS devices, which is expected to lead
to a size effect on the mean structural strength.
In this section, we explore the relationship be-
tween this mean size effect and the strength dis-
tribution. This relationship would allow us to
bypass the laborious histogram testing to de-
termine the strength distribution of MEMS de-
vices. Instead, we would just need to test the
mean strength of MEMS devices of four to five
sizes. In this study, we formulate this rela-
tionship for uniaxial tension specimens, while
the same formulation can directly be applied
to structures of other geometries or under other
loading configurations.

Based on Eq. 7, the mean structural strength
can be calculated as

σ̄N =

∫ ∞
0

[
1−

∫ ∞
0

Fft(xσN)fs(x)dx
]2n

dσN

(12)
The randomness of V-notch geometry can be
accurately determined from the examination of
the sidewall surface grooves [36], from which
the probability distribution of the dimensionless
stress, fs(x), can be calculated. Therefore, the
essential problem is to determine the cdf of the
material element strength, i.e. Fft(x).

Fig. 8 presents the size effect on the tensile
specimens calculated by Eq. 12, where Fft(x)

is calibrated based on the strength histogram of
specimen of 20 µm gauge length. It is seen that,
on the log-log scale, the mean size effect curve
deviates from the Weibull size effect due to the
fact that there are a finite number of V-notches
along the sidewalls. As expected, when the
specimen length becomes large, the mean size
effect does follow the Weibull size effect repre-
sented by a straight line on the log-log scale.
Though Eq. 12 cannot be integrated analyti-
cally, we may construct a general approximate
equation for σ̄N by anchoring at the small- and
large-size limits [6, 7, 30]:

σ̄N = µ0

[
n1

n
+
(n2

n

)r/q]1/r
(13)

where µ0 = mean strength of material element,
and n1, n2, r, and q are constants. Let us denote
C1 = µr0n1 and C2 = µq0n2. Now we relate
these constants to the probability distribution
function of material strength Fft(x). Based on
Eqs. 5a and 5b, Fft(x) can uniquely be defined
by the following four parameters: the Weibull
modulus m, the Weibull scaling parameter s0,
the mean of the Gaussian core µG, and the stan-
dard deviation of the Gaussian core δG.

At the large size limit, the strength distri-
bution of the structure must converge to the
Weibull distribution (Eq. 14) [28], i.e.:

Pf (σN) = 1− exp [−2nMm(σN/s0)
m] (14)

where Mm =
∫∞
0
xmfs(x)dx = mth moment

of probability distribution function Fs(x). The
corresponding mean structural strength can be
easily obtained:

σ̄N = (2n)−1/ms0Γ(1 + 1/m)M−1/m
m (15)

On the other hand, as n → ∞, Eq. 13 reduces
to σ̄N ≈ µ0(n2/n)1/q. Comparing this expres-
sion with Eq. 15, we obtain

m = q (16)
s0 = (2Mm)−1/mC

1/q
2 Γ−1(1 + 1/m)(17)

This implies that constants q and C2 are directly
related to the Weibull modulus and the Weibull
scaling parameter.

8
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At the small-size limit, we consider that the
entire specimen consists of only two V-notches,
one on each sidewall. It is well expected that
the Weibull tail can be neglected for calculat-
ing the mean strength. Therefore, we may re-
place the the grafted strength distribution of Fft
by a Gaussian distribution to compute the mean
strength at the small-size limit, i.e.:

σ̄N |n=2 =

∫ ∞
0

[
1−

∫ ∞
0

Φ(x′)fs(x)dx
]2

dσN

(18)
where x′ = (xσN − µG)/δG and Φ(x) = stan-
dard Gaussian distribution. Meanwhile, we can
also calculate the gradient of σ̄N with respect to
the number of V-notches at the small-size limit:

dσ̄N
dn
|n=2 =

∫ ∞
0

[
1−

∫ ∞
0

Φ(x′)fs(x)dx
]2

× ln

[
1−

∫ ∞
0

Φ(x′)fs(x)dx
]

dσN

(19)

These two small-size asymptotes of Eq. 13
can be written as

σ̄N |n=2 =

[
C1

2
+

(
C2

2

)r/q]1/r
(20)

dσ̄N
dn
|n=2 = −1

r

[
C1

2
+

(
C2

2

)r/q]1/r−1

×
[
C1

4
+

r

2q

(
C2

2

)r/q] (21)

It is clear that, by equating Eq. 18 to Eq. 20 and
Eq. 19 to Eq. 21, we can calculate µG and δG
from C1, C2, r and q. Therefore, if we obtain a
size effect curve on the mean structural strength
of MEMS devices fitted by Eq. 13, we can use
the foregoing formulation to determine s0, m,
µG and δG, from which we can further calculate
the corresponding strength distributions.

0.2

0.4

0.6

0 1 2 3 4 5 6 7
logn

m
1

ln
�

N
(G

P
a)

Weakest link model 

Eq. 13

Figure 8: Comparison of the mean size effect curves cal-
culated by the finite weakest link model and Eq. 13.

The aforementioned formulation is now ver-
ified by using the current analysis of the poly-
Si tension specimens. We use the calibrated
the cdf of material tensile strength, i.e. s0, m,
µG and δG to calculate the approximate size ef-
fect curve on the mean strength through Eqs.
16 - 21. This approximate size effect curve is
compared with the exact size effect curve cal-
culated by using the finite weakest link model.
Fig. 8 shows that they agree well with each
other, which verifies the proposed relationship
between the mean size effect curve and the
strength distribution.

5 CONCLUSIONS
1. A finite weakest model is developed

for strength distribution of poly-Si MEMS de-
vices, which considers both the random mate-
rial strength and random geometrical features
of the specimen. The model is shown to be able
to capture the measured strength histograms
of poly-Si MEMS specimens of two gauge
lengths. The present analysis indicates that the
model can be calibrated by optimum fitting of
either one of these two strength histograms, and
the results are midly affected by the choice of
the calibration specimens.

2. It is shown that the two-parameter Weibull
distributions is inadequate for modeling the
measured size effect on the strength histograms
of poly-Si specimens. This is because the num-
ber of potential failure locations in the specimen
is not large, thus violating the basic assumption
of the Weibull distribution. The three-parameter
Weibull distribution can improve the optimum

9
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fitting. However, the model calibration is shown
to be dependent on the choice of the calibration
specimens, which severely limits its prediction
capability.

3. The size dependence of strength statistics
of MEMS structures indicates that the direct
experimental validation of the strength distribu-
tion using histogram testing must involve spec-
imens of a sufficiently large size range. Such
a size effect test procedure eliminates the need
for direct measurement of tail distribution, since
the far-left tail behavior is manifested by the
bulk part of the strength distribution of large-
size specimens.

4. The finite weakest link model predicts an
intricate size effect on the strength distribution
as well as the mean structural strength. It is
shown that the mean size effect and the strength
distribution are related to each other. This rela-
tionship provides us a new way to determine the
strength statistics of MEMS structures, which
is far more efficient than the conventional his-
togram testing.
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[9] Bažant, Z.P., and Pang, S.-D. (2006).
“Mechanics based statistics of failure risk
of quasibrittle structures and size effect
on safety factors.” Proc. Nat’l. Acad. Sci.,
USA 103 (25), pp. 9434–9439.
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[30] Le, J.-L., Bažant, Z. P. and Bazant,
M. Z. (2011) “Unified nano-mechanics
based probabilistic theory of quasibrittle
and brittle structures: I. strength, crack

11



J.-L Le and R. Ballarini

growth, lifetime and scaling,” J. Mech.
Phys. Solids, 59, 1291–1321.

[31] Le, J.-L., Cannone Falchetto, A. and
Marasteanu, M. O. (2013) “Determina-
tion of strength distribution of quasibrittle
structures from size effect analysis”, Me-
chanics of Materials, 66, 79–87.

[32] Munz, D., and Fett, T. (1999) Ceramics:
Mechanical Properties, Failure Behav-
ior, Materials Selection. Springer-Verlag,
Berlin.
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