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Abstract:  Paper presents an improved version of the constitutive model which combines 
a continuous and discontinuous crack’s description to simulate the concrete under tensile dominated 
loads. In a continuum regime, a plasticity model with a Rankine failure criterion and an associated 
flow rule was used. To describe the width of strain localization and to obtain mesh-independent 
results, the continuum constitutive law was equipped with a characteristic length of micro-structure 
by applying a non-local theory in an integral format. For describing displacement jumps 
along/across cracks, the eXtended Finite Element Method (XFEM) was used. A transition algorithm 
between a non-local continuum model and XFEM was formulated. A transfer function was 
introduced to enable a gradual switch from a continuous (smeared) to discontinuous (discrete) 
softening process. Several benchmarks were numerically simulated with a dominated mode-I 
(e.g. uniaxial tension and bending) and under mixed-mode conditions. 
 

1 INTRODUCTION 

Fracture in concrete is responsible for the 
both strength and stiffness reduction and it 
precedes the structural failure. At the 
beginning of loading, a region with several 
micro-cracks is formed. Later these micro-
cracks create a macro-crack. An adequate 
description of fracture in numerical FE 
calculations is extremely important to obtain 
physically realistic results. Within continuum 
mechanics, there exist two main approaches to 
describe fracture. The first one describes it in 
a smeared sense as localized zones of micro-
cracks with a certain finite width. Since this 
formulation includes softening, it has to be 
equipped with a characteristic length of 
microstructure to preserve the well-posedness 

of the boundary value problem. It can be done 
by means of e.g. a micro-polar, non-local or 
gradient theories. As an alternative, 
displacement jumps (discontinuities) along 
cracks may be introduced while keeping the 
remaining region as a continuous one. The 
oldest solutions used interface elements 
defined along element edges. The modern ones 
allow for considering cracks in the interior of 
finite elements using embedded discontinuities 
or XFEM (eXtended Finite Element 
Method) [1] based on a concept of the partition 
of unity. A smeared approach is more 
appropriate when describing a micro-crack 
formation process while a discontinuous one 
allows for a more realistic simulation of 
discrete macro-crack propagation. Usually, 
only one approach is used to simulate 

DOI 10.21012/FC9.093



J. Bobiński and J. Tejchman 

 2

a fracture process in concrete during the entire 
deformation process. A combination of 
continuous and discontinuous approaches 
make it possible (as in experiments) to 
realistically capture all fracture stages. Such 
a coupling can be done in several ways, e.g. 
the latest approaches combine XFEM with 
implicit gradient [2] or integral-nonlocal [3] 
isotropic damage models. Wells et al. [4] 
combined XFEM with the Perzyna 
viscoplastic model. 

The continuous-discontinuous constitutive 
law presented here is an improved version of 
the model earlier formulated [5, 6]. The 
original one links a continuous and 
discontinuous description of fracture defined 
within continuum mechanics. In a continuum 
regime, an elasto-plastic constitutive law with 
a Rankine criterion and an associated flow rule 
is used. In order to restore the well-posedness 
of the boundary value problem it is equipped 
with a characteristic length using an integral 
non-local theory. Discontinuous displacement 
jumps are described with XFEM. Discrete 
cracks are assumed to follow smeared crack 
patterns instead of using criteria based on 
a stress distribution. An special algorithm is 
responsible for transferring a softening from 
bulk points into a newly created crack 
segments. The proposed extension introduces 
a transfer function which allows for a gradual 
switch from a continuous (smeared) to 
discontinuous (discrete) softening process. By 
extending a crack with a new segment, nodes 
and finite elements located in a band 
perpendicular to this segment are doubled. The 
width of a doubled zone covers the width of 
a localized zone. Both doubled element sets 
share the same nodes along zone boundaries. 
As a consequence no special algorithm is 
required to force transfer of the softening 
mechanism. Such a modification overcomes 
some convergence problems observed in 
simulations with original models. The 
effectiveness of the proposed formulation is 
verified on several tests including uniaxial 
stress states (tension and bending tests) and 
multiaxial stress conditions (the so-called 
Nooru-Mohamed problem). 

2 CONTINUOUS APPROACH 

2.1 Elasto-plasticity 

In continuum, an elasto-plastic constitutive 
law with the standard Rankine criterion was 
used. The yield function for 2D case was 
defined as: 

{ } ( )pt,f κσσσ −= 21max , (1) 

where σ1 and σ2 – the principal stresses, σt – 
the tensile yield stress and κp – the 
hardening/softening parameter (equal to the 
maximum principal plastic strain p

1ε ). 
An associated flow rule was assumed. To 
define softening under tension, two alternative 
curves: a linear or an exponential were used. 
The first one was defined as:  
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where ft – the tensile strength and κu – the 
ultimate value of the softening parameter κp. 
The exponential curve was chosen as: 
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Here the parameter controls the slope of 
a softening curve (it can be interpreted as an 
intersection point of a tangent line from the 
peak point with the horizontal axis). 
A formulation with this simple exponential 
softening curve produces very similar results 
to ones with more sophisticated curves, e.g. 
the experimentally motivated non-linear curve 
by Hordijk [7]. 

2.2 Non-locality 

Strain softening causes the ill-posedness of the 
boundary value problem and FE-results 
become mesh dependent. In order to achieve 
mesh-independent results, a non-local theory 
in an integral format was used as 
a regularization technique. It is based on 
a spatial averaging of tensor or scalar state 
variables in a certain neighborhood of a given 
material point. The rates of the softening 
parameter dκp were treated non-locally 
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according to Brinkgreve [8]:  
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where x – the coordinates of considered 
(actual) point, ξ – the coordinates of the 
surrounding points, m – the non-locality 
parameter (it should be greater than 1). As the 
weighting function α0, the Gauss distribution 
was assumed: 
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where ξ−= xr  – the distance between 

points x and ξ and l – the characteristic length 
of the microstructure. The above averaging 
was restricted only to a small area around each 
material point (the influence of points at the 
distance of r=3l is only of 0.01%). Therefore 
despite a theoretical unbounded support of the 
weighting function α0, the bounded (limited) 
support could be assumed for practical 
considerations. 

In FE-simulations, an approximated method 
was used to evaluate non-local quantities. In 
the given integration point, the influence of its 
neighbors was determined using the values 
from the previous iteration. It enabled us to 
simplify FE calculations and to preserve the 
locality of plasticity algorithms 

3 DISCONTINUOUS APPROACH 

3.1 General formulation 

In order to describe displacement jumps in 
continuum along cracks, the Extended Finite 
Element Method (XFEM) was chosen. It is 
based on a local partition of the unity (PUM) 
concept by Melenk and Babuška [9]. It enables 
adding 'ad hoc' extra terms to a standard FE 
displacement field interpolation. These extra 
functions are responsible for capturing 
displacement jumps. In XFEM cracks do not 
have to be placed along finite element edges; 

they may pass through elements without 
remeshing. Due to a local nature of the 
enrichment, extra displacement degrees of 
freedom are solely introduced into finite 
elements cut by a discontinuity. They are 
gradually added to subsequent finite elements 
when a crack propagates. The formulation 
used in the paper follows (with some 
improvements and modifications) the original 
concept by Wells and Sluys [10]. In order to 
describe jumps in the displacement field, the 
so-called shifted-basis enrichment was used 
[11]. The shifted-basis enrichment simplifies 
the implementation of XFEM (two types of the 
finite elements exist only). Moreover the total 
nodal displacements are equal to the standard 
displacements.  

In the bulk continuum, a linear elastic 
relationship was assumed. An extra consti-
tutive law between displacement jumps [[u]] 
and tractions t was defined in the crack. The 
degradation process was controlled by the 
variable κx defined as a maximum value of 
normal displacement jumps [[un]] obtained 
during loading. During active loading the 
softening of the normal component of the 
traction vector tn was described by the yield 
curve σn using either a linear relationship: 
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or an exponential one:  
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where Gf – the fracture energy and Df – the 
correction term defined as:  
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where df – the drop factor [12]. This factor 
improves the convergence in cases with 
tension-compression changes. With increasing 
df, the term Df  approaches 1. During 
unloading, the secant stiffness was used with 
a return to the origin (damage format). In 
a compressive regime, the penalty stiffness in 
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the normal direction was used (it depends on 
the drop factor df). In a tangential direction the 
following formula was assumed:  

[ ][ ]s
t

n
ss u

f
Tt

σ
=  (10) 

with the initial shear stiffness Ts. With 
decreasing normal yield traction σn, the shear 
traction ts also decreases (due to the decrease 
of the resultant shear stiffness). 

3.2 Crack growth algorithm 

In the 'pure' XFEM a new crack could be 
activated or an existing crack could propagate, 
if the standard Rankine criterion (σmax > ft) 
was fulfilled at least in one point of the finite 
element at the front of a crack tip. In the 
extended version of the activation criterion, 
this inequality was examined not only in the 
integration points in this element, but also in 
all integration points in a circle section with 
the radius lcrk and angle ϕcrk at the front of the 
crack tip. This section was symmetrically 
located along the extension of the last crack 
segment (Fig.1). 

a) 

 

b) 

 

Figure 1: Examination of crack activation criterion: 
a) standard method and b) extended method. 

The direction of the crack propagation 
usually is determined by analyzing the stress 
field at the crack tip front. Here this direction 
was assumed to be perpendicular to the 

direction of the maximum principal stress. In 
order to smoothen the stress field around the 
crack tip, the average stresses σ* was used for 
determining the crack direction according to 
Wells and Sluys [10]: 

∫=
V

* Vwdσσ , (11) 

where V –  the semi-circle domain at the front 
of the crack tip and w – the weight function 
defined as: 
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where lav – the averaging length related to the 
size of finite elements. Note that this operation 
is not intended to introduce a length of 
microstructure into the model. If the direction 
of the crack propagation is known in advance, 
a fixed value may be applied. A new crack tip 
could be placed at the element edge 
exclusively.  

4 COUPLED APPROACH 

4.1 Transition process 

Initially, in all finite elements (integration 
points), a continuum constitutive law with 
non-local softening was active. A new crack  
segment was created if the following condition 
was fulfilled: 

cdp κκ > , (13) 

where κcd – the softening parameter at the 
transition moment. This inequality was 
examined in all integration points in the finite 
element at the front of the crack tip. 
Alternatively, the extended version could be 
used (Fig. 1). If this criterion was fulfilled at 
least in one integration point, a new crack 
segment was added. The direction of the new 
segment p was not derived from the stress field 
(as in ‘pure’ XFEM) but it was calculated 
using the following formula (after [4]): 

( ) V)(w)(
V

p d∫=
p
p

pξxp κ , (14) 

where p is the direction from the crack tip x to 
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any point ξ in V and w denotes the weight 
function defined by Eq. 12. 

Two conditions had to be fulfilled in the 
formulation of the coupled continuous-
discontinuous constitutive law. The first one is 
stress equilibrium. Initial tractions init

nt  and 
init
st  were calculated by projecting continuum 

stresses onto a crack segment line at the crack 
creation moment. On the basis on the known 
tractions init

nt  and init
st , values of initial 

displacement jumps [ ][ ]init
nu  and [ ][ ]init

su  were 

determined using Eqs (7-10), see also Fig. 2. 
The initial displacement jump [ ][ ]init

nu  was also 

added to the value of the parameter κx. As 
a consequence, XFEM softening in a normal 
direction started not from the value ft  (peak) 
but from the smaller value. A newly inserted 
crack segment had already accumulated 
softening. 

 

Figure 2: Initial traction and displacement. 

The second condition required the 
equivalence of the dissipated energy. The 
energy not yet dissipated in the continuum 
softening should be equal to the energy to be 
dissipated in the discrete softening process 
(starting from ‘non-peak’ configuration). 
When using elasto-plasticity with non-local 
softening and XFEM, dissipated energies for 
the same value of the yield stress are identical 
and no special modifications of the softening 
curve in XFEM is required.  To ensure the 
equivalence of the total dissipated energy in 
the both approaches, it is sufficient to relate 
fracture energy Gf from XFEM with 
parameters κu, m and l in non-local 
plasticity [6]. 

4.2 Gradual transfer 

A change of the width of the active 
localization zone from several finite elements 
in a non-local model to one finite element in 
XFEM may cause some convergence problems 
[5, 6]. To overcome them an improvement was 
proposed here. The proposed extension 
introduced a transfer function ρ which allowed 
for a gradual switch from a continuous 
(smeared) to discontinuous (discrete) softening 
process. It was equal to zero at the tip (no 
discrete softening) and increased to the 
maximum value of 1 (no continuum 
softening). The transfer function ρ depended 
on the value of the XFEM variable κx, Fig. 3. 
Usually the initial value κ0 corresponded to κx 
at the transition moment. The κ1 value 
controlled the “transition speed”. 

 

Figure 3: Transfer function ρ. 

By extending a crack with a new segment, 
nodes and finite elements located in a band 
perpendicular to this segment were doubled. 
The width of a doubled zone covered the width 
of a localized zone (it was equal to 6l in all 
simulations). In the bottom layer of finite 
elements, a continuum law with softening was 
applied. In the top layer of finite elements, 
linear elasticity in bulk and a discrete crack 
with cohesive softening law were used. The 
resultant stresses σ were calculated as:  

σ=(1-ρ)σ C+ρ σ D (15) 

where σC – the stresses in the bottom 
(continuous) layer and  σD –  the stresses in the 
top (discontinuous) layer. The values of the 
transfer function ρ were perpendicularly 
projected from the crack. The doubled element 
sets shared the same nodes along zone 
boundaries (Fig. 4a). As a consequence no 
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special algorithm was required to force 
transfer of the softening between both 
approaches.  

An extension of the proposed method with 
not perpendicular (to the last crack segment) 
band front was also proposed. The deviation 
from the perpendicular direction was 
controlled by the angle αf. The isolines of the 
transfer function ρ were accordingly inclined. 

a) 

 

b) 

 

Figure 4: Doubled FE mesh (grey region) with standard 
(hollow circles) and doubled (black squares) nodes and 

isolines of function ρ for: a) αf=90° and b) αf<90°. 

5 UNIAXIAL TENSION 

The width of the plane specimen was 
100 mm and height 150 mm (Fig. 5). All 
nodes along the bottom were fixed in a vertical 
direction. The tensile deformation was impo-
sed by enforcing the vertical displacement 
increment of all nodes along the upper edge by 
the same amount of ∆u=0.1 mm. In order to 
preserve the specimen stability, the bottom 
mid-node was fixed in a horizontal direction. 

The modulus of elasticity was equal to E=30 
GPa, Poisson’s ratio was ν=0.2 and tensile 
strength ft=3 MPa. Linear softening was 
assumed in the both regimes. The ultimate 
softening parameter in plasticity was equal to 
κu=1.74·10-3. The characteristic length of 
microstructure was l=10 mm and non-locality 
parameter m=2. In order to induce strain 
localization, a zone of weak elements (with the 
tensile strength reduced to 2.99 MPa) was 
assumed at the specimen mid-height. Its height 
was equal to 10 mm. In XFEM, the fracture 
energy was Gf=100 N/m, drop factor df=104 
and tangential stiffness TS=1012 N/m3. The 
simulations were carried out with the transition 
point in a softening regime equal to 
κcd=0.88·10-3 (corresponding to 50% of the 
tensile strength ft). The parameters κ0 and κ1 
were equal to 3.33·10-5 and 5.0·10-5, 
respectively (they corresponded to 0.50ft and 
0.25ft). A family of regular FE-meshes was 
defined. Each mesh  consisted of nc-columns 
and 1.5nc-rows of finite cells. Each cell was 
composed of one 4-node quad element. The 
plane stress conditions were assumed. 

 

Figure 5: Uniaxial tension: geometry with weak zone 
location (shaded area) and boundary conditions (P –

vertical force along upper edge and u – vertical 
displacement of upper edge). 

Figure 6 presents the force-displacement 
diagrams for different meshes. The identical 
curves were obtained. No jumps could be 
observed at the moment of the crack creation 
or when the elasto-plastic model was turned 
off. Although a general crack growth 
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algorithm was applied (with a segment by 
segment crack elongation), the crack was 
created in one increment. By default the 
simulations were performed with the front 
angle αf=0°. The calculations were repeated 
with the different angles αf. No influence of 
the front angle was observed in the uniaxial 
tension; the same force-displacement curves 
were obtained (Fig. 7). 

 

Figure 6: Uniaxial tension: force-displacement 

curves for different meshes. 

 
Figure 7: Uniaxial tension: force-displacement 

curves for different front angles αf. 

6 THREE-POINT BENDING 

The geometry of the concrete beam under 
plane stress conditions was given in Fig. 8. 
Due to a problem symmetry, a localized zone 
and discrete crack were formed along the 
vertical symmetry axis. The imposed final 
vertical displacement was ufin=0.4 mm. The 
Young modulus and Poisson ratio were 
assumed as E=30 GPa and v=0.2. The tensile 
strength was taken as ft=3.0 MPa. In plasticity, 
the exponential softening curve with the 

parameter ku=1.05·10-3 was chosen. The 
characteristic length was equal to l=10 mm 
and the non-locality parameter was m=2. In 
XFEM, the exponential softening scheme with 
the fracture energy Gf=120 N/m was assumed 
and the shear stiffness was Ts=1012 N/m3. The 
default transition point was κcd=7.28·10-3 that 
corresponded to the 50% of the tensile 
strength. Three different finite element meshes 
were defined: coarse, medium and fine with 
600, 1260 and 2280 4-node quad elements, 
respectively. In the mid-region, the refined 
meshes were assumed with 20, 40 and 80 
elements along the vertical symmetry axis for 
a coarse, medium and fine mesh, respectively.  

 

Figure 8: Three-point bending: geometry and 

boundary conditions. 

Figure 9 presents the force-displacement 
curves for the different meshes and front angle 
αf=15°. Only for the coarse mesh some force 
jumps were observed. For the finer meshes the 
curves were always smooth. The simulations 
with the angle αf=0° resulted in convergence 
problems with a fine mesh. It could be caused 
by the regular alignment of finite elements. 
The influence of the front angle αf=15° is 
depicted in Fig. 10. The simulations were 
performed with the medium mesh. For the 
front angle αf=0°, the jumps were again 
observed (even larger than for the coarse mesh 
in Fig. 9). By taking non-zero values of the 
front angle αf, the bumps may be 
reduced/eliminated. The simulations were 
performed with parameters κ0 and κ1 chosen to 
define the transfer zone with the decrease of 
the tensile strength equal to 0.1ft. Figure 11 
shows the influence of the length of the 
transfer zone. When defining a longer transfer 
zone, a smoother force-displacement diagram 
was obtained, even when taking the front 
angle αf=0°. 
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Figure 9: Three-point bending: force-displacement 
diagrams for different meshes. 

 

Figure 10: Three-point bending: force-displacement 
diagrams for different front angles. 

 

Figure 11: Three-point bending: force-displacement 
diagrams for different lengths of transition zone. 

7 NOORU-MOHAMED TEST 

Finally a double-edge notched (DEN) 
concrete specimen under combined shear and 
tension was analyzed (so-called the Nooru-
Mohamed test [13]). The length and height of 
the specimen were 200 mm, and the thickness 

was 50 mm (Fig. 12). Two notches with the 
dimensions of 25×5 mm2 were located in the 
mid-points of vertical edges. During the 
analyzed load scenario, the shear force Ps was 
applied until it reached a specified value, while 
the horizontal edges were free. Then the shear 
force remained constant and the vertical tensile 
displacement was prescribed. In the 
experiment, two curved cracks with 
an inclination depending upon Ps were 
obtained (for the small value of Ps – the cracks 
were almost horizontal, for the large value of 
Ps – the cracks were strongly curved), Fig. 13. 
In order to evaluate the quality of cracks, 
a measure called the crack height hc was 
introduced. It was defined as a vertical 
distance between a horizontal line connecting 
notches and the most far-distant point lying on 
crack lines. In the experiment, the height hc, 
calculated as the average value for 4 cracks, 
was equal to 3.5 cm (in the range 2.7=4.3 cm) 
for the horizontal shear force of 10 kN. 

 

Figure 12: Nooru-Mohamed test: geometry and 
boundary conditions. 

 

Figure 13: Nooru-Mohamed test: experimental crack 
pattern for Ps=10 kN. 
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The Young modulus and Poisson ratio were 
assumed as E=32.8 GPa and v=0.2. The tensile 
strength was taken as ft=2.3 MPa. In plasticity, 
the exponential softening curve with the 
parameter ku=4.20·10-3 was chosen. The 
characteristic length was equal to l=2 mm and 
the non-locality parameter was m=2. In 
XFEM, the exponential softening scheme with 
the fracture energy Gf=75 N/m was assumed 
and the shear stiffness was Ts=1012 N/m3. The 
default transition point was κcd=2.91·10-3 
(50% of the tensile strength).  

Figure 14 presents the computed force-
displacement curves for 3 approaches. Each of 
them provided the results very similar to  the 
 

a) 

 

b) 

 

c) 

 
Figure 14: Nooru-Mohamed test: force-displacement 
curves for: a) pure elasto-plastic model, b) XFEM and 

c) coupled formulation. 

experiment. The calculated crack-patterns are 
depicted at Fig. 15. For the plasticity model 
the crack height hc was equal to 2.8 cm 
(slightly smaller than the experimental value 
of 3.5 cm). In turn, the XFEM simulations  
  

a) 

 

b) 

 

c) 

 
Figure 15: Nooru-Mohamed test: crack patterns for: 

a) pure elasto-plastic model, b) XFEM and c) coupled 
formulation.  
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resulted in the too curved cracks (their height 
was 4.6 cm). In the coupled approach the 
height hc was 2.8 cm (similar as in plasticity). 
Figure 16 shows the influence of the transition 
point. For the largest value of 5.82·10-3 (25% 
of the tensile strength) some discrepancies 
with other curves were observed. In turn, the 
influence of the front angle was insignificant, 
(Fig. 17). The same conclusion was drawn for 
the influence of the length of the transition 
zone (Fig. 18). 

 

Figure 16: Nooru-Mohamed test: force-displacement 
curves for different transition points. 

 

Figure 17: Nooru-Mohamed test: force-displacement 
curves for different front angles. 

8 CONCLUSIONS 

A coupled continuous-discontinuous 
constitutive model for concrete was presented. 
Its performance was tested under uniaxial and 
complex stress state conditions. The model 
was able to reflect basic properties of concrete 
specimens and to reproduce complex crack 
patterns during the Nooru-Mohamed test. 

 

Figure 18: Nooru-Mohamed test: force-displacement 
diagrams for different lengths of  transition zone. 

The presented constitutive law enables 
a more realistic description of cracks in 
concrete elements. The formulation is general 
and it allows for using any constitutive laws in 
bulk continuum (e.g. isotropic version of a 
continuum damage mechanics) and any 
displacement jump-traction relationships along 
cracks. It may be also easily extended to take 
into account a decrease of a characteristic 
length upon loading and to obtain more 
realistic displacement profiles in localized 
zones. 

Currently the comparison of results from 
‘pure’ continuous and XFEM calculations and 
from simulations with the original coupled 
model is under way. In order to investigate the 
influence of the finite element size on the 
convergence and obtained results, the FE-
simulations with other meshes will be also 
performed. 
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