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Abstract. The pulverization, fracturing and crushing of materials, briefly called comminution, creates
numerous cracks which dissipate a large amount of kinetic energy during projectile impact. At high
shear strain rates (10/s − 106/s), this causes an apparent large increase of strength, called ‘dynamic
overstress’. This long debated phenomenon has recently been explained by the theory of release of
local kinetic energy of shear strain rate in finite size particles that are about to form. The theory yields
the particle size and the additional kinetic energy density that must be dissipated in finite element
codes. In previous research, it was dissipated by additional viscosity, in a model partly analogous to
turbulence theory. Here it is dissipated by scaling up the material strength. Microplane model M7
is used and its stress-strain boundaries are scaled up by theoretically derived factors proportional to
the −4/3rd power of the effective deviatoric strain rate and to its time derivative. The crack band
model with a random tetrahedral mesh is used and all the artificial damping is eliminated from the
finite element program. The scaled model M7 is seen to predict the crater shapes and exit velocities
of projectiles penetrating concrete walls as closely as the previous models. The choice of the finite
strain threshold for element deletion, which can have a big effect, is also studied. It is proposed to use
the highest threshold above which a further increase has a negligible effect.

1 INTRODUCTION

The dynamic comminution (i.e., fragmenta-
tion, pulverization and crushing) of materials is
of interest for many practical purposes, such as
explosion effects on concrete structures, impact
of metals, composites and ceramics, rock blast-
ing and fracturing of gas or oil shale by chemi-
cal explosions or electro-hydraulic pulsed arc in
a horizontal borehole [1,2,2–5,5–17,17–19,19–

31]. This article deals with the projectile impact
onto concrete walls.

The key aspect to be captured in predictive
models for comminution is the so-called ‘dy-
namic overstress’, a physical phenomenon man-
ifested at strain rates higher than 1/s. Due to
this effect, the material strength needed to fit
data on projectile penetration increases enor-
mously compared to that predicted by standard
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strain rate effects (i.e. activation energy con-
trolled bond breakage at crack tips and visco-
elasticity of the material between the cracks).
In [23, 24], a physical justification of this dy-
namic overstress was provided by considering
the fracturing of concrete to be driven not by
the release of strain energy, as in classical frac-
ture mechanics, but by the release of kinetic en-
ergy of shear strain rate field with forming par-
ticles as the concrete is getting comminuted into
small fragments. This new theory, which bears
some analogy to turbulence, was shown to give
a strain-rate dependent expression for the addi-
tional density ∆K of kinetic energy that drives
the comminution and must be dissipated in the
finite element code. There are various methods
to dissipate it, and apparently it does not matter
which one is adopted.

Some investigators have dealt with this prob-
lem by adjusting the strain-dependent strength
limits (or boundaries) of the damage model -
e.g., in [7] for the microplane model M4. The
adjustment was done so as to fit the exit ve-
locities of projectile penetrating a wall. How-
ever, lacking physical justification, such an
adjustment can hamper predictive capability
in other loading scenarios, quasi-static or dy-
namic. Here, the method of adjusting the
boundaries is applied to the microplane model
M7 with an important improvement that the
boundaries are raised such that the additional
energy dissipated equals the theoretically calcu-
lated additional kinetic density ∆K of the shear
strain rate field in the forming particles. This
method leads to a strength increase depending
on both the first and second time derivatives of
the deviatoric strain. It is shown to fit well the
exit velocities of missiles penetrating concrete
slabs. What is important is that this is achieved
without a loss of predictive capability in other
dynamic, quasi-static and multi-axial loading
scenarios. The present theory can be found in
detail in [27] and here it is presented in abbre-
viated form.

2 OVERVIEW OF THE KINETIC THE-
ORY OF COMMINUTION

The physical source of ‘dynamic overstress’
during impact was traced to the dissipation of
the local kinetic energy of shear strain rate
within finite size comminuting particles [23].
Let εDij denote the deviatoric strain tensor and
the superior dot the derivatives with respect to
time t. Then, the density of kinetic energy of ef-
fective deviatoric strain rate ε̇D =

√
ε̇Dij ε̇Dij/2

is dissipated by creating interface fractures re-
sulting in many particles.

Consider an idealized dynamic fracture pro-
cess in which the solid is comminuted to iden-
tical prismatic particles of length h and hexag-
onal cross section of side h/2, at a deviatoric
strain rate ε̇D (Fig. 1). Analysis of the kine-
matics and comparison of the kinetic energy of
particles before (Fig. 1b) and after (Fig. 1c) the
interface fracture showed [23] that, for a motion
in the plane of maximum shear strain, the local
kinetic energy of the particles that are about to
form, per unit volume of material, ∆K, is ad-
ditive to, and separable from, the global kinetic
energy.

The global kinetic energy corresponds to the
motion of the centers of the particles whose for-
mation is imminent. For a given ε̇D, the drop
in kinetic energy per unit volume is found to
be [23]:

−∆K = ckρh
2ε̇2D (1)

where ck = Ip/(2hVp), ρ = mass density,
Vp = 3

√
3h3/8 and Ip = 5

√
3h4/128 = volume

and polar moment of inertia of each hexagonal
prism about its axis, respectively.

In reality, the size of comminuted particles is
never uniform but varies randomly within a cer-
tain range, s ∈ (h,H) where h,H = minimum
and maximum sizes, and s = variable particle
size. Schuhmann’s empirical power law [33] is
adopted to describe the cumulative distribution.
It gives the volume fraction of particles of sizes
between h to s:

F (s) =
sk − hk

Hk − hk
, s ∈ (h,H), F (s) ∈ (0, 1)

(2)
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where (k ≈ 0.5) = empirical constant [23].
Then, introducing the simplifying hypothe-

sis that the kinetic energy drop for variable par-
ticle size can be obtained by summing the en-
ergy losses for all infinitesimal intervals (s, s+
ds) calculated for each interval as if the particle
size and shape were uniform. Integration fur-
nishes the kinetic energy drop for particles of
all sizes per unit volume [23]:

−∆K =

∫ H

s=h

ckρs
2ε̇2DdF (s) = Ckρh

2ε̇2D (3)

where Ck = k
k+2

(H/h)k+2−1
(H/h)k−1

ck. The interface
area of uniform particles of size s per unit vol-
ume of material is cs/s where cs = dimension-
less constant. For particle size distributed ac-
cording to Eq. (2), the particle interface area
per unit volume of material is obtained as [23]:

S =

∫ H

s=h

cs
s

dF (s) =
Cs

h
(4)

where Cs =
csk

k − 1

(H/h)k−1 − 1

(H/h)k − 1
(5)

is a dimensionless constant [23]. Eq. (4) adds,
or integrates, the energy dissipations for differ-
ent particle sizes and is calculated under the as-
sumption that for each size there is a regular ar-
ray of equal-size particles.

Then, considering the dynamic fracture cri-
terion [23, 25] to be −∆K = SΓ, an overall
energy balance is imposed (where Γ = interface
fracture energy of the comminuting particles).
Substitution of eqs 3 and 4 gives the minimum
particle size as

h = Cr

(
Γ

ρε̇2D

)1/3

(6)

where Cr =

(
cs
ck

k + 2

k − 1

(H/h)k−1 − 1

(H/h)k+2 − 1

)1/3

(7)

where Cr is a dimensionless constant. As seen
in Eq. (7), the particle size is proportional to
the−2/3 power of the effective deviatoric strain
rate. A higher effective deviatoric strain rate
gives a greater kinetic energy release, which

leads to smaller particles, and thus to a greater
interface area and more dissipation.

In [23], Eq. 7 was used as an explicit for-
mula in which the value of H/h was estimated.
It should be noted that this estimate might have
some errors. An alternate approach could be us-
ing a variable H/h where H is constant but h
is not. But this would require a complete re-
derivation of the theory since it cannot be used
in arriving at Eq. (6). Such a theory might be
more complicated without a very significant im-
provement in predictions. Hence, we assume a
constant H/h.

Then, substitution of Eq. (6) into Eq. (3)
gives the kinetic energy drop in terms of only
the effective deviatoric strain rate and the mate-
rial parameters:

−∆K = Aε̇
2/3
D (8)

where A = (C0Γ2ρ)1/3 and C0 = C3
kC

2
r is

a dimensionless constant. Note that assuming
a hexagonal shape of particles is not a strict
requirement of the formulation. In reality the
shapes of the particles are surely to be variable,
but the basic functional form of the equations is
not expected to change.

Furthermore, note that in an actual impact
event, ε̇D need not be constant during comminu-
tion of a given material volume. So it is useful
to obtain the drop in kinetic energy in one time
increment of the comminution process. Accord-
ingly, as proposed in [25] the increment of drop
in kinetic energy is given by

d(−∆K) =
2A

3
ε̇
−1/3
D dε̇D (9)

Thus, in a given strain increment, the drop in
kinetic energy depends not only on the strain
rate, but also its increment. Any scaling of the
boundaries of a constitutive model to account
for comminution, must be consistent with this
dependence. Such a formulation is proposed in
the next section, for the microplane model M7.

3 MICROPLANE MODEL M7 WITH
SCALED BOUNDARIES

The microplane model M7 is the latest ver-
sion in a series of progressively improved mi-
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croplane models developed first for concrete
and then extended to other quasibrittle mate-
rials. The microplane model, supplemented
by a suitable localization limiter with material
characteristic length, has been proven to give
rather realistic predictions of the constitutive
and damage behavior of quasi-brittle materials
over a broad range of loading scenarios, in-
cluding uniaxial, biaxial and triaxial loadings
with post-peak softening, compression-tension
load cycles, opening and mixed mode fractures,
tension-shear failure and axial compression fol-
lowed by torsion [34, 35].

The basic idea of the microplane model is to
express the constitutive law not in terms of ten-
sors, but in terms of the vectors of stress and
strain acting on a generic plane of any orien-
tation in the material microstructure, called the
microplane. The use of vectors is analogous to
the Taylor models used for plasticity of poly-
crystalline metals, but with important concep-
tual differences. Firstly, to avoid model insta-
bility in post-peak softening, a kinematic con-
straint is used instead of a static one [34]. Thus,
the strain (rather than stress) vector on each mi-
croplane is the projection of the macroscopic
strain tensor. So we have,

εN = εijNij εM = εijMij εL = εijLij (10)

where εN , εM and εL are the magnitudes of the
three strain vectors corresponding to each mi-
croplane, and Nij = ninj , Mij = (nimj +
minj)/2 and Lij = (nilj + linj)/2, n, m, and
l being the three mutually orthogonal normal
and tangential vectors characterizing that mi-
croplane, and the subscripts i and j=1,2,3. Sec-
ondly, a variational principle (principle of vir-
tual work) is used to relate the stresses on the
microplanes (σN , σM and σL) to the macro-
continuum stress tensor σij , to ensure equilib-
rium and is expressed as,

2π

3
σijδεij =

∫
Ω

σNδεN + σMδεM + σLδεLdΩ

(11)
This expression means that, within a unit

sphere, the virtual works of macro-stresses and

micro-stresses must be equal (for details, see
[34, 36]). In the microplane model M7, the
micro-stresses are subjected to strain dependent
boundaries (or strength limits) of four types,
viz.:

1. The tensile normal boundary—to capture
progressive tensile fracturing;

2. The compressive volumetric boundary—
to capture phenomena such as pore col-
lapse under extreme pressures;

3. The compressive deviatoric boundary—
to capture softening in compression; and

4. The shear boundary—to capture friction.

The M7 also includes the quasi-static rate
effects [37], which consist of a rate-dependent
crack opening and growth controlled by the ac-
tivation energy of bond breakage, and of visco-
elasticity of the material between the cracks.
However, the quasi-static rate effects suffice
only up the strain rate of about 1/s, which is in-
sufficient for impact.

Since comminution is induced by local shear
strains, we assume that in a given strain incre-
ment dεij , the additional energy to be dissipated
must equal the additional distortional strain en-
ergy given by ∆σDij εDij where ∆σDij is the
additional deviatoric stress that results due to
scaled boundaries. To express it in terms of the
microplane stresses, we first define the volumet-
ric stress on the microplane level, σV , as

2π

3

σkk
3
δεmm =

∫
Ω

σV δεV dΩ (12)

Substituting δεV = δεmm/3 and
∫

Ω
= 2π, the

volumetric stress on the microplane level can
be expressed as σV = σkk/3. Also, the mi-
croplane normal stresses σN = σD + σV where
σD is the deviatoric stress on the microplane
level. Likewise, for microplane strains, we have
εN = εD +εV . Note that εV = εkk/3 is the same
for all microplanes.

Then, subtracting Eq. (12) from (11) and
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noting that
∫

Ω
σDδεV =

∫
Ω
σV δεD = 0, we get

2π

3
σDijδεij =

∫
Ω

σDδεD + σMδεM + σLδεLdΩ

(13)
Then, since δεD = δεN − δεV = δεijNij −

δεijδij/3, δεM = δεijMij and δεL = δεijLij , we
get an expression for the macroscale deviatoric
stress tensor as,

2π

3
σDij =∫

Ω

σD

(
Nij −

δij

3

)
+ σMMij + σLLijdΩ

(14)

This expression implies that a change in the
macro-scale deviatoric stress can be achieved
by scaling only the deviatoric and frictional
boundaries of M7. Let the change in the mi-
croplane deviatoric and shear stresses be ∆σD,
∆σM and ∆σL for a change in deviatoric stress
of ∆σDij . So we have,

2π

3
∆σDij =∫

Ω

∆σD

(
Nij −

δij

3

)
+ ∆σMMij + ∆σLLijdΩ

(15)

Now, in the interest of simplicity, we assume
that both the deviatoric and frictional bound-
aries are scaled by the same amount, on each
microplane. So, ∆σD = ∆σM = ∆σL = ∆f ,
and

2π

3
∆σDij =∫

Ω

∆f

(
Nij −

δij

3

)
+ ∆fMij + ∆fLijdΩ

(16)

This may be simplified as,

∆σDij = ∆fCij (17)

where,

Cij =
3

2π

∫
Ω

(
Nij −

δij

3

)
+Mij + LijdΩ

(18)

which is constant. ∆f may be taken out of the
integral since we assume it to be the same for
each microplane. Now, the next task is to re-
late the quantity ∆f to the energy dissipated
due to comminution, ∆K. To ensure the afore-
mentioned energy balance, the work of the addi-
tional deviatoric stress must dissipate an energy
equal to the drop of kinetic energy of strain rate
field caused by comminution in each increment.
So,

d(−∆K) = ∆σDijdεDij (19)

where i, j = 1, 2, 3 and d denotes a small incre-
ment. So we have

d(−∆K) = ∆f CijdεDij (20)

Next, using eq. 9 and taking the derivative
with respect to time on both sides, we get

2A

3
ε̇
−1/3
D ε̈D = ∆f Cij ε̇Dij (21)

Multiplying both sides by ε̇Dij , we obtain

2A

3
ε̇
−1/3
D ε̈D ε̇Dij = 2∆f Cij ε̇

2
D (22)

since ε̇D =
√
ε̇ij ε̇ij/2. Thus we have,

∆f Cij =
A

3
ε̇
−7/3
D ε̈D ε̇Dij (23)

Note that the right-hand side of this expres-
sion is consistent with [25]. To obtain the scalar
value ∆f , we now calculate the effective values
of both sides, by taking square root of the inner
product with itself. So we have,

∆f (CijCij)
1/2 =

√
2A

3
ε̇
−7/3
D ε̈D ε̇D (24)

Thus the scalar ∆f is expressed as,

∆f = A1ε̇
−4/3
D ε̈D (25)

Here A1 is a constant to be calibrated, and is
given by A1 =

√
2A/3C̄ and C̄ =

√
CijCij .

Therefore, the deviatoric and frictional bound-
aries of M7 are scaled as F = Fqs(1 +

A1ε̇
−4/3
D ε̈D), where Fqs = F0(1 + h(ε̇)), the

5



Kedar S. Kirane, Yewang Su and Zdeněk P. Bažant

boundary that is already scaled to account for
the quasi-static rate effects [37], and F0 is the
original unscaled M7 boundary. This expres-
sion shows that, to capture the energy dissipa-
tion due to comminution, it is necessary to make
the boundary a function of both the first and sec-
ond time derivatives of the effective deviatoric
strain.

4 CONCRETE SLAB PERFORATION
BY PROJECTILE IMPACT

The M7 model with scaled boundaries was
evaluated using the tests of projectile perfora-
tion, performed at the Geo-technical and Struc-
ture Laboratory of the US. Army Engineer Re-
search and Development center (ERDC), Vicks-
burg [8, 38]. These tests used circular slabs of
four thicknesses, 127, 216, 254 mm and 280
mm, made of concrete WES-5000, whose stan-
dard compression strength was 48 MPa. The
slabs were cast in steel culvert pipes of diam-
eter 1.52 m, sufficient to approximate the re-
sponse for a semi-infinite radius (in spite of
that, non-reflecting finite elements producing
no backward waves were used at the boundary).
The projectiles, which were hollow and made
of steel, had an ogival-nose (caliber radius head
3.0, length/diameter ratio 7.0, and diameter 50.8
mm) and weight of 2.3 kg. The projectiles im-
pacted the concrete slabs with the velocity of
310 m/s at the angle of 90 degrees. The perfo-
ration tests were carried out two or three times
for each thickness of the slab.

First, the M7 model was calibrated to fit the
test data for concrete WES-5000, used in these
tests. This concrete had Young’s modulus E =
25 GPa, and Poisson’s ratio µ = 0.18. The opti-
mum values of M7 parameters, which achieved
very good fits of quasi-static uni-, bi- and tri-
axial tests, were k1 = 11x10−5, k2 = 110, k3 =
30, k4 = 100 and k5 = 10−4 [34, 35].

The mesh used to discretize the slabs was
random but statistically uniform, and consisted
of tetrahedral elements of average size 7.5 mm.
The projectile was considered rigid since no
obvious damage, melt or deformation was ob-
served after the test. To prevent spurious

mesh sensitivity, the modeling was performed
in the sense of the crack band model, in which
the finite element size (or mesh size) should
be equal to the material characteristic length,
which characterizes the size of the representa-
tive volume element (RVE) of the material and
is used as the localization limiter. The element
size was considered as 7.5 mm, which is about
1-2 times the maximum aggregate size. Note
that if, in quasi-static problems, the element size
is changed, the crack band model requires ad-
justing the post-peak softening of the damage
constitutive law so that the energy dissipated
in the crack band (localized into one element
width) would not change [39] (which is what is
done in commercial software such as ATENA or
OOFEM [40]). But, in projectile impact prob-
lems, the deformation is generally so fast that
there is not enough time for the cracking dam-
age to localize, and so the post-peak of the dam-
age law need not, and should not, be adjusted.

Also note that, while the apparent strength
and fracture energy depend on the strain rate,
the crack band width itself does not. It is a
material property that can be measured, e.g., as
the minimum possible spacing of parallel quasi-
static macro-cracks. It depends on material het-
erogeneity, and is usually equal to 1 to 3 maxi-
mum inhomogeneity sizes. In dynamic fracture,
where the localization is suppressed by high de-
formation rates, the finite element solver based
on the crack band model automatically simu-
lates (in a diffuse way, of course) the formation
of multiple cracks and crack branching. The ad-
ditional energy dissipation at very high strain
rates is accounted for by material law adjust-
ment, one type of which is presented here.

For these analyses, it was necessary to re-
move excessively distorted elements to avoid
termination of analysis due to negative Jaco-
bian. This was done using an element dele-
tion criterion based on the maximum principal
strain. Thresholds of the criterion were set in-
dependently for tension and compression, to a
value such that a further increase of the thresh-
old did not make a difference to the predicted
exit velocities. These values turned out to be
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40% for tensile strain and 100% for compres-
sive strain as shown in [27].

Next, using the aforementioned element
deletion criterion, the quasi-static rate effects
were employed, and the projectile exit veloci-
ties were predicted (with the same parameters
as mentioned in [24]). These effects mainly
refer to the rate dependence of cohesive crack
opening and follow from the activation energy
theory of bond ruptures. These effects are ac-
counted for by scaling all the boundaries of M7
as Fqs = F0(1 + CR2ln(2ε̇/CR1)) [37], where

ε̇ =
√

1
2
ε̇ij ε̇ij . The parameter values CR1 and

CR2 were determined in [24] to be 4 × 10−6

and 0.022 respectively. The exit velocities were
again predicted by including these effects, as
shown in Fig. 3. It is seen that these effects
caused the predicted velocities to change signif-
icantly. However, it is seen that the quasi-static
rate effects still do not suffice to correctly pre-
dict the exit velocities. So, we now add the ef-
fects of comminution by scaling the deviatoric
and friction boundaries of M7, as described ear-
lier.

Parameter A1 was calibrated by fitting one
data point in Fig. 2, which led to the value
A1 = 3×10−7. The remaining points were then
predicted. Fig. 2 shows the predicted exit ve-
locities for all four slabs tested. As can be seen,
the predictions of exit velocities are reasonably
good, for all the data points. For the smaller
slabs, the exit velocity is slightly overestimated
while for the larger slab it is slightly underes-
timated. The fit could further be improved by
relaxing the assumption that both the deviatoric
and friction boundaries are scaled by the same
factor. But this has not been explored since the
errors are small and the data are too limited for
calibrating two factors. To further assess the
predictions, the predicted crater shapes for the
slabs are compared to the measured ones, as
shown in Fig. 3. It can be seen that the shapes
can be matched very well, especially those at
the exit side. This serves to show that the pro-
posed scaling of M7 boundaries accounts for
the phenomenon of comminution quite well.

5 CONCLUSIONS
1. The microplane model M7 with bound-

aries modified according to the kinetic
energy theory of comminution is an effec-
tive approach to simulate projectile im-
pact effects on concrete slabs and offers
possibilities of further refinement. It can
accurately predict projectile exit veloci-
ties, crater shapes and penetration depths.

2. It is necessary to scale up the deviatoric
and friction boundaries of M7, to achieve
a rate-dependent increase of the macro-
scopic deviatoric stress. Greater versatil-
ity could be obtained by scaling up the
deviatoric and friction boundaries by dif-
ferent factors. But there are not enough
test data to calibrate two independent fac-
tors.

3. The scaling of the boundaries (or strength
limits) must be proportional to both: 1)
the −4/3 power of the effective devia-
toric strain rate, and 2) the time derivative
of that rate.

4. The crack band model with a random
tetrahedral mesh leads to accurate predic-
tions of the crater shapes.

5. An element deletion threshold is neces-
sary to run impact analyses. The choice
of the threshold has a significant effect on
the results. Chosen is high enough thresh-
old for maximum principal strain such
that a further increase would not change
the results appreciably.

6. What is most important is that the finite
element code dissipate the correct energy
required by the kinetic theory of com-
minution. But how exactly this energy is
dissipated does not seem important. Dis-
sipation modes in terms of additional vis-
cosity, rate dependence of interface frac-
ture, and scaling of strength limits give
similar results. While the viscosity ap-
proach is more natural for rate-dependent
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stress, the present approach has the ad-
vantage of greater versatility for further
refinements, such as the possibility of
different scalings of different microplane
boundaries, which might be needed for
various extensions such as hyperveloc-
ity impact, impact on rock, or explosive
comminution of rock, e.g., shale.
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1

Figure 1: Schematic illustration of material comminution into prismatic hexagonal particles: (a) undeformed regime; (b)
sheared regime; (c) comminuted regime.
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Figure 2: Comparison of the exit velocities predicted by M7 with no rate effects, with quasi-static rate effects and with
comminution effects and the experimental data
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Experimental Predicted
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Figure 3: Comparison of the crater shapes predicted by M7 with comminution effects and the experiment data
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