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Abstract: The purpose of this work is to achieve a better understanding of the relationship between 
mechanical damage, pore size distribution and transport properties of cementitious materials. In the 
literature, analyses are usually restricted to intrinsic permeability of the material and the evolution 
of the apparent permeability with respect to the pressure gradient and to the nature of the fluid 
considered are left aside. A new model capable to provide the apparent permeability of a porous 
material to gas, directly from the pore size distribution and from the properties of the gas is 
discussed. Comparisons with experimental data on mortar specimens show that the model can 
reproduce the intrinsic permeability and its evolution when the material is subjected to mechanical 
damage, provided the pore size distributions are available. Extension to the transport of different 
phases (e.g. water and water vapor) is discussed, with a view towards the simulation of nuclear 
accident in containment vessels. It is shown that small pores that are not affected by damage 
according to the pore size distribution are of great importance in the evaluation of the relative 
permeability to liquid and vapor as a function of the saturation. A tentative model is discussed and 
compared with the existing – standard – approach relying on Van Genuchten relationships.  

 

1 INTRODUCTION 
The present study aims at a better 

understanding of the relationship between 
damage, pore size distribution, and transport 
properties of cementitious materials. This 
problem is typically of importance in the long-
term assessment of tightness of nuclear vessels 
and containment facilities, especially when 
severe accidents occur. 

Many authors have looked for predictive 
models for permeability based on the pore size 
distribution of the material. Kozeny [1] related 
the permeability to the porosity, to the 
tortuosity and to an average pore size. Later 

on, Katz & Thompson [2] predicted the 
permeability from the electrical conductivity 
of the porous material through a critical pores 
radius. There are also several studies in which 
the pore size distribution was modeled, e.g. 
with a bimodal [3] or multimodal distribution 
[4], and then entered into some capillary 
bundle model. Recently, models for the 
calculation of the intrinsic permeability 
derived directly from the experimental PSD, 
without any idealization have been also 
discussed [5]. Here, we shall follow this 
approach, which requires (i) to transform the 
pore size distribution into a hydraulic network, 
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and (ii) to solve the equations governing fluid 
flow. 

As far as the porous network in the material 
is concerned, we shall use a description that is 
consistent with the Pore Size Distribution 
(PSD) characterization technique used for this 
study, mercury intrusion. The pore network is 
not defined in the material space, e.g. with a 
distribution of pores connected to each other 
following a topological distribution 
characterized e.g. by micro tomography, but 
rather following a hierarchical approach. The 
technique yields a pore network, which 
mimics the porous space measured 
experimentally. 

The intrinsic permeability and the evolution 
of the apparent permeability with mean 
pressure are provided by comparing Darcy’s 
law [6], which represents the flow in the 
porous media at the macro scale and a 
combination of Poiseuille [7] and Knudsen 
laws [8], which represent respectively viscous 
flow and diffusion at the micro scale.  

Comparisons with experimental data on 
mortar specimens show that the model can 
reproduce the intrinsic permeability and its 
evolution when the material is subjected to 
mechanical damage, provided the pore size 
distributions are available at each level of 
damage. For a given pore size distribution, the 
evolution of the apparent permeability is also 
obtained, for several gases, and compares quite 
well with experiments.  

In the last section of this paper, the 
capillary bundle model is extended to the 
unsaturated case. Relative permeability to 
liquid water and vapor can be extracted. The 
model can provide results that are similar to 
the classical Van Genuchten’s equations. 

2 HIERARCHICAL CAPILLARY 
MODEL 

Assuming that the porous space has been 
characterized by mercury intrusion technique, 
we consider that the microstructure of the 
porous material consists in cylindrical pores of 
different lengths and diameters.  For each pore 
size, the pore length to the pore volume 
fraction may easily be deduced. 

A simple assembling technique consists in 
distributing all the pores of a given size (or 
interval of size) in parallel and in a regular 
manner, assuming that all pores have an 
identical length corresponding to the cubic 
root of the total porous volume times the 
tortuosity. Predictions of permeability based 
on such parallel assembly of pores have been 
discussed in [5], and it was observed that 
tuning parameters were required in order to 
obtain relevant results in term of apparent and 
intrinsic permeability. Here, a different 
approach is followed:  

The PSD is discretized into a finite set of 
pore diameters, 𝑖 = 1,2,…𝑛. Let Vt be the total 
porous volume, characterized by mercury 
intrusion, which may be organized according 
to the PSD into a series of volumes 𝑉!" of 
mean diameter 𝑑!. For each pore size, the total 
pore length 𝐿! is a function of the pore 
diameter 𝑑! and of the pore volume fraction 
𝑉!" assuming that pores are cylindrical: 

 

𝐿! =
4.𝑉!"
𝜋.𝑑!

! (1) 

 
This pore length is then cut into small 
segments of random length ∆Li (see Figure 
1.a). Their assembling is performed 
hierarchically, from larger pores to smaller 
pores. Each pore segment either creates a new 
assembling site (on which subsequent segment 
will be connected) or is connected, on an 
existing assembling site, to a pore segment of 
same or larger diameter (Figure 1.b). We then 
define the average pore length 𝐿!  and a 
critical length 𝐿! as  

 

𝐿! =  𝑉!
!  , 𝐿! = 𝑇. 𝐿!  T = tortuosity (2) 

  

As soon as the sum of all pore segment 
lengths reaches this critical length on one 
assembling site, further segments cannot be 
added anymore and the permeability of the 
resulting capillary is computed and added to 
the global permeability. 
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(a)     (b)  

 
Figure 1. Random network assembly of pores: (a) 

Discretization of pores; (b) Random assembling 
 
This random process is performed until the 

overall permeability does not change by 
adding a new assembled capillary (with some 
specified tolerance). This criterion is used to 
speed up the process: there is a huge amount 
of pore segments of very small diameter but 
they do not contribute so much to the global 
permeability, which is mostly driven by larger 
pores. As soon as this criterion is reached, the 
remaining porosity is organized according to a 
parallel capillary bundle, each capillary being 
of the same diameter. Their contribution is 
also taken into account in the global 
permeability, but as we will see in the last 
section of this paper, this latter step will be 
modified when considering an unsaturated 
porous space. 

Some adjustments need to be discussed 
with respect to the mercury intrusion technique 
from which the PSD is obtained. During 
mercury intrusion, two different phases are 
performed. Firstly, mercury is introduced at 
low pressure (from 0 MPa to 0.2 MPa) and 
large diameter pores are characterized. 
Secondly, mercury is introduced at high 
pressure (from 0.2 MPa to 200 MPa) in order 
to drive mercury into smaller pores. 
Unfortunately, the data obtained at low 
pressure are quite noisy and the distribution of 
sizes for very large pores is not characterized 
accurately. Since large pores drive the 
permeability, this may be very problematic in 
order to predict the permeability accurately. 
Usually, the solution to circumvent this artifact 
consists in removing the low-pressure 
information. Here we adopt another, less 
arbitrary technique, motivated by the fact that 

upon damage, pores (or cracks) of large 
aperture might contribute significantly to the 
permeability.  

Figure 2 (top) presents a typical PSD 
response of a cementitious material (mortar). 
We observe both the low-pressure signal and 
the high-pressure one (in the range of 100 
micrometers).  

 

 
Figure 2. Method of eliminating of the noise at low 

pressure for an undamaged sample. Top: pore size 
distribution corresponding to the low and high 
pressures; Bottom: statistical study of the low frequency 
for 100 random realizations. 

 

In order to keep the relevant low-pressure 
information and at the same time to remove 
the artifacts, we implement a specific filtering 
of the low-pressure information: let us 
consider the pores of size corresponding to the 
low-pressure measurements only. These pores 
are discretized randomly into segments of 
equal size. We now count the number of 
segments corresponding to these pore sizes. 
Figure 2 (bottom) shows this number for 
several random realizations. We observe that 
the number of segments lies below 10000 for 
the material that is typically considered in this 
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study. Instead of removing these pores, we 
assume that each segment below this threshold 
is forced to create a new assembling site. 
Consequently pores of such sizes cannot 
percolate throughout the material, unless the 
total number of segments is over the threshold. 

In the hierarchical assembly forming the 
porous network, the random function that 
decides if the current pore segment should be 
connected to an existing site or will create a 
new site is weighted by the following 
exponential function: 

 

𝑓(𝑥) =  exp (−
𝑥 − 𝐵
𝐴 ) (3) 

 
where x is the number of the current pore 
segment dealt with, 𝐴 and 𝐵 are parameters.  

Parameter 𝐵 controls the pore diameter 
from which new pore segments may be 
connected to existing assembling sites. 
Parameter A controls the pore diameter from 
which new pore increments have almost no 
chance to create a new assembling site.  

3 FLUID FLOW IN THE PORE 
NETWORK 

From a given hierarchical assembling of 
capillary pores, the objective is now to 
estimate not only the intrinsic but also the 
apparent permeability. The apparent 
permeability is obtained by comparing Darcy’s 
law, which represents the flow at the macro-
scale, and Poiseuille and Knudsen laws, which 
represent the flow at the micro-scale. 

3.1 Microscale 
Let us consider a cylindrical pore of 

diameter 𝑑!. The flow (i.e. volume of fluid per 
unit time) passing through the pore of length 
𝐿! is given by: 

 

𝑄!! =
1
2

𝜋
128  

𝑑!!

𝜇
𝑃!! − 𝑃!!

𝐿!  𝑃!  (4) 

 
where (𝑃!,𝑃!) are the upstream and 
downstream pressures respectively, 𝑄!! is flow 
rate at the outlet pressure and 𝜇 is the fluid 
dynamic viscosity. This classical expression 

(Poiseuille flow) relies on the assumption of 
laminar flow [7]. 

In the Knudsen region, the mass transfer 
behaves differently [8] and the laminar flow 
assumption is no longer valid. This region is 
defined for each pore diameter from the 
Knudsen number 𝑁!!": 

 
𝑁!!" > 1

𝑁!!" =
𝜆
𝑑!
=

1
𝑑!

 𝑅 𝑇
 𝜋 2 𝑑!! 𝑁!! 𝑃! 

     (5) 

 
where (𝜆, 𝑑!, 𝑃!) are the average free path, the 
molecule diameter and the average pressure of 
the considered gas respectively, and (𝑁!") is 
Avogadro’s number. When the Knudsen 
number is greater than one, the interaction 
between the walls of the pore and the gas, at 
the molecular level, are dominant and the fluid 
flow is quite different from Poiseuille’s flow. 
The volume of fluid per unit time passing in 
the pore is, according to Knudsen diffusion 
[8]: 

𝑄!"! =
𝜋
12  

𝑑!!

 𝐿!
(
8 𝑅 𝑇
𝜋  𝑀 )

∆𝑃 
 𝑃!      

(6) 

 
where  ∆𝑃 = 𝑃! − 𝑃! is the difference between 
the upstream and downstream pressures. 

In the transition regime defined as 
(0.01 < 𝑁!!" < 1) the flow rate through a 
pore (𝑖) due to a pressure gradient is given as 
the sum of Poiseuille flow (Eq. 4) and 
Knudsen diffusion (Eq. 6). For typical gases, 
the contributions of laminar flow and of 
Knudsen diffusion are of the same order for 
pores of diameter in the range of a few 
hundred of nanometers [9]. This characteristic 
diameter falls in the middle of the pore size 
distribution on Fig. 2, which demonstrate that 
Poiseuille flow and Knudsen diffusion ought 
to be considered simultaneously for a proper 
description of mass transfer. 

When looking at Eqs. (4,6), it can be 
noticed that the dependence of the flow rate on 
the pressure is not the same. Poiseuille flow 
for compressible gas depends on the difference 
of the pressure to the square, whereas Knudsen 
diffusion depends on the difference of 
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pressure. Consequently, the total flow rate 
described at the macroscale according to a 
Darcy-type law exhibits a dependence to the 
inverse of the pressure that is similar to what 
has been proposed by Klinkenberg [10].  

3.2 Macroscale 

At the macro-scale, the flow rate is 
described by Darcy’s law [6]: 

 

𝑄!! =
𝐾!
𝜇 𝑆

∆𝑃 𝑃!
𝐿!  𝑃!   (7) 

 
For hierarchical assembly of capillaries, the 

transport properties are obtained by adding the 
contribution of each capillary pore. 
Comparison between Eq. (7) and the equations 
at the micro-scale provides the expression of 
the apparent permeability 𝐾!.  

4 APPARENT PERMEABILITY : 
COMPARISON WITH EXPERIMENTAL 
DATA 

Experiments have been performed on 
mortars specimens with water/cement ratio of 
0.7 and a maximum aggregate diameter of 
3mm. Mortar hollow cylinders were cast in 
aluminum molds (outer diameter: 24.5mm; 
inner diameter: 6.5mm; height: 40 mm). Top 
and bottom surfaces were rectified and the 
samples were cured in a ventilated oven at 
80°C at constant humidity during 48 hours. 

The testing apparatus consists in a 
conventional electro-mechanical compressive 
machine coupled with a nitrogen permeameter 
in order to measure in-situ the permeability 
under load [5]. The initial permeability is 
measured before applying a given compressive 
load corresponding to a given level of damage 
(measured by the variation of the Young’s 
modulus of the material upon unloading 
[9,11]). Permeability is measured under load 
and after load. Several load levels are 
considered, corresponding to several levels of 
damage ranging from 0% to 12% (in the pre-
peak regime). 

The apparent permeability has been 
measured by applying a pressure gradient and 
measuring the radial gas flow through the 
sample (see e.g.[11]): 

 

𝐾! =  
𝑄!  𝜇  𝑃!  ln (𝑅!𝑅!

)

𝜋 ℎ (𝑃!! − 𝑃!!)
 (8) 

 
where 𝑄!  is the gas volumetric flow rate, 
(ℎ,𝑅!,𝑅!) are the sample height, outer and 
inner diameters respectively and (𝑃! ,𝑃!) are 
the gas upstream and downstream pressure 
respectively. Typically 𝑃! is the atmospheric 
pressure. In order to derive the intrinsic 
permeability from experimental data, the 
approach of Klinkenberg [10] is applied:  

 

𝐾! =  𝐾!" (1+
𝛽
𝑃!
) 

(9) 

 
where 𝛽 is the Klinkenberg coefficient,  𝐾!" is 
the intrinsic permeability and 𝑃! is the mean 
pressure. 

After complete unloading, the middle part 
of the sample (15mm over 40mm) is cut out in 
order to characterize the PSD. Figure 3 shows 
the evolution of pore size distribution of 
different samples subjected to different 
mechanical damage (from 0 to 12%). Initially, 
a peak at 150nm is observed with no porosity 
higher than 1000nm. As damage increases, a 
slight shift upward of the PSD is observed 
between 1000nm and 3000nm. Moreover new 
porosity is created around 10000nm. This new 
porosity leads to the increase of the intrinsic 
permeability of two orders of magnitude. 

 

 
Figure 3. Evolution of pore size distribution upon 

damage 
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Figure 4 present a comparison between the 
measured and predicted results. The predicted 
values are in good agreement with the 
experimental ones whatever the state of 
damage. Note that no tortuosity parameter has 
been introduced in the model (tortuosity equals 
1). 

 

 
Figure 4. Comparison between the measured and 

predicted intrinsic permeability (top) and Klinkenberg 
coefficient (bottom) 

 
Figure 5 shows a comparison between the 

apparent permeability to nitrogen and to 
helium for an undamaged sample measured 
experimentally and computed according to the 
same PSD measured experimentally. We 
observe again a good agreement. It is 
important to notice that when performing the 
comparisons, no specific model parameter is 
set to predict the apparent permeability with 
the proposed model upon a change of the 
nature of the gas. Since the helium mean free 
path is greater than the nitrogen one, the slip 
flow effect is higher for helium and then the 
slope of the apparent permeability vs. mean 

pressure curve is also higher compared to the 
other gases.  

 

 
 

Figure 5. Comparison between the model 
and the experimental results of apparent 
permeability for N2 and He 

5 EXTENSION TO UNSATURATED 
MEDIA 

Seeing the robustness of this model in 
coping with saturated media, we aim now at 
extending it to unsaturated ones. For this 
purpose, a condensation scheme needs to be 
added in the model. Capillary condensation is 
driven by Kelvin’s law: 

 

ln
𝑃(𝑟)
𝑃!

=
2𝛾𝑉!
𝑟𝑅𝑇  

(10) 

 
where 𝑃! is the saturation pressure of the fluid 
in the bulk phase, 𝑃(𝑟) is the saturation 
pressure of the fluid in a pore of diameter 𝑟, 𝛾 
is the surface tension of the liquid, 𝑉! is its 
molar volume, 𝑇 is the temperature and 𝑅 is 
the universal gas constant.  

According to this equation, and given a 
homogeneous state of temperature and 
pressure, the fluid present in a single capillary 
is in a liquid phase for diameters bellow a 
given threshold, and in the gaseous phase 
above.  

We consider now two rules, given a 
capillary composed of segments of decreasing 
diameters that results from the hierarchical 
assembly discussed above:  
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- If the conditions are such that 
condensation occurs in the part of the 
capillary with the smallest diameter, this 
capillary will not participate to the gas 
flow.  

- If the conditions are such that 
condensation occurs in the part of the 
capillary with the largest diameter, then 
the capillary will participate to the 
liquid flow. 

Hence, given the temperature and pressure 
conditions, and given a hierarchical 
assembling, three types of capillary can be 
distinguished: those in which condensation 
does not occur which participate to the 
transport of the gaseous phase, those in which 
condensation occurs at the entry which 
participate to the transport of the fluid phase, 
and those in which condensation occurs in the 
smallest diameters only, which do not 
participate to any transfer at all. Accordingly, 
the flow rates of liquid and gas can be 
computed from the model according to Eqs. 
(4,6). For the liquid phase, Poiseuille flow is to 
be considered only. 

As a first step, we implemented these 
simple rules in a hierarchical assembling 
corresponding to the PSD depicted in Figure 6. 

 

 
Figure 6. PSD used for the calculation of the 

relative permeability to liquid water and vapor 
 
In addition to the relative permeability 

computed according to the hierarchical model, 
we have also considered the phenomenological 
model due to Van - Genuchten - Mualem 
(VGM) [12,13]. The relative permeabilities 
read: 

 

𝑘!" =  𝑆!
! 1− 1− 𝑆!

! !
! !

 
(11) 

 

𝑘!" =  1− 𝑆!
!
1− 𝑆!

! !
!!

 (12) 

 
where 𝑘!" and 𝑘!" are the relative 

permeabilities to gas and liquid respectively, 
and 𝑆!  is the saturation.  

Figure 7 shows a comparison between this 
first approach and the VGM model with 
classical coefficients (q=4,5 and m=0,5) 
corresponding to a cementitious material. (On 
both graphs, solid lines are for the VGM 
model, and dashed ones for the hierarchical 
model. Furthermore, red curves are for gas and 
blue ones correspond to the liquid phase.) 

 
Figure 7. Relative permeability to vapor and liquid 

water computed according to the hierarchical and VGM 
model. 

 
It is clear from this result that the direct 

implementation of the hierarchical approach to 
the unsaturated state does not agree with 
standard results observed in the literature. 
Looking at the evolution of the relative 
permeability to gas as a function of the 
saturation according to the hierarchical model, 
several observations can be made: 

First, the relative permeability to vapor 
does not decrease as fast as it should when the 
saturation increases. Second, the point at 
which the two relative permeabilities are equal 
is shifted towards the high saturation levels 
and high permeability. 
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This mismatch can be explained by looking 
at the way the hierarchical model is organized 
for capillaries of small diameters. For small 
diameters, the model is strictly equivalent to a 
bundle of capillaries with constant diameter. 
This is not important as far as the intrinsic 
permeability or the apparent permeability to a 
single gas phase are concerned because the 
contribution of each capillary is negligible. 
When the saturation grows, water condensates 
in these capillaries very quickly. They do not 
contribute to the relative permeability to gas, 
but since their contribution is negligible, the 
effect is not substantial overall. This is the 
reason why the relative permeability to gas is 
severely overestimated.  

The fact that the point where the two 
relative permeabilities are equal is shifted 
upwards, towards the high saturation levels 
follows from the same reasoning. The 
corresponding relative permeabilities are quite 
high. For these relative permeabilities to be 
very small, it would require that the pore 
network be clogged, which means that all the 
capillaries should end with a pore diameter 
which is small enough so that the fluid 
condensates. This cannot be the case according 
to the hierarchical model as it has been 
designed. In fact, the model has been designed 
with descending diameters, understanding that 
pores of very small diameters do not 
contribute to the gas permeability compared to 
large ones. If the hierarchical model is to be 
extended to the unsaturated case, it should be 
complemented by an ascending approach, 
focusing on the small pores whose clogging 
effect on the entire network is of great 
importance. 

 

 
 
Figure 8. Modification of the hierarchical scheme in the 
unsaturated case 
  

In order to achieve that, we consider adding 
small segments of small pore sizes at the end 
of each larger capillary (see Fig. 8). For a short 
enough pore segment – e.g. a 1:1 

length/diameter ratio – placing it at the end of 
an existing capillary does not change the 
global permeability, but when condensation 
occurs in this small segment the entire 
contribution of this pore to gas permeability 
vanishes. This approach keeps the spirit of the 
original hierarchical model, inspired by the 
experimental technique used for characterizing 
the pore size distribution. In other words, 
inkbottle effects are avoided.  

To sum up, the hierarchical scheme from 
which the capillary bundle is obtained is now 
based on two hierarchical steps : a descending 
scale one which is the original scheme, and an 
ascending scale one, in which the pores of 
smallest diameter which are of constant 
diameter initially, are cut into small segments 
and place at the end of existing capillaries at 
the upper scale (larger diameters). 

Before implementing this scheme and in 
order to better assess the potential of the 
hierarchical capillary bundle in this regard, we 
tried simply force-fitting the hierarchical 
model with the VGM curve for the relative 
permeability to vapor. The principle is to take 
the capillaries with the smallest diameter, to 
cut them into small pieces and then to add 
them to capillaries of the next, larger diameter. 
The process is stopped when the relative gas 
permeability is close to the VGM curve. As 
observed in figure 9, good agreement is 
reached easily with very little impact on 
intrinsic permeability and on the apparent 
permeability of the bundle to a unique gaseous 
phase.  

 
Figure 9. Fit between the VGM model and the modified 
hierarchical scheme 
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Of course, the above results illustrate the 

potentiality of the model, it cannot help at 
defining the way pore segments are 
redistributed in the initial hierarchical model 
after the descending scale phase. Several ways 
can be used in order to organize the ascending 
scheme. The simplest one would be to separate 
the pores of a single diameter into two 
fractions: the one that cannot percolate into a 
homogeneous material and its counterpart. The 
part that cannot percolate is, by definition 
connected to pores of largest diameter because 
it is accessible to mercury intrusion. It can be 
distributed to capillary ends with the 
immediate larger diameter and up if needed.  

5 CONCLUSIONS 

A theoretical model aimed at computing the 
apparent permeability of a porous material to 
gas has been presented. The model uses the 
pore size distribution of the material as an 
input. The porous network is generated 
according to a hierarchical scheme in which 
bundles of capillaries are assembled randomly. 
Within each capillary pore, fluid flow is 
described by a combination of Poiseuille Flow 
and Knudsen (diffusion) flow. The outcome at 
the macroscopic scale results into an apparent 
permeability of the Klinkerberg-type.  

The model has been compared with 
experiments on mortar subjected to 
compression. The theoretical model captures 
experimental trends very consistently. In 
addition, the same model is also capable of 
predicting the permeability of the material to a 
different gas, without any adjustment of the 
parameters. 

An extension to phase change within a 
single fluid and unsaturated media has been 
discussed. The initial – descending scale – 
scheme ought to be complemented with an 
ascending scale one since small pores drives 
the evolution of the relative permeability to 
gas upon increasing saturation. Work, in which 
such an ascending scheme is implemented, is 
in progress. 
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