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Abstract:  Since most advanced cement based materials have relatively high binder content, the risk 
of cracking at an early age should be evaluated using models that can estimate the heat generated by 
the hydration of pozolanic components and the induced stress fields. For this purpose, a general 
thermal model was developed, in order to perform steady state thermal analysis, transient linear 
thermal analysis and nonlinear thermal analysis. The heat development due to the hydration process 
during the concrete hardening phase is coupled with the thermal model, leading to a numerical 
approach that is capable of simulating the behavior of concrete structures since its early ages. This 
thermal model is integrated into a mechanical model that can simulate the crack initiation and 
propagation in structures discretized with solid finite elements. The mechanical model is a 3D 
multi-directional smeared crack model with the capability of simulating the behavior of structures 
failing in flexure, shear or punching. The thermo-mechanical model is presented and its 
performance and accuracy are assessed by simulating a case study available in the literature. 
 

 

1 INTRODUCTION 

In this work a general thermal model to 
simulate the heat transfer in structures built 
with materials whose mechanical behavior can 
be considered to be linear or nonlinear is 
presented. The heat development due to the 
hydration process during the concrete 
hardening phase and its inclusion in the heat 
transfer model is also treated. This thermal 
model is integrated into a mechanical model 
that can simulate the crack initiation and 
propagation in structures discretized with solid 
finite elements. The predictive performance of 

the developed thermal-mechanical model [1] is 
assessed by simulating a case study available 
in the literature. The model is implemented in 
the FEMIX computer code [2]. 

2 THERMAL MODEL 

Heat transfer can be defined as the energy 
transferred between material bodies due to a 
temperature difference [3-5]. The heat flows 
from hot to cold mediums until an equilibrium 
state is reached [6], being the process of heat 
transfer divided into three modes: conduction, 
convection and radiation.  
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2.1 Heat conduction equation 

The equation for the case of three 
dimensional (3D) heat conduction analysis is 
directly derived by applying the principle of 
conservation of energy to an infinitesimal 
control volume of a 3D body, as represented in 
Figure 1 [1]. 

 
Figure 1: Infinitesimal control volume of a 3D 

body. 

The general 3D heat conduction equation in 
Cartesian coordinates can be presented as 
follows 

 
x y z

T T T
k k k
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Q c

t
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 ∂ ∂ ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂ ∂ ∂    

∂+ =
∂

ɺ

 (1) 

For the case of isotropic materials, the 
thermal conductivity is the same in all 
directions, i.e., x y zk k k k= = = . Qɺ  is the 

internal heat generation rate per unit volume of 
the infinitesimal control volume, ρ  is the 
mass per unit volume and c  is the specific 
heat of the material. 

To obtain the temperature distribution in a 
body, the heat conduction equation must be 
solved considering appropriate boundary 
conditions, such as: prescribed temperature in 
the boundary; constant heat flux in the 
boundary; insulated or adiabatic boundary; 
and, convection condition on the boundary 

surface. The radiation heat transfer can be 
taken into account by substituting the 
convection heat transfer coefficient with an 
appropriate convection-radiation heat transfer 
coefficient, crh , [6-7]. 

For the case of time dependent temperature 
phenomena, the initial conditions must also be 
known. 

2.3 Finite element method applied to heat 
transfer 

The application of the method of weighted 
residuals to the heat conduction equation (1) 
yields 

0
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∂+ − =
∂

∫

∫ ∫ɺ

where w  is the weight function ( ), ,w x y x . 

Integrating by parts the first term of 
equation (2), using the Green-Gauss theorem 
[8] and introducing the boundary conditions, 
results in 
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 (3) 

 In this equation Tq  is the unknown heat 

flux at the boundary where the temperature is 
prescribed, q  is the imposed boundary heat 
flux (when 0q =  an insulated or adiabatic 

boundary is assumed), and ( )ch T T∞−  is the 

boundary convection heat flux (by substituting 

ch  with crh , convection-radiation heat transfer 

can be taken into account). 
The first integral of equation (3) can be 

written as 

 ( )T

V
w D T dV∇ ∇∫  (4) 
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where 

 

0 0

0 0

0 0

x

y

z

k

D k

k

 
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  

 (5) 

The temperatures can be approximated 
using shape functions as follows 

 ( ) ( ) ( )
1

, , , , ,
n

i i
i

T T x y z t N x y z T t
=

= =∑  (6) 

where n  is the number of nodes of the finite 
element, iN  is the shape function of element 

node i  and iT  is the temperature of element 

node i . In a transient analysis this temperature 
field is a function of time. 

In matrix form, equation (6) can be written 
as 

 eT NT=  (7) 

being 

 [ ]1 2 ... nN N N N=  (8) 

and 

 [ ]1 2 ...
Te

nT T T T=  (9) 

By using the Galerkin method, the weight 
functions, w , are chosen to coincide with the 
functions that define the unknown variables 
(temperatures). In the present case these 
functions are the shape functions, N . Thus, 
equation (3) can be written for a specific finite 
element, considering (7) and (4), as 
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 (10) 

or 

 ( ) ee e e e e
c conv tK K T K T F+ + =ɺ  (11) 

where e
cK  is the element conduction matrix 

defined by 
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being 
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 (13) 

e
convK  is the element convection matrix 

 
c

e T
conv c cS

K h N NdS= ∫  (14) 

and e
tK  is the element transient matrix 

 
e T
t V

K cN NdVρ= ∫  (15) 

The vector eF  can be divided into 

 
T

e e e
L qF F F= +  (16) 

where e
LF  is defined by 

 
e e e e
L Q q cF F F F= + +ɺ  (17) 

being 
e
QF ɺ  the vector corresponding to the 

element internal heat generation, 

 
e T
Q V

F N QdV= ∫ɺ
ɺ  (18) 

e
qF  is the vector corresponding to the 

boundary where the heat flux is imposed, 

 ( )
q

e T
q qS

F N q dS= −∫  (19) 

and e
cF  is the vector containing the values 

corresponding to the convection (or 
convection-radiation) boundary 

 
c

e T
c c cS

F N h T dS∞= ∫  (20) 

In equation (16) 
T

e
qF  is the vector 

corresponding to the heat flux where the 
temperature is prescribed,  

 ( )
T

T

e T
q T TS

F N q dS= −∫  (21) 
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By considering a domain discretized into 
several finite elements, equation (11) is written 
in a global form as 

 ( )c conv tK K T K T F+ + =ɺ  (22) 

In this equation the matrices and vectors 
take into account the contribution of each 
finite element of the domain. 

For the case of a steady-state linear analysis 
equation (22) becomes 

 ( )c convK K T F+ =  (23) 

2.4 Transient linear analysis 

Figure 2 represents the temperature variation 
with time for a one dimensional problem. In 
the incremental time step, t∆ , a linear 
variation of the temperature is assumed. Thus, 
the derivative of temperature is approximated 
with 

 1n n n
n

T T T
T

t t
+∂ −= ≈

∂ ∆
ɺ  (24) 

 
Figure 2: Time-discretization for one dimensional 

problems. 

Considering a multi-dimensional problem, 
the temperature at the time nt θ+  is calculated 

with 
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1

1 1
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n n

n n

T T
T T t

t

T T

θ θ

θ θ

+
+

+

− = + ∆  ∆ 

= + −
 (25) 

and its derivative with (see Figure 2) 

 1+ +
+

− −= =
∆ ∆

ɺ n n n n
n

T T T T
T

t t
θ

θ θ
 (26) 

Writing equation (22) for the time nt θ+  

results in 

 ( )c conv n t n nK K T K T Fθ θ θ+ + ++ + =ɺ  (27) 

and substituting (25) and (26) yields 

 

( ) ( )1

1

1c conv n n

n n
t n

K K T T
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t
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+
+

 + + − + 
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 (28) 

Considering for vector nF θ+  the same type 
of approximation that is adopted for the 
temperature, equation (28) can be written as 

 

( )
( ) ( )

( )

1

1

1

1

t c conv n

t c conv n

n n

K t K K T

K t K K T

t F F

θ

θ
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+

+

 + ∆ + 

 = − − ∆ + + 

 ∆ + − 

 (29) 

By adopting different values for θ  several 
time-stepping schemes can be obtained, such 

as: Forward-Euler ( )0θ = ; Backward-Euler 

( )1θ = ; Crank-Nicolson 
1

2
θ = 
 

; Galerkin 

2

3
θ = 
 

 [4,9]. 

2.5 Transient nonlinear analysis 

In the presence of early age heat 
development, the heat generation rate of 
cement based materials can be obtained with 
the mathematical formulation proposed by 
Reinhardt et al. [10] and based on the 
Arrhenius type relation, being defined by the 
following equation [7]. 

 ( ) (273.15 )
aE

R T
T TQ f A eα

−
+=ɺ  (30) 

In this equation Qɺ  is the heat generation 

rate to be introduced in equation (18), ( )Tf α
 

is the normalized heat generation rate directly 
obtained through experiments [7,11-12], TA  is 

a rate constant, aE  (Jmol-1) is the apparent 

activation energy that depends on the type of 
cement, R is the universal gas constant 
(8.314 Jmol-1K-1), and T  is the temperature 
in ºC. In this case the second member of 

T

t

temperature

tn+1tn+θtn

Tn+1

Tn+θ

Tn

θ∆t

∆t

∆T
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equation (29) depends on the temperature and, 
for that reason, an iterative process is required 
at each time step to solve the nonlinear system 
of equations. The Newton-Raphson method is 
used for this iterative process. 

For the current time step 1n + , the equation 
of the unbalanced heat fluxes can be defined 
by [1] 

 ( )1 1 1 1n n n nT F E T+ + + +Ψ = −  (31) 

For the current time step 1n + , it is 

intended that the vector ( )1nT +Ψ  is null, i.e., 

 ( )1 0nT +Ψ =  (32) 

Equation (32) can be solved by applying the 
Newton-Raphson method. Considering the 
first two terms of the Taylor series expansion, 
equation (32) can be approximated as 

 ( ) ( )
1

1
1 1 1

1

0
q

q q q
n n n

n

T T T
T

δ
−

−
+ + +

+

 ∂ΨΨ ≈ Ψ + = ∂ 
 (33) 

where the superscript q is the iteration 
counter. In equation (33) 

 
( ) ( )

11
1

1
1 1

qq
q

T n
n n

F ET
E

T T

−−
−

+
+ +

 ∂ − ∂Ψ  = − = −    ∂ ∂   

 

(34)

is the Jacobian matrix. For simplification, the 

term 
1 1
1 1

q q
n nF T

− −
+ +∂ ∂  is dropped in the present 

formulation, being the Jacobian matrix equal 
to the effective tangential matrix, TE  of the 

1q −  iteration of the current time step, 1n + . 
Substituting (34) into (33) yields 

 ( ) ( )1 1
1 11

q q q
T n nn

E T Tδ− −
+ ++

= Ψ  (35) 

An iterative procedure is executed up to the 
solution of equation (32), and in each iteration 
the vector of the temperatures is updated as 
follows 

 1
1 1 11

q q qq
n n n nnT T T T Tδ−

+ + ++= + = + ∆  (36) 

with 

 
1

1 1 1 1
1

q
q i q q
n n n n

i

T T T Tδ δ−
+ + + +

=
∆ = = ∆ +∑  (37) 

being 0
1n nT T+ =  and 0

1 0nT +∆ =  at the 
beginning of the iterative process. 

The normalized heat generation rate 

( )Tf α  is obtained directly from experiments, 

and is a function of the degree of heat 
development Tα . This parameter describes the 

relative amount of heat generation due to the 
cement hydration [7,13] 

 
( )

T
total

Q t

Q
α =  (38) 

where ( )Q t  is the accumulated heat generated 

until a certain instant t , and totalQ  is the final 

accumulated heat of the cement (or binder) 
hydration. An initial value for the degree of 
heat development ,T initα  is necessary to 

numerically activate the nonlinear transient 
analysis due to early age heat development. 

3 THERMO-MECHANICAL MODEL 

The described thermal model is integrated 
into a mechanical model that can simulate the 
crack initiation and propagation in structures 
discretized with solid finite elements. The 
mechanical model is a 3D multi-directional 
smeared crack model with the capability of 
simulating the behavior of structures failing in 
flexure, shear or punching, and its formulation 
can be found elsewhere [1,14]. In this section 
only the relevant aspects related to the 
influence of the early-age heat development in 
the structural response are presented. 

In smeared crack models the strain 
components of the cracked material is the 
addition of the strain components in the 

smeared cracks, crε , with the strain 
components in the uncracked concrete 

between cracks, coε  

 co crε ε ε= +  (39) 

This strain decomposition is also very 
suitable to take into account several time 
dependent effects. In this case, the strain 
vector of the uncracked concrete can be 
decomposed in order to include these effects. 
So, the total strain can be obtained with 
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( ) ( ) ( ) ( ) ( )

( )
0

e c s T

cr

t t t t t

t

ε ε ε ε ε

ε

= + + +

+
 (40) 

where eε , cε , sε  and, Tε  are the elastic, 
creep, shrinkage and thermal strain vectors, 

and crε  is the crack strain vector. A nonlinear 
transient analysis must be performed, since the 
total strain is time dependent, being its 
components evaluated during the time. 

Let us concentrate in the thermal strain 
( )T tε . This strain can be obtained from the 

temperature field at a certain instant, e.g., 
using the results of the thermal model 
described in section 2 and performing the 
following calculation 

 ( )T t Tε α= ∆  (41) 

being α  the coefficient of thermal expansion 
and T∆  the temperature variation. 

The concrete mechanical properties 
increases significantly with time and 
consequently these changes must be taken into 
account. 

The recommendations of Eurocode 2 [15] 
to simulate the evolution of the compressive 
strength, tensile strength and modulus of 
elasticity are the following 

 ( ) ( )cm cc cmf t t fβ=   

 ( ) ( ) 1

ctm cc ctmf t t f
α

β =    (42) 

 ( ) ( ) 0.3

cm cc cmE t t Eβ =     

where cmf , ctmf  and cmE  are the mean 

compressive strength, tensile strength, and 
secant modulus of elasticity of concrete at an 
age of 28 days, respectively. 1α  is a parameter 

whose value depends on the considered age t  

 1

1 for  t < 28 days

2
for  t  28 days

3

α

=  ≥

 (43) 

In equation (42) ( )cc tβ  is determined from 

 ( )
1 2

28
exp 1cc t s

t
β

    = −   
     

 (44) 

being 

 

0.38

0.25

0.20

for cement Class S

s for cement Class N

for cement Class R


= 



 (45) 

The evolution of the mode I fracture energy 
is assumed to be estimated by the following 
relation [1] 

 ( ) ( ) 1I I
f cc fG t t G

α
β =    (46) 

where I
fG  is the mode I fracture energy of 

concrete at an age of 28 days, and 1α  is a 

parameter that defines the evolution of ( )cc tβ  

Since more reliable information is not 
available, the values indicated in equation (43) 
are used in the present work. 

If the mean temperature differs from the 
reference temperature, 20 ºC, the concept of 
equivalent age is commonly used. This 
concept can be defined as the age at which the 
hydration at the reference temperature has 
reached the same stage [7,16], and can be 
determined by 

 ( )
1 1

273.15 273.15

1

e
a

i ref

E
n

R T t T

eq i
i

t t

 
 − −
 + ∆ + 

=

= × ∆∑  (47) 

being refT  the reference temperature (20 ºC) 

and ( )iT t∆  the temperature in ºC during the 

time period it∆  in days. 

4 NUMERICAL SIMULATION 

The performance of the model is appraised by 
performing a thermo-mechanical analysis of a 
prefabricated reinforced concrete bridge beam 
with a U-shaped cross section [13], as 
represented schematically in Figure 3. 
In the precast industry different heat curing 
regimes [13] are frequently used to provide an 
early age strength development capable of 
anticipating the process of demolding as much 
as possible. In the present numerical 
simulation, the beam is subjected to one of 
these heat curing regimes, and its consequence 
in the strength development and eventual crack 
formation is assessed. 
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Figure 3: Geometry of the prefabricated reinforced concrete bridge beam with a U-shaped cross section. 

In the carried out analysis, a beam segment of 
10.0 m length is considered since Ferreira et 
al. [13] has verified that lengths greater than 
10.0 m have no influence on the results. Due 
to double symmetry of the problem, only one 
quarter of the beam is modeled in the thermal 
and mechanical analysis (see Figure 6). The 
ordinary rebars and the prestressing cables are 
not taking into account since Azenha [7] has 
verified their marginal influence on the 
thermal analysis. For the mechanical analysis, 
the reinforcement has also a reduced influence 
up to the hardened phase of concrete. 
However, if cracking occurs the influence of 
the reinforcement in the cracking process can 
be significant, but the computing time required 
for the inclusion of the rebars on the 
simulation has supported the decision to 
postpone this study for a future publication. 
The values that characterize the heat 
generation rate defined by equation (30) are 
dependent on the type of cement used in the 
concrete of the beam. The following data is 
used to characterize the C50/60 
self-compacting concrete [13]: cement 
type I 52.5R ( 3332kg m ) with 

1.2053E+09 332TA = × , 47.51kJ molaE =  and 
3383.13 332 kJ mtotalQ = × . The normalized 

heat generation rate ( )Tf α  used in the 

analysis is represented in Figure 4, and a value 
of 0.05 is considered for ,T initα . 

The domain is discretized with 20-noded 
hexahedral finite elements (see Figure 6), and 

a 3×3×3 Gauss-Legendre integration scheme is 
used. 

 
Figure 4: Normalized heat generation rate. 

The conductivity of the material is constant 
and equal to 2.6 Wm-1K-1, the volumetric heat 
capacity, cρ , is 2400.0 kJm-3K-1 and the 
initial temperature is set to 25 ºC. The ambient 
temperature is defined by the heat curing 
regime imposed to the beam, and has the 
following development (see Figure 5): 30 ºC 
during 1h, followed by an increase of 10 ºC/h 
until a temperature of 80 ºC is reached, then 
this temperature is maintained during 3h, 
followed by a decrease of 10 ºC/h until the 
temperature of 20 ºC is attained. An equivalent 
heat transfer coefficient of 12.0 Wm-2K-1 is 
assigned to all exposed faces of the beam. A 
Backward-Euler time integration scheme is 
used with an incremental time step of 3600s, 
being the total time of the analysis 72 h. 

Figure 5 represents the temperature 
evolution at two points located in the cross 
section of the beam coinciding with the 
longitudinal symmetry plane, one at the top 
flange, P1 (0.0, 0.0, 210.0), and the other at the 
interior of the bottom flange, P2 (0.0, 166.0, 
18.0) (see Figure 3 and Figure 6). The 
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temperature curing regime is also represented 
and it can be observed that the temperature at 
P1 and P2 points rapidly increases in the first 
12 hours, and then decreases up to the ambient 
temperature. Temperature development in 
these points has similar shape format, but point 
P1 located at the top flange presented a higher 
temperature decrease rate than point P2 located 
at the interior of the bottom flange. Similar 
results were obtained by Ferreira et al. [13], 
and the main difference between these two 
studies is registered in the peak temperature 
observed at about 12 hours after casting. A 
justification can reside on eventual small 
differences on the location of the points and on 
the boundary conditions adopted in both 
analyses. 

 
Figure 5: Heat curing regime and temperature evolution 

at two points of the symmetry plane of the beam.  

The temperature field for different time 
steps of the transient analysis is represented in 
Figure 6. It can be observed that due to the 
high convection heat transfer in the external 
surfaces, the temperature field decreases from 
the center of the U-shape beam walls to the 
external surfaces, and tends, with time, for the 
ambient temperature of 20 ºC. 
    The temperature field from the thermal 
transient analysis is used in the mechanical 
transient model described in the previous 
section, in order to predict the corresponding 
stress field. The evolution of the material 
properties, such as compressive strength, 
tensile strength and modulus of elasticity, is 
simulated by using equation (42). The 
equivalent age concept (eqt ) obtained by 

equation (47) is used in equation (42), by 

substituting the time t  by eqt . The support 

conditions consist in prescribed displacements 
in z direction in all points of the bottom flange 
of the beam in order to simulate the vertical 
support provided by the formwork, and 
prescribed displacements to take into account 
the double symmetry of the beam. The 
material properties used in the numerical 
simulations are presented in Table 1. The same 
finite element mesh and Gauss-Legendre 
integration scheme used in the thermal 
analysis are adopted in the mechanical 
transient analysis.  
    Two numerical analysis were performed, 
one considering the concrete with elastic 
behavior and a second using the crack 
constitutive model. The concrete maturity is 
present in the numerical simulations. 

Figure 7 and Figure 8 present the evolution 
of the normal stress in the x direction and the 
tensile strength development for points P1 and 
P2, respectively. From the analysis of the 
curves of Figure 7 it can be stated that until an 
age of about 13 h after casting, the stress 
development is similar in both numerical 
simulations. An initial compression until an 
age of 9 h is observed, which is directly 
associated with the high imposed external heat 
curing that has conducted to an expansion of 
the concrete developing compression stresses 
in point P1, located near the surface. A quite 
different behavior is observed after an age of 
13 h for the analysis that assumes an elastic 
behavior for the concrete and for the analysis 
that simulates crack formation and 
propagation. The analysis assuming elastic 
behavior does not take into account that at this 
age the maximum tensile strain has exceeded 
the strain at crack initiation, and therefore 
unrealistic evolution of the stress field is 
predicted. Using the proposed 3D 
multi-directional smeared crack model, the 
real stress development at this point is 
captured. It is verified that at the interception 
of the stress development curve and the tensile 
strength curve, the concrete is cracking and the 
stress starts decreasing immediately. 
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Figure 6: Finite element mesh of the structure represented in Figure 3, and temperature field for different time steps of 

the transient analysis. 
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Table 1: Values of the parameters of the constitutive model used in the mechanical numerical simulations. 

Poisson’s ratio 0.2ν =  

Thermal coefficient -51.0 10 ºCα = ×  

Young’s modulus 37.0 GPacmE =  

Compressive strength 58.0 MPacmf =  

Tension softening diagram 
4.1 MPactmf = ; -6198.53 10 MN mI

fG = × ; 

1 0.061ξ = ; 1 0.15α = ; 2 0.4432ξ = ; 2 0.09α =  
Parameter defining the mode I 
fracture energy available to the 
new crack 

2 0p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Cubic root of the volume of the integration point 

Threshold angle 30ºthα =  

  

 
Figure 7: Evolution of the normal stress in x direction 

and the tensile strength at point P1. 

    From the analysis of the curves of Figure 8, 
which correspond to the stress evolution of the 
normal stress in x direction and the tensile 
strength development at point P2, it can be 
concluded that both simulations provide 
similar results. Up 9 h point P2 is subjected to 
tensile stresses, and then to compressive 
stresses as observed in Figure 8. However, the 
tensile stress is always smaller than the tensile 
strength development, so concrete does not 
crack. 
    The crack pattern for different times of the 
transient mechanical analysis using the crack 
constitutive model is represented in Figure 9. 
It is observed that for an age of 14 h, several 
cracks are formed, mainly in the exterior of the 
top flange and in the interception of the 
horizontal and lateral cross section walls near 

the free end of the beam. In consequence of 
temperature decreasing, these cracks tend to 
close, as represented in the Figure 9 for an age 
of 24 h. However, for later stages the cracks 
reopen (see Figure 9 for t=72 h), which 
indicate that for the heat curing regime 
imposed to the beam, visible cracks can be 
formed, compromising the durability of the 
structure during its service life. 

 
Figure 8: Evolution of the normal stress in x direction 

and the tensile strength at point P2. 

5 CONCLUSIONS 

In the present work a thermal model with 
general purposes is described, in order to 
enable steady state thermal analyses, transient 
linear thermal analyses and nonlinear thermal 
analyses. The heat development due to the 
hydration process during the concrete 
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hardening phase is coupled with the thermal 
model, leading to a tool that is capable of 
simulating the behavior of reinforced concrete 
structures since their early ages. The thermal 
model is integrated with the 3D 

multi-directional smeared crack model, and its 
performance is appraised using an example 
from the literature. A good agreement is 
observed.  

 
 

 

(a) 14ht =  

 

(b) 24ht =  

                        
                                                           (c) 72ht =  

Figure 9: Crack pattern for different time steps of the transient analysis: (a) opening crack status; (b) closing crack 
status; (c) reopen crack status. 
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