
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures
FraMCoS-9

V. Saouma, J. Bolander, and E. Landis (Eds)

RANDOM LATTICE PARTICLE MODELING OF DAMAGE
LOCALIZATION IN CONCRETE MEMBERS UNDER COMPRESSION

ALESSANDRO FASCETTI∗, NICOLA NISTICÓ† AND JOHN E. BOLANDER‡
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Abstract. The ability to predict the localization of damage in concrete members subject to uniaxial
compression is investigated by means of a recently developed random lattice particle model. Such
capability is of great interest in the modeling of concrete structures, since most of the existing mod-
els rely on the a-priori definition of a zone in which the nonlinear behavior is concentrated. Lattice
particle models, by explicitly representing the mesoscale structure of the material, are capable of sim-
ulating the localization of damage. Herein, aggregate particles are represented by poly-sized spheres
embedded in a cementitious matrix. The connectivity among particles is defined by a Delaunay tetra-
hedralization of the sphere centers; the resisting areas of the lattice struts are evaluated by a graph that
is dual to the tetrahedralization. The mesoscale mechanical properties used in the simulations were
measured as part of a multiscale experimental campaign, which also served to validate the numerical
macroscopic response of concrete elements subjected to uniaxial compression.

1 INTRODUCTION

Lattice models are a promising means for
simulating damage phenomena in cementitious
composite materials. The basic assumption is
that the behavior of a three-dimensional body
can be modeled by means of uni-dimensional
elements (the lattice elements or struts) that in-
terconnect a set of nodal points. Whereas such
points can be uniformly or randomly positioned
in the domain, randomly generated lattices tend
to suffer less mesh-induced bias on cracking di-
rection. A variety of lattice models have been

developed and successfully applied to simulat-
ing the behavior of concrete materials and struc-
tures [1–7].

Being relatively new to the structural engi-
neering field, such models still present open
questions. For example, there is a need for de-
termining the mechanical properties to be as-
signed to the lattice elements. This work pro-
poses a systematic way to evaluate the input
properties by means of mesoscale experimental
tests. The small specimens are easily and eco-
nomically produced and tested, making this ap-

1

DOI 10.21012/FC9.305



Alessandro Fascetti, Nicola Nisticó and John E. Bolander

proach advantageous and worthy of further in-
vestigations.

2 MODEL DEFINITION
The random particle lattice model is com-

posed of a set of nodal sites, which represent the
center of the coarse aggregates contained in the
concrete [1, 5]. To this end, two considerations
arise: 1) the mechanical behavior of the inclu-
sions is directly modeled, enabling mesoscale
simulations of the material; and 2) due to com-
putational demand, it is only possible to simu-
late a coarse fraction of the concrete aggregates.
In the present work, a volume fraction of aggre-
gate equal to 35% was obtained.

The generated particles are interconnected
by uniaxial elements defined by means of a De-
launay tetrahedralization of the point set. The
element stiffness and inertial properties are de-
fined by a modification of the Voronoi tessella-
tion of the same set of points [8].

2.1 Random Placement of Particle Centers

Figure 1: Insertion of particles in the domain for three
different granulometric sizes and placement of the exter-
nal nodes

The number of particles of each granulomet-
ric class are calculated as follows:

1. The total volume of aggregate Va in the
sample is prescribed.

2. Based on the given maximum aggregate
diameter dmax and q exponent of the cho-
sen granulometric curve, it is possible to
evaluate the passing amount (%) for ev-
ery granulometric class chosen (generally
chosen equal to the nominal sieve sizes
used in practice). Knowing the passing
amount for every class, the retained per-
cent is simply calculated as the difference
between the adjacent classes’ passing.

3. Knowing the retained percent of every
class, the total volume of the class is eval-
uated, and so the number of particles per
class.

Having calculated the number of particles per
granulometric class, aggregate pieces are in-
serted in the domain by means of a pseudo-
random coordinate generator, guaranteeing no
intersection between any of them. Spheres are
inserted from biggest to smallest, as shown in
Fig. 1.

2.2 Domain Discretization
After the particles have been successfully

placed, it is necessary to define the connectiv-
ity between their centers. One efficient way to
do this is to perform a triangulation (in 2D) or a
tetrahedralization (in 3D) of the previously gen-
erated set of points.

The Voronoi tessellation of a 3-dimensional
domain is widely used in different lattice model
approaches. As shown by Bažant et al. [1],
however, this choice is not optimal in the case
of lattice particle models, since the evaluated
contact surfaces tend to intersect the aggregate
particles. For this reason, a modified Voronoi
tessellation is used, as defined in [8], so that
12 triangles are constructed for each tetrahe-
dron in the mesh (Fig. 2). Such triangles in-
sist on the center of mass of the tetrahedrons,
their edges and triangular faces, having calcu-
lated these points by only considering the ma-
trix counterparts.
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Figure 2: 3-D view of the twelve facets of the modified
Voronoi diagram

The so defined tessellation procedure has the
following appealing features:

1. it is dual to the Delaunay tetrahedraliza-
tion; and

2. it only provides contact areas that lie in-
side the cement paste, which is the loca-
tion of possible damage.

The collection of all the facets pertaining to
the edges emanating from a point represents the
point’s cell (Fig. 3) and it can be seen as its in-
fluence volume. Every particle will share forces
with neighbors over the different surfaces of the
cell.

Fig. 4 shows two adjacent cells and their
contact area. This area is composed of a vari-
able number of triangles, depending on how
many tetrahedra contain that particular edge.

Figure 3: Two different views of one typical cell

Figure 4: Adjacent cells, the contact area between the
cells, and its projection on a plane orthogonal to the ele-
ment axis

Figure 5: Particle degrees of freedom and connection lo-
cal axes

The constitutive law is imposed on the pro-
jection of such triangles (Fig. 4) on a plane or-
thogonal to the connection. Such plane is iden-
tified by the effective mid-point of the edge Gij

and the n unit vector (see Fig. 5). This choice
is due to the asymmetric behavior of concrete
in tension and compression. If the constitu-
tive law was imposed on the original facets, in
fact, a simple shear in the connection, generated
by a relative displacement vector orthogonal to
the edge, would also imply tension or compres-
sion, leading to different results for the shear
response, depending on its direction. This phe-
nomenon is clearly non-physical, therefore the
choice of considering the projected contact area
is adopted [5].
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2.3 Kinematics
Each cell is considered to be rigid, so that the

displacement of any point can be calculated as:

u(x) = ui + θi × (x− xi) = Ai(x)Ui (1)

where Ai is:

Ai(x) =

1 0 0 0 z − zi yi − y
0 1 0 zi − z 0 x− xi
0 0 1 y − yi xi − x 0


(2)

The vector Ui = [ui θi]
T collects the dis-

placement and rotations of node i. By calculat-
ing the displacement of point C associated with
each adjacent node, i and j, (Fig. 5), the dis-
placement jump at point C can be determined.
The strain components are obtained by dividing
the displacement jump by the edge length:

εN =
nT [|uc|]

le
, εM =

mT [|uc|]
le

, εL =
lT [|uc|]
le

(3)
where n, l, m are the local axes of the strut (see
Fig. 5). By using this definition it is possible to
write:

ε =

εNεL
εM

 = B(e)U(e) (4)

where U(e) = [UiUj]
T is the element displace-

ment vector and B(e) is the compatibility ma-
trix:

B(e) =
1

le

−nTA1 nTA2

−lTA1 lTA2

−mTA1 mTA2

 (5)

2.4 Proposed Constitutive Modeling
The constitutive equations should be able

to reproduce the material behavior at the finer
scale chosen for discretization, so that the nu-
merically evaluated macroscopic response fits
the experimental evidence. Herein, the Elastic
Behavior is defined by:

σN = ENεN

σT = ET εT = αENεT

(6)

where σT = (σ2
L + σ2

M)1/2, εT = (ε2L +
ε2M)1/2, EN is the Young’s Modulus in the nor-
mal direction and α represents the ET/EN ra-
tio. As shown by Cusatis et al. [5], the macro-
scopic elastic behavior of the lattice, in terms
of Young’s modulus and Poisson’s ratio, can be
evaluated by means of the following:

E0 =
1

1− 2ν
E ⇐⇒ E =

2 + 3α

4 + α
E0

α =
1− 4ν

1 + ν
⇐⇒ ν =

1− α
4 + α

(7)

where E0 is the mesoscale Young’s modulus.
The Fracturing Behavior is characterized by

εN > 0. Tensile and shear fracture is irre-
versible, so that the damage controlling param-
eter must be history-dependent. To this end, the
evaluation of damage must be performed on the
maximum value of the deformation attained by
the element during the load history.

Figure 6: Stress boundary in the σN − σT space

The interaction between the normal and
tangential behavior of the struts is controlled
through a stress boundary, which is defined as
an ellipse in the σN −σT space (Fig. 6), defined
by the σt, σc and σs values:

σN(σN − σc − σt)−
σcσt
σ2
s

σ2
T = −σcσt (8)

It is useful to introduce the effective stress and
strain [5], defined as:

ε =
√
ε2N + αε2T , σ =

√
σ2
N +

σ2
T

α
(9)
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and the coupling strain:

tanω =
εN√
αεT

=
σN
√
α

σT
(10)

so that: {
σN = σ sinω

σT =
√
ασ cos ω

(11)

By substituting the expressions for σN and
σT in the stress boundary (Eq. 8) it is possible
to reduce the problem to a 1-D scalar equation
in which σ is the only unknown. It follows that

σ(ω) =
sinω (σc + σt) +

√
D

2(sin2ω − cos2ω ασcσt/σs)
(12)

in which

D = sin2ω (σc + σt)
2

−4σcσt(sin2ω − cos2ω ασcσt/σ2
s)

Also, ω represents the angle that the stress state
line creates with the positive side of the σT axis,
while σ(ω) the distance from the origin to the
stress boundary for that direction. The frac-
turing mesoscale behavior of concrete exhibits
softening for both normal and tangential strain
histories. This phenomenon is modeled by im-
posing that the evolution of the stress boundary
follows the exponential rule:

σb(ω) = σ0 e
− H
σ0

(<ε1−ε0>) (13)

where ε1 is the maximum value of the defor-
mation previously attained in the connection
(history dependent) and ε0 the strain at peak
strength.

One of the main advantages in using a lattice
approach is the possibility to enforce the correct
energy dissipation under basic fracturing modes
on the 1-dimensional elements composing the
domain. By using scalar relationships between
stresses and strain it is possible to scale the
constitutive law to impose that every connec-
tion dissipates the desired energy during frac-
ture processes. This procedure is needed since
damage localizes also at the mesolevel [5].

The fracture energies for pure tensionGt and
pure shearGs are thought to be material proper-
ties [1] and therefore their values are constant.

Based on this assumption, it is possible to eval-
uate the H parameter to be used in Eq. 13 to
obtain a value of the fracture energy density in
the element to satisfy Gf = l

∫∞
0
σdε. After

having calculated the values of H for the two
basic modes of fracture:


H(ω = 0) = Hs =

2αE0

(2αE0GS)/(σ2
s l)−1

H(ω = π/2) = Ht =
2E0

(2E0GT )/(σ
2
t l)−1

(14)
the transition between pure shear (ω = 0) and
pure tension (ω = π/2) is supposed to be
smooth and governed by the following expo-
nential equation.

H(ω) = Hs + (Ht −Hs)

(
2ω

π

)nt
(15)

The definition of the fracturing behavior is
then completed by the loading-unloading rules.
When unloading occurs, the element releases
stresses elastically (with stiffness equal to EN )
until its value gets to 0. At that point the stress
remains null while the deformation diminishes.
While reloading, the same elastic modulus is
used, and the stress boundary value σb defined
in Eq. 13 is enforced, so that the stress can never
exceed the threshold value obtained at the max-
imum strain achieved by the strut during the
loading history.

The Frictional Behavior (εN <= 0) at the
mesoscale must be able to reproduce the at-
tritive effects that lead to an increase in the
shear strength and ductility, together with tri-
axial hardening and pore collapse for volumet-
ric compression. The interaction between the
normal and tangential behavior of the struts is
supposed to be controlled by the ellipse in the
σN − σT space defined in Eq. 8.

Compressive stress states (εN < 0) are
highly dependent on the volumetric effects; in
order to take this aspect into account, negative
normal strain is decomposed in the volumetric
(εN ) and deviatoric (εD) part, with εV defined
as the average of the volumetric deformations
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of the triangular facets composing the contact
area, weighted on the area of the facets them-
selves.

The information on the average volumetric
deformation acting in the connection is used
to define the compressive stress boundary. It
is well known that the post-peak compressive
behavior is strongly influenced by volumetric
effects. To model this phenomenon the stress
boundary in compression is dependent on εv as
follows:

σb =

{
σc ifεv > 0

σce
H/σc(−εv−εc) ifεv < 0

(16)

Eq. 16 shows that the post-peak compressive
behavior must be able to reproduce the harden-
ing response induced by the pore collapse under
high volumetric deformations, while a perfectly
plastic behavior is assumed in case of positive
volumetric deformation.

Also, the hardening modulus H is thought to
be dependent on the volumetric and deviatoric
deformation acting in the element:

H = Hc/(1 + k2 < rdv − k1 >) (17)

where rdv is the deviatoric to volumetric strain
ratio, and k1,k2 are material parameters.

The loading-unloading rules in compression
follow the same rule used for the cohesive be-
havior: the element unloads elastically to zero
stress, and then σN remains null up to zero
deformation. The difference with the tension
side of the stress-strain response lies in the fact
that there is no damage due to compressive ac-
tions, meaning that the reloading branch will al-
ways merge with the virgin load curve. The de-
scription of the frictional behavior of the lattice
struts is then completed by defining the shear re-
sponse under compression. It is supposed to be
dependent on the same ellipse in the σN − σT
plane. The evolution of the boundary is gov-
erned by the exponential law:

σb = σT,0 e
− H
σT,0

<εT−εT,0> (18)

where σT,0 = σ(ω) cosω
√
α (see Eq. 10). The

shear post-peak behavior, similarly to the frac-
turing behavior case already described, is de-
fined by imposing the two values of the soften-
ing modulus H:

H(ω = 0) = Hs =
2αE0

(2αE0GS)/(σ2
s l)−1

H(ω = −π/2) = Hc = 0
(19)

so that the shear response varies smoothly from
tension to compression. A fictitious perfectly
plastic behavior is supposed for the case of pure
compression in order to define the following
variation rule for the parameter H as a function
of ω:

H = Hs −Hs

(
−2ω
π

)nc
(20)

Figure 7: Mesoscale stress-strain response for cyclic ten-
sion (top), cyclic compression for different volumetric
strain values (middle), shear under different compressive
actions (bottom)
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3 MULTISCALE EXPERIMENTAL
CAMPAIGN

The basic idea behind the laboratory tests
is that, by characterizing the mechanical prop-
erties of concrete at the mesoscopic scale, it
is possible to predict its macroscopic behavior
by means of the here proposed lattice particle
modeling technique. This approach is particu-
larly advantageous because the dimensions of
the specimens can be kept small and the test-
ing procedures can be easily standardized and
reproduced without the need of expensive test-
ing systems. Since the materials used were
identical for both scales, the goal was to iden-
tify the mechanical properties of the mesoscale
concrete and use such information in the pro-
posed lattice model, comparing the so obtained
macroscopic response.

To this end, a mesoscale concrete has been
cast in cylindrical elements with the dimensions
of the typical struts in the lattice and tested in
tension, shear and compression. The so ob-
tained information have been used in the defi-
nition of the lattice elements, and the proposed
model has been checked against the results ob-
tained on the macroscale lab tests. Such cam-
paign was performed on concrete elements of
the usual dimensions used in experiments, cast
to have a correspondence with the mesoscale
specimens in terms of granulometric composi-
tion and materials used.

Figure 8: Multiscale granulometric curves used in the ex-
perimental tests

3.1 Mesoscale Tests
In most of the simulations conducted in this

work, the minimum diameter Dmin has been set
equal to 4.75 mm, which is generally consid-
ered as the threshold between the coarse and the
fine aggregate. This allows to obtain high inclu-
sion volume fractions while keeping the com-
putational cost reasonable. The mesoscale con-
crete has so been cast by using aggregate size
D ≤ 4.75 mm (Fig. 8), and it has been tested in
shear, tension and compression to evaluate the
principal mechanical properties.

Figure 9: Results of the different tests performed on
mesoscale concrete

The first step in the definition of the cam-
paign involved the evaluation of the characteris-
tic dimensions of the mesoscale concrete to be
used. Numerical investigations performed on a
set of 10 concrete cubes (l = 150mm) showed
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that a diameter equal to 20 mm can be chosen
for the mesoscale specimens, since the so ob-
tained value of the cross sectional area is repre-
sentative of the mean obtained from the model.
Cylindrical shape with aspect ratio 2:1 has been
used to simplify the test procedure. Differ-
ent set of tests have been performed. Tensile
and compressive uniaxial tests were conducted
by means of a hydraulic Universal Testing Ma-
chine, while an opportunely modified shear box
has been used to evaluate the tangential stress
response of the specimens. The results of such
investigations are reported in Fig. 9.

Figure 10: Results of the different tests performed on
macroscale concrete: cubical (top) and cylindrical (bot-
tom) specimens

3.2 Macroscale Tests
The mesoscale tests were followed by a

macroscale campaign, which involved the test-
ing of concrete elements of the usual shape and
dimensions (i.e. cylinders, cubes, prisms) used
in civil engineering laboratories. A total of six
150 mm cubes and three 300 × 150 mm cylin-
ders were tested by means of a Universal Test-
ing Machine of capacity 500 kN. Since the ma-

terials used were identical for both scales, the
goal was to identify the mechanical properties
of the mesoscale concrete and use such infor-
mation in the proposed lattice model, compar-
ing with the so obtained macroscopic response.
The experimental results are shown in Fig. 10.

4 NUMERICAL RESULTS
The following sections compare the numer-

ical results with the experimental results from
the macroscopic concrete tests.

4.1 Cubic Specimens
The comparison between experimental and

numerical responses demonstrates how the
model is capable of predicting both the stress-
strain curve (Fig. 11) and the crack pattern
observed in the tests (Fig. 12). The numeri-
cal simulation correctly reproduces the typical
”hourglass” shape of the high friction uniaxial
compressive tests, together with a macroscopic
shear band that spreads from the top to the bot-
tom of the specimen. Such crack was also
observed in the experimental tests, as clearly
shown in the figure. A full recap of all the me-
chanical quantities (i.e. the ones measured in
the meso and macroscopic tests, the ones used
in the model and those evaluated from the nu-
merical results) is given in Table 1, which shows
the correspondence between the mesoscopical
values measured in the test, the ones used in
the lattice particle model and the macroscopic
quantities, both the ones measured in the lab
tests and the numerically simulated ones.

Figure 11: Experimental and numerical stress-strain
curves for the cubic specimens
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Figure 12: Cubic specimens: experimental and numerical
crack pattern at failure

Table 1: Comparison between mesoscopic parameters
measured, used and macroscopic quantities measured on
the cubic specimens. For the experimentally evaluated
quantities, the minimum and maximum measured values
are reported.

Quantity Mesoscale
test

Mesoscale
input

Macroscale
test

Macroscale
result

Comp.
Strength

52-
68 MPa

60 MPa 40-
45 MPa

44 MPa

Young’s
Modulus

42-45 GPa 46.5 GPa 29.8-
30.5 GPa

30.1 GPa

Poisson’s
Ratio

-* -* 0.178 0.18

Tensile
Strength

3.5-6 MPa 4.5 MPa - -

Shear
Strength

10-
13.5 MPa

13.5 MPa - -

* Poisson’s Ratio was not measured during mesoscale testing. Its
value is not a parameter of the model; α is used instead according to
Eq. 6.

Figure 13: Comparison between experimental and nu-
merical stress-strain curves on cylindrical specimens

4.2 Cylindrical Specimens
The comparison between the experimental

and numerical response shows how the model
is capable of predicting both the macroscopic
stress-strain response (Fig. 13) and the crack
pattern at failure. Figure 14 shows how the

model is able to localize the damage in a dom-
inant shear band which runs at an angle of ap-
proximately π/4. The direct comparison with
the failure mode observed in the experimental
tests shows the good agreement with the nu-
merical results. A full recap of all the mechan-
ical quantities used in the model and the corre-
sponding (measured) macroscopic ones is given
in Table 2.

Figure 14: Cylindrical specimens: experimental and nu-
merical crack pattern at failure

Table 2: Comparison between mesoscopic parameters
measured, used and macroscopic quantities measured on
the cylindrical specimens. For the experimentally eval-
uated quantities, the minimum and maximum measured
values are reported

Quantity Mesoscale
test

Mesoscale
input

Macroscale
test

Macroscale
result

Comp.
Strength

52-
68 MPa

60 MPa 36-
41 MPa

37.5 MPa

Young’s
Modulus

42-45 GPa 46.5 GPa 29.8-
30.5 GPa

30.1 GPa

Poisson’s
Ratio

-* -* 0.2 0.18

Tensile
Strength

3.5-6 MPa 4.5 MPa - -

Shear
Strength

10-
13.5 MPa

13.5 MPa - -

* Poisson’s Ratio was not measured during mesoscale tests. Its value
is not a parameter of the model; α is used instead according to Eq. 6.

5 CONCLUSIONS
A random lattice particle modeling approach

to predict fracture phenomena in cementitious
materials under compressive actions has been
proposed. The numerical results were validated
through comparisons with the results obtained
on concrete elements tested as a part of a mul-
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tiscale experimental campaign. The distinctive
features of the presented model are:

1. the discretization of cementitious mate-
rial is performed by inserting poly-sized
spheres in the domain, connecting their
centers by means of a Delaunay tetra-
hedralization and tessellating the domain
by means of a modified Voronoi diagram,
dual to the tetrahedralization;

2. the stress boundary of the constitutive
model is defined as an ellipse in σN − σT
space, with the advantage of having a
continuous law to define such limit. Also,
this choice makes it possible to describe
both cohesive (εN > 0) and frictional
(εN < 0) behavior with the same func-
tion, simplifying the definition of the ma-
terial response at the mesoscopic level;

3. the nonlinear post-peak response of the
struts shows a smooth transition from
pure tension to pure shear to compres-
sion, due to the continuity of the relation
used to define the softening modulus H
as a function of the coupling strain ω.

Herein, mesoscale testing and model calibration
were used to successfully predict macroscopic
behavior. This presents an attractive, alternative
pathway for model validation.
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