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Abstract. The present work is concerned with the meshfree modelling of dynamic fracture in con-
crete. The Optimal Transportation Meshfree(OTM) method is chosen for its numerous advantages
such as the exact mass transport, the satisfaction of the continuity equation, exact linear and angular
momentum conservation, consequently numerical problems such as spurious modes, tensile instabil-
ities are resolved naturally. In addition, the energy-based variational material point failure algorithm
(Eigen-Erosion) is employed to predict the crack propagation in concrete under dynamic loading con-
ditions due to the properties of Γ-Convergence and mesh independence. The OTM and EigenErosion
approaches are validated in our simulations of dynamic fracture propagation in concrete loaded in
the three point bending tests through a drop weight impact device. High fidelity predictions of the
reaction and impact forces are obtained by comparing to the experimental measurements.

1 INTRODUCTION

The rate effect on fracture propagation in
concrete with or without reinforcements has
been the centre of interest for the last three
decades, from both experimental and numeri-
cal standpoints. Within the framework of fi-
nite element methods, typical techniques to cap-
ture crack propagation vary from employing
cohesive approaches [1, 2] by adaptively in-
serting cohesive elements [3–5] at solid ele-
ment boundaries to adopting crack band the-
ory [6] or handling arbitrary crack paths by
level set representation of the fracture surface
[7, 8]. Within the scenario of meshfree meth-

ods, the visibility criterion [9] or particle ero-
sion [10–13] have been opted for to reproduce
fracture propagation. In the current work, we
attempt to model the dynamic fracture propaga-
tion in high-strength concrete (HSC) employ-
ing Optimal Transportation Meshfree (OTM)
method and the energy-based variational ma-
terial point failure algorithm (EigenErosion)
scheme [12–15]. Such a scheme is chosen
for its numerous advantages such as the exact
mass transport, the satisfaction of the continuity
equation, exact linear and angular momentum
conservation. Since the deformation and ve-
locity fields are interpolated from nodal values
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using max-ent shape functions, the Kronecker-
delta property at the boundary makes it possi-
ble for the direct imposition of essential bound-
ary conditions. Fracture is modelled through
material-point failure, i.e. each material point
can be either intact or be completely failed and
has no load bearing capacity. The crack set is
approximated by means of eigen-deformations,
which enable the material to develop displace-
ment jumps at no cost of local elastic energy.
The feasibility of such methodology has been
demonstrated for brittle materials [11, 12] and
dynamic fragmentation of metals [13].

In 1980s, using high speed photography,
Mindess and Bentur [16] carried out studies of
the fracture, under impact loading, of plain con-
crete, fibre reinforced concrete, and concrete
with conventional reinforcement. They con-
cluded that the cracking process under impact
loading is not substantially different from that
which occurs under static loading, even though
the absorption of energy is quantitatively differ-
ent due to the inertia effect. In a sequel, Min-
dess, Banthia and Yan [17] showed that both
the fracture toughness and the fracture energy
were dramatically increased under impact load-
ing. Banthia et al. [18] also presented a drop-
weight impact-testing machine for generating
impact flexural loading; by replacing the dis-
tributed inertia load with a generalized point in-
ertial load and subtracting it from the tup load,
they obtained the true bending load equivalent
to the static case, when plotted with respect to
the load-point deflection, the area below was
considered as the dynamic fracture energy. This
procedure, which we term the Hypothesis of
Banthia et al., has been widely employed by
Banthia, Mindess and co-workers [19–21], and
recently by Ruiz and coworkers [22–25]. How-
ever, except the analytic demonstration by Ban-
thia et al. [18] with significant simplification,
the validity of such a procedure has not been
rigorously proved. By directly modeling both
the projectile and target in 3D under dynamic
loading conditions, we aim to examine the va-
lidity of the Hypothesis of Banthia et al. in the
real situation without making any assumptions

and simplification.
Next the experimental setup and observa-

tions are presented. The meshfree methodol-
ogy and eigen-erosion algorithm for fracture are
summarised in Section 3. Numerical results and
discussion are given in Section 4. Finally, rele-
vant conclusions are drawn in Section 5.

2 EXPERIMENTAL OBSERVATIONS

Figure 1: The drop-weight machine designed at the Labo-
ratory of Materials and Structures, University of Castilla-
La Mancha.

In order to study the loading-rate effect in
concrete, a drop-weight impact instrument [25],
see Fig. 1, was designed and constructed in the
Laboratory of Materials and Structures at the
University of Castilla-La Mancha. Three-point
bending tests on notched beams were conducted
under impact loading. It has the capacity to
drop a 316 kg mass from heights of up to 2.6 m,
and can accommodate flexural specimens with
spans of up to approximately 1.6 m. In this
study, an impact hammer of 120.6 kg was em-
ployed to drop from the height of 360 mm with
the corresponding impact speed of 2640 mm/s.
Three specimens were tested for this impact
speed. The impact force is measured by a piezo-
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electric force sensor. In addition, the reaction
force is determined by two force sensors located
between the support and the specimen. A strain
amplifier and two oscilloscopes were used to
acquire the data from the strain gauges, located
as it can be seen in Fig. 2.

The beam dimensions were 100 mm×100 mm
(B×D) in cross section, and 420 mm in total
length, L. The initial notch-depth ratio was ap-
proximately 0.5, and the span, S, was fixed at
300 mm during the tests, see Fig. 2. Each spec-
imen was removed from the moist room one
day before the test and restored to the chamber
after bonding the strain gauges. The specimen
surface was polished and all four strain gauges
were bonded to that surface, with a distance
of 10 mm between each neighbouring gauge.
Since a running crack in concrete is often de-
flected by aggregates along its path, the four
strain gauges were bonded 10 mm apart from
the centerline of the beam, see Fig. 2. Those
strain gauges provided not only the strain his-
tory at the bonded positions, but also the time at
which the crack tip reaches each strain gauge.
For more information see [23].
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Figure 2: Geometry and dimension of the concrete beam
(in mm) and location of the strain gauges.

The material was characterised with inde-
pendent tests and the measured material prop-
erties, such as the compressive strength, fc, the
tensile strength, ft, the specific fracture energy,
GF and the elastic modulus, E, are given in Ta-
ble 2.

Table 1: Mechanical properties of the HSC tested, with
the density of 2368 kg/m3.

fc ft GF E
(MPa) (MPa) (N/m) (GPa)

Mean 102.7 5.4 141 31
Std. Dev 2 0.8 9 2

3 THE NUMERICAL METHODOLOGY
For completeness, we summarise the basics

of the OTM scheme and the eigen-erosion al-
gorithm to treat fracture within the meshfree
framework.

3.1 The OTM scheme
In this work the OTM method [14] is em-

ployed in order to fully discretise the problem
in space and time. It is a meshfree updated La-
grangian numerical scheme that combines con-
cepts from Optimal Transportation theory local
max-ent meshfree approximation and material
point sampling [26]. The method has been used
in applications involving dynamic deformation
and failure of materials with demonstrated ex-
cellent results. The numerous advantages men-
tioned before ensure its robustness and stability
in numerical calculations.

The local max-ent approximation scheme
defined by Arroyo and Ortiz [26] is employed
for fields requiring differentiation, such as de-
formation and velocity fields. The employed lo-
cal max-ent function (LME), as a Pareto set, is
optimal for β ∈ (0,∞). It is obtained as:

Na(x) =
exp [−β |x− xa|2 + λ∗ · (x− xa)]

Z(x,λ∗(x))
,

(1)
where

Z(x,λ) =
n∑
a=1

exp
[
−β |x− xa|2 + λ · (x− xa)

]
,

(2)
being λ∗(x) the unique minimizer for

logZ(x,λ). The parameter β is related with the
discretization size (or nodal spacing), h, and the
constant, γ, which controls the locality of the
shape functions, as follows
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β =
γ

h2
(3)

For a uniform nodal spacing, β is also a con-
stant, thus the first derivatives of the LME shape
functions can be obtained by employing the fol-
lowing expression:

∇N∗a = −N∗a (J∗)−1 (x− xa), (4)

where J is the Hessian matrix, defined by:

J(x,λ, β) =
∂r
∂λ

(5)

r(x,λ, β) ≡ ∂λlogZ(x,λ)

=
∑
a

Na(x,λ, β) (x− xa) (6)

Note that the objective of the above procedure
is to find the λ which minimizes logZ(x,λ).
This unconstrained minimization problem with
a strictly convex objective function can be
solved efficiently and robustly by a combination
of the Newton-Raphson method and Nelder-
Mead Simplex algorithm [26, 27].

Two sets of points, namely, nodal points and
material points are defined. In calculations, the
max-ent shape functions are reconstructed con-
tinuously from the nodal set, which changes in
every step by adapting to the displacements of
the nodes. This overcomes the essential dif-
ficulties that arise in fixed grid-based numeri-
cal schemes like Lagrangian and Eulerian finite
element methods. Material points result from
the spatial approximation of the mass densities
ρh,k(x) by M mass points

ρh,k(x) =
M∑
p=1

mpδ(x− xp,k) (7)

where xp,k represents the position at time tk of
material point p, mp is the mass of the material
point and δ(x−xp,k) is the Dirac-delta distribu-
tion centred at xp,k. Material points designate
fix material points of the body, are convected
by the deformation, carry a fixed mass, serve
the purpose of integration points for the calcu-
lation of the effective nodal forces and masses,

and store all local state data. The spatial dis-
cretisation is completed by approximating the
deformation mapping as

ϕh,k→k+1(x) =
N∑
a=1

xa,k+1Na,k(x) (8)

where xa,k+1 is the position at time tk+1 of node
a, and Na,k(x) are max-ent shape functions de-
fined over the configuration at time tk. The in-
terpolation at a material point xp,k depends only
on the nodes contained in a small local neigh-
bourhood of the material point. This recon-
struction of the local neighbourhoods leads to
a new reconnection of the material points and
the nodal set.

3.2 Eigenerosion algorithm
Within the context of OTM formulation,

fracture can be modelled simply by failing ma-
terial points according to an energy-release cri-
terion. When the material points are failed, they
are neglected from the computation of stresses
in the model, which approximates the presence
of cracks, this is the so-called eigen-erosion
algorithm developed by Pandolfi et al. [11].
Next we compute the energy-release rate atten-
dant to the failure of material point p as seen
in [10–12, 15].

Gp,k+1 =
Cε

mp,k+1

∑
xq,k+1∈Bε(xp,k+1)

mqWk(Fq,k+1)

mp,k+1 =
∑

xq,k+1∈Bε(xp,k+1)

mq (9)

where Bε(xp,k+1) is the sphere of radius ε cen-
tred at xp,k+1 known as the ε-neighbourhood of
the material point, mp,k+1 is the mass of the
neighbourhood, Wk(Fq,k+1) is the incremental
free-energy density per unit mass and C is a nor-
malising constant. A scheme of the configura-
tion of the ε-neighbourhood is plotted in Fig.3.

The material point is failed when Gp,k+1 ≥
Gc, where Gc is a critical energy release rate
that measures the material-specific energy, GF

in Table 2, required to create a fracture sur-
face of unit area. In calculations, the failed
material-point set is updated at every time step
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according to this criterion. For linear elastic-
ity, Schmidt et al. [10] have shown that this ap-
proximation converges to Griffith fracture in the
limit of an infinitely fine discretisation. In or-
der to minimise the computational effort, em-
ploying an averaging over an intermediate ε-
neighbourhood to compute the energy-release
rate attendant to material-point failure, Eq. (9),
is essential to convergence. The local neigh-
bourhood averaging of the energy has the effect
of eliminating spurious mesh-dependent arte-
facts. Indeed, erosion schemes that estimate the
energy-release rate based on the energy of a sin-
gle material point suffer from mesh-dependency
and may overestimate the toughness of the ma-
terial.

Figure 3: Scheme of a crack (black dots) as set of failed
material points, and of the ε-neighborhood (grey dots) of
the material point located at the crack tip (hollow dot).

It needs to be pointed out that when a mate-
rial point satisfies the erosion condition, its con-
tribution to the internal force vector and to the
material stiffness matrix is set to zero, but its
contribution to the mass matrix is maintained.
The mass of a material point is discarded only
when an eroded material point is not connected
to any nodes.

4 NUMERICAL RESULTS AND DIS-
CUSSION

In this Section, we apply the aforementioned
methodologies to simulate the dynamic frac-
ture propagation in a three-point bend beam im-
pacted by a drop-weight device. Both the pro-
jectile (the hammer) and the target (the concrete

beam) are explicitly represented. Several levels
of discretisation are employed to assess the ob-
jectiveness of the obtained results. The results
obtained in this Section are from a discretisa-
tion of 16467 nodes, 81129 material points, and
a nodal spacing of 2 mm near the middle section
is maintained.

First we validate the reaction and impact
forces as well as the load-line displacement
against their experimental counterparts. Next
the crack front evolution and strain history at
the locations where the four strain gauges were
bonded are extracted. Finally, the hypothesis of
Banthia et al. is assessed through energy evolu-
tion.
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Figure 4: Comparison between experimental and compu-
tational (top) impact forces and reaction forces; (bottom)
impact-line displacement.
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4.1 Validation against experimental results

Since the impact forces applied by the ham-
mer and the reaction forces at the two supports
were experimentally measured, they are com-
pared with the numerical ones in Fig. 4. Note
that the general trend of both forces are cor-
rectly captured. However, the time delay be-
tween the numerical and experimental forces is
not physical in a sense that the curves are pur-
posely aligned so that they start from the same
reference moment.

Additionally plotted in Fig. 4 is the recorded
impact-line displacement contrasted with the
numerical one. The initial bump of the nu-
merical curve can be attributed to the first con-
tact between the hammer and the target. It
is noteworthy that, when the reaction force at-
tained its peak value at 0.28 ms, the loading-
line displacement augmented in a more steep
fashion. This indicates that due to the advance-
ment of the main crack (as can be seen in Fig. 5,
the crack front had extended from 50 mm to
90 mm at 0.26 ms), the stiffness had dropped
considerably. Another interesting phenomenon
is at time 0.48 ms, the loading-line displace-
ment started to decrease. This means that the
top surface of the beam had actually bounced
back.

4.2 Dynamic crack propagation

Due to the explicit nature of our simulation,
the crack front are well indicated by the newly
eroded material points. The highest most re-
cently eroded material points is extracted and
plotted against time in Fig. 5. Note that the
crack initiated at about 0.07 ms after the impact.
At the beginning of the crack growth, the crack
propagation velocity is about 400 m/s, then it
gradually drops to around 100 m/s, until the
beam is completely broken. These values and
the decreasing trend agree very well with the
experimentally measured ones given by Zhang
et al. [23].
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Figure 5: Numerically obtained strain evolution at the
same locations where the four strain gauges are bonded
and the crack-front position with respect to time.

The strain histories at the same locations
where the four strain gauges were bonded are
also extracted and plotted in Fig. 5. It is ob-
served that the strain peaks are reached slightly
later than the crack front. This is due to, on
the one hand, the 10-mm distance between the
strain gauges and the main crack surface; on the
other hand, the detected crack tip might be in-
side, whereas the strain gauges only give the in-
formation at the surface.

4.3 Energy evolution: the hypothesis of
Banthia

In order to characterise the fracture proper-
ties of a brittle material, the thee-point-bend
configuration is often used to measure the spe-
cific fracture energy, GF . Since the beam is in
equilibrium, the measured reaction force is em-
ployed as the loading force to obtain the area
below the load-deflection curve. When the load
is dynamic, however, the contribution of iner-
tia forces makes it difficult in the lab to de-
termine the bending force which actually frac-
tures the beam. Banthia et al. [18] proposed
the scheme given in Fig. 6 to offset the influ-
ence of inertia, where in an equivalent pseudo-
static state, a generalised bending load, Pb, is
considered as the reaction forces at the two sup-
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ports. Consequently, the shaded area is consid-
ered as the fracture energy expenditure under
dynamic loading conditions. The numerical and
experimental comparison of this energy is plot-
ted in Fig. 7. Note that the numerical curve fol-
lows the general trend of the experimental one,
though the difference between these two needs
further investigation. In particular, the evolu-
tion of kinetic energy, elastic energy dissipation
in eroded material points will bring more in-
sights into the understanding of the hypothesis
of Banthia et al.

Generalized bending
load,  Pb (t)

Load point deflection,  u0 (t)

Area = fracture energy

 Pb (t) Pt (t)

 Pi (t)

 R2 (t)  R2 (t) R1 (t)  R1 (t)

Figure 6: Scheme of calculation of the fracture en-
ergy and behaviour of the loads according to Banthia et
al. [18].
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Figure 7: Comparison of the numerical and experimental
energy evolution.

5 CONCLUSIONS AND FUTURE WORK
We have applied the Optimal Transportation

Meshfree scheme and the eigen-erosion algo-
rithm to simulate the dynamic fracture propa-
gation in a high-strength concrete beam loaded
in a three-point-bend configuration. Both the
impact hammer and the beam target are explic-
itly discretised. The obtained impact and reac-
tion forces as well as load-line displacements
are validated against the corresponding exper-
imental ones. The crack propagation velocity
is calculated from crack-front position history,
the order of magnitude compares well with that
of measured through strain gauges. Further in-
vestigation is necessary in order to probe the
soundness of the hypothesis of Banthia et al.
The influence of strain rate on the energy re-
lease rate is also work in progress.
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[6] Bažant, Z.P. and Oh, B.H. 1983. Crack
band theory for fracture in concrete. Ma-
terials and Structures. 16:155–177.

[7] Belytschko, T., Chen, H., Xu, J. and Zi, G.
2003. Dynamic crack propagation based
on loss of hyperbolicity and a new discon-
tinuous enrichment. International Journal
for Numerical Methods in Engineering.
58:1873–1905.
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