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Abstract. This paper presents a computational method for simulation of 3D hydrofracturation using
a segregated and a coupled algorithm hydraulic model. The crack propagation is modeled using a
combination of continuous damage and XFEM. The poroelastic problem in the first stage of cracking
is modeled using a poro-damage model, where the permeability is linked to the damage coefficient.
Once the crack is modeled using XFEM, a hydraulic mesh is automatically generated on the fracture
surface with the possibility of including features such as drains. The pressure is computed on the
hydraulic mesh taking into account the crack opening computed with the structural model and the
different types of flow in a crack: laminar or turbulent, parallel or non-parallel. The pressure computed
with the hydraulic mesh is transferred to the structural mesh to recompute the structural response. This
procedure, iterated until convergence, can predict hydraulic fracturing taking into account complex
flows. A validation example on a wedge-splitting specimen is presented.

1 INTRODUCTION

The presence of cracks subjected to hy-
draulic pressures in plain concrete structures is
a major concern for their durability, serviceabil-
ity and stability. To assess the performance of
cracked structures several mechanical and hy-
draulic response parameters have to be com-
puted. This paper presents the development,
implementation and application of a new non-
linear strongly coupled finite element hydraulic

fracturing model for concrete dams structural
stability assessment.

Flow laws in cracks with varying parame-
ters such as aperture, roughness, tortuosity and
Reynold’s numbers were first established by
Louis [10]. Depending on these parameters,
the formulation of the hydraulic problem leads
to a system of nonlinear equations. The in-
clusion of drains, with nearby very strong hy-
draulic gradients, makes it necessary to have
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different (multi-physics) finite element models;
one with a hydraulic mesh and one with a me-
chanical mesh. Therefore, the hydraulic and
mechanical subproblems are solved using a par-
titioned procedure, as they have different res-
olution requirements and their computational
domains have non-matching discrete interfaces.
Thus, a key aspect is the transfer of the struc-
tural crack apertures to the hydraulic mesh, and
the transfer of the hydraulic pressures to the me-
chanical problem by respecting the applied load
equilibrium [6].

In this work, the regularized local
anisotropic continuum poroelastic damage
method (CPDM) is used to describe the first
stage of the fracture process zone (FPZ) forma-
tion. When the damage has reached a critical
value, a switch to the cohesive XFEM model
is achieved by ensuring that the fracture en-
ergy that remains to be dissipated by the CPDM
model is transferred to the XFEM model [14].
The XFEM formulation makes possible the
computation of the crack aperture as well as
the application of pressure on the crack sur-
faces for simulation of hydraulic fracture ini-
tiation and propagation. The hydraulic mesh
is automatically generated on the crack surface
with the possible inclusion of drains. Finally,
a crack-tracking technique is used to propagate
the crack path along a single row of finite ele-
ments.

An application of the proposed hydro-
mechanical constitutive model and numerical
solution strategy on a wedge-splitting case il-
lustrates the effectiveness of the model to pre-
dict hydrofracturation.

2 COUPLED HYDRO-MECHANICAL
PROBLEM CONSIDERING MATE-
RIAL DAMAGE AND DISCONTINU-
ITY

The Biot model of a porous material satu-
rated with a fluid assumes that the solid skele-
ton is permeated by an interconnected network
of pores filled with a moving fluid. The descrip-
tion of stress in the fluid is limited to its hydro-
static component. Therefore, the total stress σ

in Voigt notation is related to the effective stress
σ′ and the liquid pressure p such that:

σ = σ′ +mp (1)

where m is defined for isotropic behavior as
mT = b {1 1 1 0 0 0}, with b (0 ≤ b ≤ 1) the
Biot coefficient. Constitutive equations are ex-
pressed in terms of balances of momentum and
fluid mass for steady state pressure as follows:

∇ · σ = 0 (2)
∇ · v = 0 (3)

where v is the fluid velocity vector. In the pres-
ence of a discontinuity, equation (2) is solved
using a combined XFEM-damage mechanics
approach [14] for which the three dimensional
formulation is given in section 3. Equation (3)
can be solved either using a segregated or a cou-
pled algorithm. The coupled algorithm is used
until transition to XFEM occurs. This transi-
tion takes place when the coalescence and ram-
ification of the microscopic cracks form a weak
discontinuity. For fluid flow through disconti-
nuities, it is common to make the assumption
of a laminar and incompressible flow between
two smooth parallel plates. Using a segregated
algorithm it is possible to solve the nonlinear
flow problem in the discontinuity with less as-
sumptions without affecting the overall solution
procedure. The method will be presented in sec-
tion 4.

3 THREE-DIMENSIONAL DISCONTI-
NUITY MODEL USING A TRANSI-
TION FROM CDM TO XFEM

A strategy based on a transition from a con-
tinuum approach to a kinematic XFEM ap-
proach for cohesive crack propagation is used.
This process allows the benefits of the contin-
uum damage approach to be combined with the
benefits of the cohesive extended finite element
method. The regularized local anisotropic con-
tinuum damage approach is used to describe the
first stage of the FPZ formation. When the dam-
age has reached a critical value, a switch to the
cohesive XFEM model is achieved by ensuring

2



Simon-Nicolas Roth, Pierre Léger and Azzeddine Soulaïmani

that the energy that remains to be dissipated by
the continuous damage model (CDM) is trans-
ferred to the XFEM model. Because anisotropic
models are less sensitive to the directional bias
of a finite element mesh [9], only the crack
tracking algorithm is formulated using a non-
local theory. The model has the benefit of not
adding any additional parameters during the en-
ergy transfer between the CDM and the cohe-
sive XFEM models.

3.1 CONTINUUM DAMAGE MODEL
The non-linear behavior of concrete un-

der monotonic loading is described using an
anisotropic formulation. The behavior of a
damaged material results in the constitutive re-
lation of an undamaged material in which the
usual stress is replaced by the effective stress
by invoking the principle of energy equivalence.
The effective stress σ̃ is defined as:

σ̃ = M−1σ (4)

where M is the anisotropic damage tensor with
the index in each damage direction equal to zero
when the material is undamaged, and equal to
one when it is completely damaged. With the
energy equivalence concept, the local damaged
constitutive tensor Cd

(l) is given by:

Cd
(l) = M−1C0

(
M−1

)T (5)

The damage tensor is a function of the inter-
nal scalars κi (i ∈ [1, 3]). This parameter ini-
tially equals the damage threshold r0 and is the
largest recorded value of the principal strains εi
during the damage process. This evolution is
governed by the Kuhn-Tucker condition, given
as a loading function fi such that:

fi (εi, κi) = εi − κi (6)

Loading is indicated by fi ≥ 0 and unloading
by fi < 0. The unloading behavior can be sim-
ulated using the secant stiffness. Damage is ini-
tiated when a tensor norm is greater than the
initial threshold r0. The tensor norm must take
the different behavior of concrete under tension

and compression into consideration. One suit-
able norm that considers the effect of compres-
sive strains [7, 12] can be written as follows:

ε̄ =

√√√√ 3∑
i=1

(
〈εavi 〉2 +m〈−εavi 〉2

)
(7)

where 〈. . . 〉 are the Macaulay brackets: 〈εavi 〉 =
εavi if εavi > 0, 〈εavi 〉 = 0 if εavi < 0 and

m =

(
ft
fc

)2

with ft, the tensile strength and

fc the compressive strength.
The damage evolution law is the one pro-

posed in [8]:

d = 1−
√
r0
ε̄
exp (−R (ε̄− r0)) (8)

where r0 =
ft
E0

is the initial threshold defined

in terms of the tensile strength and the elastic
modulus E0. Mesh objectivity requirements are
satisfied adequately by introducing a regular-
ization based on the energy equivalence. The
stress-strain diagram is adjusted such that the
fracture energy is conserved regardless of the
size of the element considered. Therefore, the
mesh size does not have to respect a maximum
size corresponding to the characteristic length
of concrete. This is of great importance when
analyzing a large structure such as a dam where
this dimension is small compared to the size of
the dam. Thus, the derivation of R in equation
(8) is done in a way that satisfies the mesh ob-
jectivity requirements and is defined as:

R =
2E0ftlrve

2E0GF − ft
2 lrve

≥ 0 (9)

where GF is the fracture energy and lrve is
the representative volume element characteris-
tic length. To satisfy the requirements that R ≥
0, lrve must be smaller than:

lrve ≤
2E0GF

ft
2 (10)

The damage evolution is based on the principal
strains exceeding the damage threshold r0 :

• if κi > r0 then di = d i ∈ [1, 3] (11)
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The anisotropic damage tensor can now be de-
fined by:

M =

[
M−1

11 0
0 M−1

22

]
(12)

with

M
−1
11 =

 (1 − d1)
2 (1 − d1)(1 − d2) (1 − d1)(1 − d3)

(1 − d1)(1 − d2) (1 − d2)
2 (1 − d2)(1 − d3)

(1 − d1)(1 − d3) (1 − d2)(1 − d3) (1 − d3)
2



M
−1
22 =

χ12 0 0
0 χ23 0
0 0 χ13



χij =
2(1 − di)

2(1 − dj)
2

(1 − di)2 + (1 − dj)2

(13)

Damage in either of the principal directions
leads to a reduction of the shear resistance
by the coefficient χ similar to that found in
smeared crack models. The damage tensor is
valid in the local reference frame (aligned with
the principal strains directions). Hence, in the
global reference frame, this tensor must be ro-
tated by the transformation matrix given by:

T =


l21 m2

1 n2
1 l1m1 m1n1 l1n1

l22 m2
2 n2

2 l2m2 m2n2 l2n2

l23 m2
3 n2

3 l3m3 m3n3 l3n3
2l1l2 2m1m2 2n1n2 l1m2 + l2m1 m1n2 + n1m2 l1n2 + l2n1
2l2l3 2m2m3 2n2n3 l2m3 + l3m2 m2n3 + n2m3 l2n3 + l3n2
2l1l3 2m1m3 2n1n3 l1m3 + l3m1 m1n3 + n3m1 l1n3 + l1n3


(14)

with the direction cosine εi = {li,mi, ni}. The
transformation from the local to the global ref-
erence frame of the damaged constitutive tensor
is given by:

C
(g)
d = TTC

(l)
d T (15)

Finally, the damage is considered to be dis-
tributed on a representative volume element lrve.
Therefore, this measure is given by the relation:

lrve =
3
√
Ve =

3

√√√√nint∑
i=1

wi det i (16)

with Ve the element volume, nint the number of
integration points, w the weight and det the de-
terminant associated with the Gauss point. Sim-
ilarly, the strains ε are averaged over the volume
and given by:

εav =

nint∑
i=1

εiwi det i

nint∑
i=1

wi det i

(17)

These averaged strains are used to evaluate the
loading/unloading function (6).

3.2 COHESIVE XFEM REPRESENTA-
TION OF THE DISCONTINUITY

Within the framework of the extended finite
element method, cracks can be modelled by en-
riching the displacement interpolation of the el-
ement crossed by the discontinuity with special
purpose functions and by introducing additional
unknown â to the problem:

uh(x) =
∑
∀I

NI(x)āI +
∑
J∈SH

NJ(x)ψ(x)âJ

(18)

withN the standard shape functions of the finite
element method and ā the standard degrees of
freedom of the problem. The nodal values â are
the additional degrees of freedom that adjust the
enrichment so that they approximate the func-
tion ψ(x). SH represents the set of nodes that
are enriched because the discontinuity passes
through the element to which they belong. To
represent a strong discontinuity such as a crack,
the Heaviside function (H ) can be used for
ψ(x):

ψ(x) = [H (f(x))− H (f(xJ))] (19)

with xJ the position of node J . The enrichment
function is shifted so that the product of the
shape function NJ and the enrichment function
cancels out at each node. Therefore, only those
elements that are crossed by the discontinuity
should be treated differently. To account for the
additional cohesive forces transferred through
the crack, the weak form of equation (2), tak-
ing into account the concept of effective stress
given in equation (1) and using test functions
(δū, δû), is defined as:∫

Ω

∇δū : σdΩ +

∫
Ω?

∇δû : σdΩ?

+

∫
Γd

δû t (JuK) dΓd =

∫
Γ

δūtpdΓ

+

∫
Γd

δûtddΓd

(20)
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where tp is the prescribed traction on the ex-
ternal boundary, td the prescribed traction in
the discontinuity (pressure computed in section

4.2), t (JuK) = fte
− ftJuK

GF the cohesive force, Ω?

has been introduced, so that the integration is
performed by parts due to the Heaviside func-
tion. With the boundary conditions:

σnΓ = tp, u = up (21)

nΓ being the outward unit normal on the ex-
ternal boundary and tp, up respectively the
prescribed external traction and displacements
yields equation to be solved for the mechanical
problem with the cohesive XFEM representa-
tion of the discontinuity. Note that when the el-
ement is not enriched and the continuous dam-
age model is used, the terms on δû vanish.

3.3 TRANSITION FROM CONTINUOUS
DAMAGE MECHANICS TO COHE-
SIVE XFEM

Following the approach proposed in [14],
conservation will be enforced using mode I en-
ergy dissipation. The three conditions required
for the conservation of energy during transition
are:

• The energy dissipation of the continuous
damage mechanics approach from dam-
age initiation until the transition strain oc-
curs must be equivalent to the energy dis-
sipated by the cohesive model from dam-
age initiation until the transition opening
is reached;

• The energy remaining to be dissipated
from the transition strain in the CDM
model to complete material separation
must be equal to that of the cohesive
model;

• The initial traction stress of the cohesive
surface must be equal to the CDM model
stress at the transition strain.

This energy conservation is applied using the
cohesive force. The transition from CDM to
XFEM is achieved when d > dcrit. According

to [14], dcrit is chosen such that 0.5 ≤ dcrit ≤
0.7.

4 COUPLED HYDRO-MECHANICAL
PROBLEM

The transport process with regard to the av-
eraged motion of the fluid involves molecular
diffusion. These molecular diffusion and vis-
cous flow are both dissipative. Positivity of the
dissipation associated with the viscous flow of
the fluid through the porous solid can be writ-
ten in the form (−∇p · v ≥ 0) [4]. The fluid
movement is governed by the law relating the
velocity vector v to the driving force −∇p pro-
ducing the flow. Linearly relating v to −∇p and
neglecting body loads is the simplest form that
this law can take and leads to the expression of
Darcy’s law:

v = −K∇p, (22)

with K = δijk/µ the permeability coefficient
matrix, k is the intrinsic permeability and µ the
fluid viscosity. Hence, the fluid transport in
the interstitial space is described by replacing
the velocity in the continuity equation (3) by
Darcy’s law leading to:

∇ · (−K∇p) = 0 (23)

Using δp as the test function, the weak form of
this equation:

−
∫
Ω

(∇δpK∇p) dΩ =

∫
Γ

FδpdΓ (24)

is added to equation (20) for complete math-
ematical description of the poroelastic model
with the prescribed pressure pp boundary con-
dition:

p = pp on Γp (25)

It is assumed that there is no membrane effect
within the crack, therefore the pressure term is
not enriched and the pressure field is continuous
across the discontinuity surface.

In addition to the interstitial space, this form
of the continuity equation will be expanded for
two other types of flow that occurs: flow in the
damaged material with the presence of microc-
racks and flow in macrocrack (discontinuity).
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4.1 PORO-DAMAGE MODEL
A parallel between material damage and in-

creasing permeability in the porous flow model
can be achieved. Indeed, damaged concrete has
a large number of pores that can be filled with
the liquid phase. This observation may be rep-
resented mathematically by modifying the per-
meability and/or the Biot coefficient as a func-
tion of the damage level.

According to [13] changes in concrete per-
meability can be split in two parts. In the first
part, when microcracking linked to low-level
damage (0 to 15%) take place, and secondly,
when macro-crack occurs beyond the peak load.
Based on experimental results, this reference
gives a damaged-permeability relationship in
the prepeak phase of concrete (valid for dam-
age values between 0 and 0.18) as an exponen-
tial function:

kD = k0 exp
(
(αd1)

β
)

(26)

with α = 11.3, β = 1.64 and d1 the first prin-
cipal tensile damage scalar. For strong damage,
the permeability of a crack is given by Hele-
Shaw flow (equation (31)) (also named plane-
Poiseuille flow). A single mathematical law,
based on the law of mixtures, was proposed
in [5] which allows to describe the evolution of
permeability from the initiation of microcracks
until the opening of the macrocrack.

log(km) = (1− d1) log
(
kFD

)
+ d1 log (kcr)

(27)
with kFD a limited Taylor expansion of the expo-
nential relation. Assuming that the permeability
change in the damaged material is isotropic, the
permeability matrix from equation (24) is given
by K = δijkm/µ. Similarly, the Biot coefficient
increases such that:

b = b0 + (1− b0)d
2
1 (28)

with b0 the initial Biot coefficient.

4.2 FLOW IN DISCONTINUITIES
Starting with the Navier-Stokes equations

and using the assumptions that the flow through

the crack wall is zero, that the inertial forces
are negligible compare to the viscous forces and
that the flow is steady state one can derive the
general equation for flow in the crack as:

∇ · (−wcrkcr∇H) = 0 (29)

wcr is the crack opening and the total water level
is given by:

H = z +
p

ρg
+

v2
cr

2g
(30)

with vcr the velocity of the fluid in the crack,
g the gravity, ρ the fluid density. The hydraulic
conductivity coefficient kcr is related to the flow
profile inside the crack. For example, for a par-
allel laminar flow where the velocity profile is
parabolic, the hydraulic conductivity coefficient
is given as:

kcr =
gw2

cr

12ν
(31)

corresponding to the Hele-Shaw flow, with ν
the fluid kinematic viscosity. For other types
of flow profiles, [10] has recorded the results of
several authors and created a series of five flow
laws with their associated ranges of validity.
A parameter ha/Dh refered to as the “relative
roughness” is used to define the crack rough-
ness, where ha is the average asperity height
in the crack and Dh is the hydraulic diameter
(equals two time the crack opening). By defini-
tion, the relative roughness of a crack is zero for
a smooth crack and 0.5 for a rough crack with
asperities the size of the crack opening. Flow in
the crack is considered parallel for low values of
relative roughness (ha/Dh < 0.033), whereas
for ha/Dh ≥ 0.033, the flow will be non-
parallel. The flow velocity distribution made by
Louis, taking into account the roughness of the
crack is given by:

vcr = kcr|∇H|α−1∇H (32)

The values of hydraulic conductivity kcr and the
exponent α depend on the type of flow as de-
scribed in Figure 1. For hydraulically smooth
parallel flow the transition from laminar to tur-
bulent flow occurs at approximately Re = 2300
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Figure 1: Compilation of the different flow laws and their range of validity [after [10]]

with the Reynolds number defined by:

Re =
2wcr||vcr||

ν
(33)

Adding boundary conditions (water head h, at
the boundaries including the drain, Hd, or im-
pervious condition), equation (29) enables to
solve the flow problem in the discontinuity.
If turbulent flow conditions are encountered
(zones II, III, and V), the velocity is not pro-
portional to the hydraulic gradient and the for-
mulation of the problem leads to a system of
non-linear equations.

Defining an open set Ω in the space R2 where
one seeks to solve equation (29) discretized
into a collection of linear T3 triangular ele-
ments. The mesh is in the R2 space only lo-
cally, namely, it is on a surface in space R3,
but when solving the problem, the element is
transferred to a local coordinate system in the
R2 space. The use of linear T3 triangle simpli-
fies the evaluation of the conductivity matrix in
the local coordinate system as it ensures that the
element is planar. Because the total hydraulic
load is independent from the coordinate system
used (similar to a potential function), it is not
necessary to transpose the conductivity matrix
in the global coordinate system. Using this type

of formulation, care must be taken to add the
effect of total water head as a function of dis-
continuity surface elevation variation.

4.3 COUPLING OF FLUID-STRUCTURE
INTERACTION WITH NON-
MATCHING INTERFACE

When the interface mesh between the struc-
tural and hydraulic subproblems is identical
(each nodes on the hydraulic mesh has an equiv-
alent node located at the same position on the
surface of the structure), the transfer of pres-
sures and crack aperture is a trivial opera-
tion. However, these subproblems have differ-
ent resolution requirements and their computa-
tional domains have non-matching discrete in-
terfaces. Therefore, the hydraulic-structure in-
terface must be coupled. A suitable method is
to make the variable transfer taking into account
the interpolation functions used by the finite el-
ements as proposed in [6]. The first step is to
find for each hydraulic node in which structural
element the hydraulic node (or its projection on
the structural element) is located. Once the el-
ement is found, the second step is to define the
interpolating function. Note if the discontinuity
intersection with the structural hexahedral ele-
ment yields a quadrangular Q4 element, the el-
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ement is divided in two T3 triangular elements.
Using barycentric coordinates computation, one
can perform these two steps at once. Hence, the
computation of the barycentric coordinates for
the projection P ′ of a point P into the plane of
a triangle defined by segments ~u, ~v and passing
by point Q can be computed as:

1. Compute the triangle normal: ~n = ~u⊗ ~v

2. Compute vector between point P and Q:
~w = P −Q

3. Compute the barycentric coordinates:

N1 = (~u⊗ ~w)� ~n/ (~n� ~n)

N2 = (~w ⊗ ~v)� ~n/ (~n� ~n)

N3 = 1−N2 −N1

4. Point P is inside the triangle if: 0 ≤
N1 ≤ 1 and 0 ≤ N2 ≤ 1 and 0 ≤ N3 ≤ 1

The hydraulic node crack aperture wh
cr can be

interpolated from the associated structural tri-
angular element crack aperture wi=1..3

cr with the
interpolation function computed in step 3:

wh
cr =

3∑
i=1

Niw
i
cr (34)

The inverse procedure is applied for interpolat-
ing the hydraulic pressure computed in section
4.2 to the structural mesh.

5 SOLUTION ALGORITHM FOR DIS-
CONTINUITY PATHS COMPUTA-
TION

Following the global method proposed in
[11], we are looking for isosurfaces of a scalar
field θ tangent to a direction field such that it
satisfies the conditions T∇θ = 0 and S∇θ = 0.
Therefore it is necessary to solve the heat trans-
fer equation with adiabatic boundary conditions
and no internal heat source:

∇ · q = 0 in Ω (35a)

q = −Kp∇θ in Ω (35b)

q · n = 0 on Γq (35c)

θ = θp on Γθ (35d)

The anisotropic conductivity matrix is given by:

Kp = T⊗T+ S⊗ S+ ζI (36)

with ζ a small perturbation term (10−6) to
avoid matrix singularity and S, T are the
eigenvectors perpendicular to the eigenvector of
the largest stress eigenvalue. These eigenval-
ues/eigenvectors are computed using the non-
local stress tensor. The isosurfaces of the
scalar field computed are “potential” disconti-
nuity surfaces. Once the discontinuity evolves,
boundary conditions on the nodes attached
to the elements crossed by the discontinu-
ity are imposed such that the scalar field is
fixed around the discontinuity so that it cannot
change position and direction.

The isosurface origin is assumed to be lo-
cated at the center of an element face located
on a boundary. If more than one face is in
contact with the boundaries, the centroid of the
element is selected as the origin. Using the
finite element shape functions, the scalar θiso
must be evaluated at this origin. Finally, the
signed distances (level-sets) between the dis-
continuity surface and the nodes are computed
with θi − θiso, θi being the nodal scalar. The
crack surface within hexahedral elements are
not necessarily planar, hence proper integration
method must be used to integrate Ω? and Γd in
equation (20).

6 GLOBAL ALGORITHM DETAILS
Figure 2 gives with the UML activity dia-

gram the global solution algorithm. Step 1 is
the resolution of the system of equations (20)
and (24). Next, for every elements, the cohesive
force is updated if the element is enriched. If
the element is not enriched, the constitutive ma-
trix is updated (section 3.1) and the permeabil-
ity matrix is modified (section 4.1) if the prin-
cipal strains exceeds the damage threshold r0.
In step 6, the discontinuity paths are computed
(section 5). If the solution has converged, for
each element, a check is made to see whether
the damage threshold dcrit is exceeded. If the

8
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Figure 2: UML activity diagram of the algorithm for one load step

element is not enriched and the threshold is
reached, enrich the element. Using the criteria
given in section 3.3 the cohesive law for mode
I energy conservation is computed during tran-
sition from CDM to XFEM. Step 9 to 12 are
performed only if the model has enriched ele-
ments. In step 9, using a surface reconstruction
method [1] on the points located at the inter-
section of the discontinuities and the mesh, the
hydraulic mesh is generated. At this time, any
features such as drains must be inserted in the
hydraulic mesh. Step 10 involves the coupling
of the structural mesh with the hydraulic mesh
(section 4.3). Once the apertures are transferred
to the hydraulic mesh, solution of the flow in the
discontinuity is computed (section 4.2). In step
12, the pressure computed are transferred to the

structural mesh. Finally, if the convergence cri-
terion is verified, compute next load step, else
repeat the procedure starting at step 1.

7 VALIDATION EXAMPLE

The wedge-splitting device tested in [3] and
simulated numerically in [2] is used as a vali-
dation example of the algorithm. The geome-
try and material properties are given in Figure
3 and Table 1. Five cases will be modeled to
show the benefits of the proposed method. The
first case (case 1) considers only the continu-
ous damage model without using the XFEM.
Hence, only porodamage is used to simulate
the hydrofracturation. In the four other cases,
the discontinuity is imposed using level-sets
and cohesive XFEM is used. Case 2a has no

9



Simon-Nicolas Roth, Pierre Léger and Azzeddine Soulaïmani

drainage. Case 2b has one 20 mm diameter
drain located at the center of the wedge thick-
ness, 30 mm away from the crack entrance (Fig-
ure 4a). Case 2c has two 20 mm diameter drains
located 20 mm away from the crack entrance
(Figure 4b). Finally, case 3 considers only the
pressure applied in the red zone (Figure 3) of
the wedge without considering poro-elastic ef-
fects. To simulate hydrofracturation, the exter-
nal pressure load applied in the red zone and
the pressure boundary condition applied on the
nodes in contact with the red zone are increased
as a function of the crack mouth opening dis-
placement (CMOD).

100
100

30
0

300

10
0

50

100

Figure 3: Wedge-splitting finite element model
(dimensions in mm)

Table 1: Material properties for the wedge-
splitting specimen

E
(M

Pa
)

f
′ t
(M

Pa
)

f
′ c
(M

Pa
)

ν G
F

(N
/m

)

24320 2.54 25.4 0.20 182

30

(a)

20

3030

(b)

Figure 4: (a) Drain location for case 2b, (b)
Drains locations for case 2c
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Figure 5: Maximum pressure load as a function
of CMOD

Figure 5 gives the pressure load as a func-
tion of the CMOD. With a maximum pressure
of 1.45 MPa, case 1 gives similar results to
[2] where the maximum pressure found is 1.30
MPa. It is expected that case 2a gives results
in the same range. However the pressure com-
puted is larger to that of case 2a by a margin of
0.15 MPa. The cause if this margin must be
further investigated. The effectiveness of the
drainage is proven when comparing this result
with those of case 2b and 2c. Using two drains
give results that are close to case 3 where the

10
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pressure inside the crack is not considered when
crack propagation occurs. Instability in the so-
lution procedure occurs for case 1 and case 2b
with CMOD values beyond 0.12 mm. Figure 6,
compares the pressure distribution of cases 2b
and 2c in the cracking surface. When using two
drains, the pressure almost drops to zero beyond
the drains. This explains the larger pressure re-
sponse found for this case.

(a) (b)

(MPa)

0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80

Figure 6: Pressure distribution on the hydraulic
mesh for (a) case 2b, (b) case 2c

0.00 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80

Drains

(MPa)

Figure 7: Pressure distribution at maximum
pressure load for case 2c

Figure 7 gives the pressure distribution on
the structural mesh of the wedge specimen for
case 2c. The interpolated pressure boundary
condition obtained from the hydraulic mesh are
clearly visible. The arrows in the figure are
added to emphasize the location of the drains.

8 CONCLUSION
The proposed model has shown its ability

to model hydrofracturation taking into account
complex flows and drainage. This model can be
used to assess the performance of cracked hy-
draulic structures. The inclusion of drainage in
complex dam safety assessment can help reduce
or even avoid rehabilitation work and thereby
lower their costs. The future steps is to validate
the complete combined CDM-XFEM algorithm
on a 3D non-planar case.
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