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Abstract: 
The influence of constitutive models for cracking and arc-length control method on analysis of 
branch-switching to bifurcation path for diagonal tension failure in reinforced concrete beams is 
examined. Branch-switching from fundamental to bifurcation paths for diagonal tension failure in 
reinforced concrete beams is performed using eigenvalue analysis and arc-length control method, 
and the results are compared with those of bifurcation analysis using the direct displacement control 
method. Distinct first-order eigenmodes corresponding to diagonal and longitudinal cracks are 
observed in eigenvalue analysis for the branch-switching analysis with the direct displacement 
control method, but not with the arc-length control method. Due to this fact the analysis with the 
arc-length control method fails in branch-switching to the bifurcation path for diagonal tension 
failure. The Multi Equivalent Series Phase Model can evaluate consistent tangential stiffness 
accurately, and therefore, produces good results in eigenvalue analysis for bifurcation and branch-
switching analysis. On the other hand, the secant stiffness has to be utilized in the branch-switching 
analysis with Multi-directional Fixed Crack Model and Rotating Crack Model due to instability in 
case of adopting the consistent tangential stiffness, which produces insuffi cient results in branch-
switching analysis.

1 INTRODUCTION

It is well known that abrupt unstable 
propagation of diagonal cracks is often 
observed in the case of diagonal tension failure 
of reinforced concrete slender beams [1]. 

To contribute to rational shear safety 
design of reinforced concrete structures, the 
mechanism of the failure mode has been 
investigated through numerical calculations [2], 
[3], [4]. The author considered the unstable 
propagation of a diagonal crack as a bifurcation 
phenomenon from the previous stable cracking 

state, and tried to simulate the bifurcation path 
for the diagonal tension failure by using the 
branch-switching technique with the aid of 
eigenvalue analysis in a previous study [5]. 
Although it was shown that the bifurcation 
analysis was able to simulate reasonably well 
the mechanism of diagonal tension failure of 
the slender reinforced concrete beam tested 
in the experiment, the further diagonal crack 
propagation into the fl exural compression zone 
in the post-peak regime of structural collapse 
was not captured well. One of the reasons why 
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Table 1: Analysis cases
  

the post-peak behavior could not be simulated 
by the bifurcation analysis was considered to 
be that a direct displacement control method 
was adopted, which is not suitable for possible 
snap-back behavior typical in the post-peak 
regime of shear failure. 

In this s tudy on analysis of branch-
switching to bifurcation path for diagonal 
tension failure, the arc-length control method 
with indirect displacement is adopted as the 
incremental load control method to overcome 
the possible post-peak instability of the 
diagonal crack propagation into the flexural 
compression zone. 

Since the diagonal crack propagation is 
much influenced by the crack constitutive 
models adopted in the analysis, the Multi-
directional Fixed Crack Model (MDFC Model) 
and the Rotating Crack Model (RC Model) are 

utilized in branch-switching analysis, instead 
of the Multi Equivalent Series Phase Model 
(MESP Model) used in the previous analysis 
to examine the infl uence of crack constitutive 
models.

2 ANALYSIS METHOD

The Multi Equivalent Series Phase Model 
(MESP Model) as a nonlocal constitutive 
mode l and b ranch-swi tch ing ana lys i s 
functionality have been incorporated into the 
general purpose fi nite element system DIANA 
9.4 [6], which is utilized in this analysis. 

2.1 Analysis cases

As shown in Table 1, three series of analysis 
cases, L, M, and N are performed in this study, 
and compared with the previous analysis case 
K03, in which the direct displacement control 
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was adopted as the incremental load control 
method, and the MESP Model was used for 
concrete constitutive model. The arc-length 
control method with indirect displacement 
is adopted as the incremental load control 
method in analysis cases L, and the MESP 
Model is used as the constitutive model for 
concrete. On the other hand, in analysis cases 
M and N, the MDFC Model and the RC Model 
are used respectively, along with the direct 
displacement control method to examine the 
influence of crack constitutive model on the 
branch-switching.

2.2 Analysis models

As in the previous studies, diagonal tension 
failure of the slender reinforced concrete beam 
specimen, BN50, having the effective depth of 
450 mm, tested at the University of Toronto [1] 
is simulated again in this study. The specimen 
is discretized in linear triangle fi nite elements 
of Delaunay triangulation and cross-diagonal 
meshes for concrete, as well as 3-node beam 
elements for steel rebar, as shown in Figure 1.

2.3 Incremental-iterative solution method

The vert ical displacement under the 
direct displacement control is applied to the 
central node of steel loading plate elements 
in analysis cases M and N as in K03. On the 
other hand, analysis cases L adopt indirect 
displacement control on the same vertical 
nodal displacement, utilizing the arc-length 
control method with spherical path constraint.

The regular Newton-Raphson iteration 
method is ut i l ized to obtain numerical 
convergence in the numerical iteration process 
of all analysis cases. The convergence criterion 

in case of direct displacement control is based 
on the Euclidian norm of the out-of-balance 
force vector. It is assumed that convergence 
is obtained when the ratio of the norm of out-
of-balance force vector after each iteration 
to the norm of the initial value becomes less 
than the tolerance of 1 %. On the other hand, 
the convergence criterion in case of the arc-
length control method is based on the energy 
norm which is composed of internal forces 
and relative displacements. A convergence 
tolerance of 0.01 % is adopted in terms of the 
ratio of energy norm of each iteration to the 

 
Figure 1: Finite element mesh for concrete and rebar.
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Figure 2: Shear response in analysis case L.
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initial value.  

2.4 Branch-switching method

To obtain a fundamental path in the shear 
response of the beam, the equilibrium equation, 
Eq. 1, is solved by the displacement method 
of finite element analysis by using direct 
displacement control or arc-length control with 
the Newton-Raphson iteration method. 

u qK nD = o  (1)

where K  = tangential stiffness matrix; uD  = 
incremental displacement vector; no = load 
factor increment; q = normalized load vector.
At each load step in the fundamental path a 
possible bifurcation from the fundamental path 
to a branch path is checked. If a load step is 
judged to correspond to a possible bifurcation 
point, branch-switching from the fundamental 
path to a bifurcation path is performed. After 
branch-switching to the bifurcation path, the 
path is traced by using the same incremental 
load control method as the fundamental path 
analysis. When another bifurcation point 
is detected along the post-bifurcation path, 
branch-switching is again performed to trace a 
new bifurcation path. In this study bifurcation 
point A is first detected, and subsequently 
bifurcation points B, C, D, and E are found in 
the following post-bifurcation paths, therefore, 
branch-switching and tracing post-bifurcation 
paths are repeated by subsequently following 
those bifurcation points. Table 1 shows the 
analysis cases and bifurcation points where 
branch-switching to bifurcation paths is 
performed in this study. Figures 2, 3, 24, and 
25 show the obtained shear responses and 
bifurcation points for branch-switching.

In general the bifurcation point and limit 
point or maximum load are singular points 

which should be judged by the determinant of 
the tangential stiffness matrix  det K  of Eq. 2. 

LDLdet det D 0K T
ii

i

n

1

= = =
=

] g %  (2)

where L = lower triangular matrix of K; D = 
diagonal matrix of K; Dii = diagonal element 
of D ; n = number of diagonal elements
Since spurious kinematic modes [7] due to 
strain softening of concrete material can also 
produce singular points in the equilibrium 
equation for concrete structures, emergence of 
the lowest eigenmode, usually with a negative 
eigenvalue, corresponding to the spurious 
kinematic mode is monitored by checking 
drawn figures of eigenmodes obtained in 
eigenvalue analysis based on Eq. 3. 
 v vK i i im=  (3)
 where vi  = right eigenvectors of K ; im  = 
eigenvalues of K
The spurious kinematic modes are pathological 
and mechanically meaningless, and occurrence 
of the modes results in a premature termination 
of the numer ica l ana lys i s . There fore , 
bifurcation and limit points are selected from 
singular points after excluding the spurious 
kinematic modes, and branch-switching to the 
bifurcation path is performed starting from the 
bifurcation or limit points. Figure 4 shows an 
example for the eigenmode with the eigenvalue 

. 102 3771
1#m =- , corresponding to a spurious 

kinematic mode in analysis cases L02, L03, 
and L04.

An indicator for determinant of tangential 
stiffness matrix is defi ned with Eq. 4 to detect 
possible bifurcation points.

detlog1 Km
10-] g  (4)

where m is the number of negative pivots in 
the diagonal matrix D .
The values of det K  seldom become exactly 
zero, but turn from positive to negative in 
the vicinity of bifurcation points as in some 
buckling problems of structures. In this study 
the load step where the indicator of det K  
turns from positive to negative is regarded as 
a singular point or bifurcation point. It might 

  
Figure 4: Eigenmode corresponding to spurious 

kinematic mode in analysis cases L02, 
L03, and L04.     

 



be possible to fi nd a point in the path at which 
the indicator of det K  gets much closer to zero. 
However, such precise detection of bifurcation 
points is not pursued here since incremental 
load values are chosen small enough compared 
with the bifurcation load value. 

The incremental displacement predictor 
upD is calculated from the eigenvector vi

with the eigenvalue closest to zero, obtained 
in eigenvalue analysis and incremental 
displacement vector ufD  as the solution for 
the fundamental path at the bifurcation point 
by using Eq. 5. Branch-switching is conducted 
by applying upD  as a perturbation to obtain a 
bifurcation path.

u v v v
u u

vp i
i
T

i

f
T

f

ibD
D D

= =  (5)

  
upD of Eq. 5 is derived from the scaling 

condition, Eq. 6 for ufD  and upD .  

u u u uf
T

f p
T

pD D D D=  (6)

2.5 Constitutive models
         

The Multi Equivalent Series Phase Model 
[8] is used as the concrete constitutive model 
in analysis cases K03 and L. The model is 
based on the Enhanced Microplane Concrete 
Model [9], and a versatile nonlocal constitutive 
model, that is capable of describing cracking 
behavior of concrete under tension as well as 
shear and compression with good accuracy. 
The Multi-directional Fixed Crack Model 
combined with a strain hardening-softening 
type of elastoplastic constitutive model 
with the Drucker-Prager criterion under 
compression is used in analysis cases M. In 
analysis case N the total strain formulation 
type of constitutive model is utilized both for 
tension and compression, based on the coaxial 
condition for principal stress and strain axes, 
which is known as the Rotating Crack Model 
for tensile cracking. 

Although both the MDFC Model and the 
RC Model are standard crack constitutive 
models available in DIANA, there are some 
problems in numerical convergence and 
instability when consistent crack tangential 

stiffness is used with regular Newton-Raphson 
iteration. For this reason it is recommended 
that the secant stiffness for crack is used as the 
default in DIANA. In the present research the 
consistent tangential stiffness has to be used 
to evaluate appropriate eigenmodes needed 
in bifurcation analysis, however, the secant 
stiffness is utilized instead, in order to ensure 
the numerical stability in cracking problems.

For steel rebar beam elements, an elastic-
perfectly plastic constitutive model with the 
Von Mises criterion is assumed, but no plastic 
yielding occurs in the present analysis.

Perfect bond is assumed between concrete 
and rebar elements, however, this does not 
necessarily mean that inelastic debonding 
behavior of concrete surrounding steel rebar is 
not taken into account. When rebar elements 
are in tension a certain shear-tension force 
is transferred to the surrounding concrete 
elements, which causes cracking in the 
elements. The cracking can be regarded as 
secondary bond cracking which results in 
inelastic bond behavior.

3 INCREMENTAL LOAD CONTROL
   

3.1 Infl uence of arc-length control

Figure 2 shows the shear responses of 
analysis cases L that adopt arc-length control 
with indirect displacement. Unintentional 
unloading occurs in analysis cases L02 and 
L03 although the branch-switching analysis 
with direct displacement control in analysis 
case K03 was able to obtain the bifurcation 
paths that were perturbed by eigenmodes of 
diagonal cracking. On the other hand, neither 
the unloading nor the branch-switching to 
bifurcation path occurs, but a similar shear 
response to the fundamental path is obtained 
in analysis case L04. The snap-back behavior 
after peak load is well captured in analysis 
case L04 due to the arc-length control.

The first-order eigenmodes corresponding 
t o t y p i c a l d i a g o n a l a n d l o n g i t u d i n a l 
cracking are not obtained in analysis cases 
L utilizing the arc-length control, unlike in 
the analysis adopting the direct displacement 
control. Instead, the first-order eigenmodes 



corresponding to unloading behavior with the 
closure of a diagonal crack are observed more 
often in the arc-length control as shown in the 
example in Figure 5. The eigenmode in Figure 5 
is drawn with a displacement magnifi cation of 
200, and has the eigenvalue .5.041 101

1#m =   
The branch-switching is not done when 
the first-order eigenmode corresponding 
to unloading is obtained at the bifurcation 
point since the diagonal crack propagation is 
suppressed and unloading occurs actually if the 
perturbation of the eigenmode was applied.

Figures 6-10 are the eigenmodes for 
eigenvectors vi  chosen to calculate the 
incremental displacement predictor upD  
for perturbation, in which the displacement 
is enlarged with a magnification of 200. 
The individual eigenvalues for bifurcation 
points A, B, C, D, and E are 1m = ,1.632 101#  

1m = .1 242 101# , 5m = .7 089 103# , 1m =
.3 892 10 2#- - ,  a n d  1m = 1.407 101# , 

respectively.
Except for bifurcation point C the fi rst-order 

or lowest eigenmodes are utilized. Figures 
11, 12, 13, 14 and 15 show the incremental 
displacement at load steps just after bifurcation 
points A, B, C, D, and E in the post-bifurcation 
paths, which are immediately after branch-

switching. The distribution of maximum 
principal strain 1f  is superimposed in those 
figures. Widening and further propagation 
of the main diagonal and longitudinal cracks 
along steel rebar are not induced by the 
branch-switching at all bifurcation points. On 
the contrary, the unloading takes place after 
bifurcation point E. 

Figures 16, 17, 18, and 19 show the 
incremental displacement with maximum 
principal strain at the steps for the maximum 
shear load in analysis cases L01, L02, L03, 
and L04. The divergence occurs just after the 
maximum shear load in analysis case L01 
for the fundamental path, but the snap-back 
response is captured very well in analysis case 
L04. On the other hand, in analysis cases L02 
and L03, the branch-switching results in the 
paths for unloading fi nally, and the limit load 
for diagonal tension failure is not attained. 

It is considered that there are lots of 
possible equilibrium paths for various fracture 
modes in the vicinity of a bifurcation point in 
case of fracture analysis of reinforced concrete 
structures. Branch-switching analysis utilizing 
the arc-length control method, which is 
combined with selected constraint conditions 
such as the spherical path constraint herein, 

  
Figure 6: First-order eigenmode at bifurcation point A.

  

  
Figure 7: First-order eigenmode at bifurcation point B.

  
  

Figure 8: Fifth-order eigenmode at bifurcation point C.

  

  
Figure 9: First-order eigenmode at bifurcation point D.

  
  

Figure 10: First-order eigenmode at bifurcation point E.

  

  
Figure 5: First-order eigenmode as uloading.

  



the adaptive loading method, the loading-
unloading criterion, the indirect displacement 
control method, automatically searches 
and selects a single path among the various 
possible equilibrium paths for fracture modes 
in the vicinity of the bifurcation point. Such an 
automatically selected bifurcation path is not 
always necessarily consistent with the first-

order eigenmode applied as a perturbation, and 
then the appropriate diagonal tension failure 
mode is not obtained. Sudden unloading 
responses occur easily with the arc-length 
control method, as pointed out in the past 
research [2]. The results in the unloading 
responses seem to be due to the fact that 
the first-order eigenmodes corresponding to 

  
Figure 16: Incremental displacement at maximum shear

load in analysis case L01.

  

  
Figure 11: Incremental displacement after bifurcation

point A in analysis case L02, L03, and L04.

  

  
Figure 12: Incremental displacement after bifurcation

point B in analysis case L02 and L03.

  

  
Figure 13: Incremental displacement after bifurcation

point C in analysis case L03.

  

  
Figure 14: Incremental displacement after bifurcation

point D in analysis case L04.

  

  
Figure 15: Incremental displacement after bifurcation

point E in analysis case L04.

  

  
Figure 17: Incremental displacement at maximum shear

load in analysis case L02.

  

  
Figure 18: Incremental displacement at maximum shear

load in analysis case L03.

  

  
Figure 19: Incremental displacement at maximum shear 

load in analysis case L04.
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unloading emerges frequently in the eigenvalue 
analysis.

Although the arc-length control method 
with indirect displacement might be able to 
capture the unstable fracture in the post-peak 
snap-back behavior, there are some diffi culties 
in applying the method to the analysis of 
branch-switching to the bifurcation path for 
diagonal tension failure by using perturbation 
of eigenmodes corresponding to the localized 
fracture.

  3.2 Infl uence of direct displacement control

Figure 20 is the eigenmode for eigenvector 
vi chosen to calculate the incremental 
displacement predictor upD  for perturbation 
in analysis case K03 utilizing the direct 
displacement control method, in which the 
displacement is enlarged with a magnifi cation 
of 200. The eigenvalue for bifurcation point D 
is 3.6131 101

2#m =  of the fi rst-order, or lowest 
eigenmode. 

F i g u r e  2 1 s h o w s t h e  i n c r e m e n t a l 
displacement at the load step just after 
bifurcation point D in the post-bifurcation path, 
which is immediately after branch-switching. 
The distribution of maximum principal strain 

1f  is superimposed in the figure. Widening 
and further propagation of the main diagonal 
and longitudinal cracks along steel rebar in 
the right span of the beam are induced by the 
branch-switching at bifurcation point D, which 
utilizes the lowest eigenmode corresponding 
to the propagation mode of the main diagonal 

  
Figure 22: Incremental displacement at maximum shear

load in analysis case K03.

  
  

Figure 23: Incremental displacement in post peak 
in analysis case K04.

  

and longitudinal cracks. Figures 22 and 23 
for analysis case K03 show the incremental 
displacement with maximum principal strain 
at the steps for the maximum shear load, and 
in the post-peak regime. In the case of utilizing 
the direct displacement control method, 
the branch-switching to bifurcation paths 
at bifurcation points B, C, and D obviously 
produces drastic propagation of the main 
diagonal and longitudinal cracks prior to 
the limit load, which indicates the complete 
mechanism of diagonal tension failure as well 
as the collapse process of the shear beam.
 

4 CONSTITUTIVE MODEL
   

Figures 24 and 25 show the obtained 
shear responses and bifurcation points for 
branch-switching in analysis cases M for the 
MDFC Model, and N for the RC Model. The 
maximum shear strength of the reinforced 
concrete beam is slightly underestimated 
with the MDFC Model, but substantially 
underestimated with the RC Model. The 
shear stiffness of the beam is much smaller 
for the RC Model than the experiment, but is 
evaluated with good accuracy with the MDFC 
Model. 

The fi rst bifurcation point A is detected in 

  
Figure 20: First-order eigenmode at bifurcation point D.

  

  
Figure 21: Incremental displacement after bifurcation

point D in analysis case K03.
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the vicinity of the maximum shear load with 
the help of Figure 26 that shows the variation 
of the indicator for determinant of tangential 
stiffness matrix, detlog1 Km

10-] g  in analysis 
case M01 for the MDFC Model. On the other 
hand, in analysis case N for the RC Model, 
the indicator never turns into negative values, 
therefore, it is considered that the bifurcation 
points do not exit, and the branch-switching 
analysis is not performed. The fact that the 

number of bifurcation points is very small in 
analysis cases M and there are no bifurcation 
points in analysis case N is because the secant 
stiffness in the crack constitutive relations is 
utilized to perform eigenvalue analysis. 

Figures 27, 28, and 29 show the out-of-
balance force norm ratio at the end of iteration 
in analysis cases M01 with the MDFC Model, 
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Figure 24: Shear response in analysis cases M and N.
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Figure 25: Bifurcation points in analysis case M.
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Figure 27: Out-of-balance force norm ratio 
 in analysis case M01.
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Figure 28: Out-of-balance force norm ratio 
 in analysis case N01.
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N01 with the RC Model, and K03 with the 
MESP Model. The out-of-balance force norm 
ratio cannot decrease to less than the tolerance 
for convergence of 1 % after the maximum 
number of iterations at many steps in analysis 
cases M01 with the MDFC Model, N01 with 
the RC Model, however, the calculations are 
continued to the next step, bringing the out-of-
balance forces in the fi nal iteration to the next 
step, although strictly speaking the calculation 
should be terminated. The convergency of 
iterative calculation for the MDFC Model 
and the RC Model is not that good, despite 
using the secant stiffness for crack constitutive 
relations to avoid the instability with softening 
stiffness. On the other hand, the convergence 
criterion is satisfi ed at all the steps in analysis 
case K03 with the MESP Model, which 
confirms that MESP Model has excellent 
convergency and robustness as a numerical 
crack model.

Figure 30 is the only one eigenmode 
corresponding to a spurious kinematic mode 
that emerges in analysis cases M with the 
MDFC Model. The spurious kinematic mode 
appears just before bifurcation point A, and 

its eigenvalue 1m  is . 101 3089 2#- . Spurious 
kinematic modes do not easi ly emerge 
because the secant crack stiffness is used in 
analysis cases M. The branch-switching to 
bifurcation path is performed starting from 
bifurcation point A by applying upD  of Eq. 5 
as a perturbation to obtain the bifurcation path. 
As shown in Figure 25, the branch-switching 
is performed at bifurcation points A, B, and 
C, however, the shear responses on the post-
bifurcation paths do not differ much from the 
response on the fundamental path. 

Figures 31, 32, 33, and 34 are the first-, 
second-, third-, and fourth-order eigenmodes 
at bifurcation point A, and the eigenvalues of 
the eigenmodes are ,5.2820 101

2#m =  2m =
.1 104975 3# , 3m = .0 102 419 3# , and 4m =
. 105 0663 3# , respec t ive ly. The second 

bifurcation point B is on the post-bifurcation 
path after the branch-switching at bifurcation 
point A by applying the perturbation adopting 
the fi rst-order eigenmode of bifurcation point A. 
The fi rst-order eigenmodes at bifurcation point 
B as well as C and D resemble the one at the 
fi rst bifurcation point A. This is consistent with 
the fact that the post-bifurcation paths from 
bifurcation points B, C, and D do not much 
differ from the fundamental path.

Figures 35 and 36 show the incremental 
displacement at load steps just after bifurcation 
points A and B in the post-bifurcat ion 
paths, which are immediately after applying 
perturbations in analysis cases M. The 
distibution of maximum principal strain 1f  

  
Figure 30: Eigenmode corresponding to spurious 

kinematic mode in analysis cases M.     

  

  
Figure 31: First-order eigenmode at bifurcation point A.

  

  
Figure 32: Second-order eigenmode at bifurcation point A.

  
  

Figure 33: Third-order eigenmode at bifurcation point A.

  

  
Figure 34: Fourth-order eigenmode at bifurcation point A.

  



is superimposed in those figures. The overall 
fl exural deformation of beam is much dominant 
in Figures 35 and 36 despite the branch-
switching, although the infl uence of the fi rst-, 
second-, third-, and fourth-order eigenmodes 
appear in the incremental displacement, which 
is recognized as the failure of compressive 
fiber concrete in the vicinity of the loading 
plate, the diagonal crack, and longitudinal 
crack. 

Figures 37 and 38 for analysis cases 
M05 and N01, respectively utilizing the 
MDFC Model and the RC Model, show the 
incremental displacement along with the 
maximum principal strain at the steps for the 
maximum shear load. The dominant crack in 
analysis case M05 with the MDFC Model has 
a straight shape rather than the curved shape of 
the diagonal cracks observed in experiments. 
The failure mode seems to represent a shear 
compressive failure or a fl exural shear failure 
mode, although shear sliding deformation at 
the dominant diagonal crack is distinguished 
and the compressive failure occurs in the 
vicinity of the loading plate. On the other hand, 
the shear cracks in analysis case N01 with the 
RC Model have bent shapes at the tip area, 
due to the constitutive formulation based on 
the coaxial condition for principal stress and 
strain axes in the crack model, and the analysis 
does not simulate the mechanism of diagonal 
tension failure. 

5 CONCLUSIONS
     

Analysis of branch-switching to bifurcation 
path for diagonal tension failure in a reinforced 
concrete beam is performed to study the 
influence of crack constitutive models and 
the incremental load control method on the 
bifurcation analysis.

Since the eigenmode for unloading is more 
dominant rather than diagonal and longitudinal 
cracking in the analysis utilizing the arc-length 
control method with indirect displacement, 
bifurcation path for diagonal tension failure is 
not obtained in the analysis. 

Eigenmodes corresponding to diagonal 
tension failure are distinguished in the analysis 
utilizing the direct displacement control 
method, therefore, the branch-switching to 
bifurcation path for the failure is achieved.

The Multi Equivalent Series Phase Model 
can produce good results in eigenvalue analysis 
for bifurcation and branch-switching analysis, 
since the model can evaluate consistent 
tangential stiffness accurately, and has good 
convergency.

Secant stiffness has to be util ized in 
the branch-switching analysis with Multi-
directional Fixed Crack Model and Rotating 
Crack Model due to instability in case of 
adopting the consistent tangential stiffness, 
which produces insuffi cient results in branch-
switching analysis.

  
Figure 35: Incremental displacement after bifurcation

point A in analysis cases M02, M03, M04, 
and M05.

  

  
Figure 36: Incremental displacement after bifurcation

point B in analysis cases M03, M04, and 
M05.

  

  
Figure 37: Incremental displacement at maximum shear

load in analysis case M05.
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Figure 38: Incremental displacement at maximum shear

load in analysis case N01.
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