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Abstract: Paper presents an improved version of the constitutive model which combines
a continuous and discontinuous crack’s description to simulate the concrete under tensile dominated
loads. In a continuum regime, a plasticity model with a Rankine failure criterion and an associated
flow rule was used. To describe the width of strain localization and to obtain mesh-independent
results, the continuum constitutive law was equipped with a characteristic length of micro-structure
by applying a non-local theory in an integral format. For describing displacement jumps
along/across cracks, the eXtended Finite Element Method (XFEM) was used. A transition algorithm
between a non-local continuum model and XFEM was formulated. A transfer function was
introduced to enable a gradual switch from a continuous (smeared) to discontinuous (discrete)
softening process. Several benchmarks were numerically simulated with a dominated mode-I
(e.g. uniaxial tension and bending) and under mixed-mode conditions.

1 INTRODUCTION of the boundary value problem. It can be done

Fracture in concrete is responsible for the Py means of e.g. a micro-polar, non-local or

both strength and stiffness reduction and it gradient theories. ~As an alternative,
precedes the structural failure. At the displacement jumps (discontinuities) along

beginning of loading, a region with several Ccracks may be introduced while keeping the
micro-cracks is formed. Later these micro- f€maining region as acontinuous one. The

cracks create a macro-crack. An adequate oldest solutions used interface elements
description of fracture in numerical FE defined along element edges. The modern ones

calculations is extremely important to obtain &llow for considering cracks in the interior of

mechanics, there exist two main approaches to©f XFEM  (eXtended  Finite Element
describe fracture. The first one describes it in Method) [1] based on a concept of the partition

a smeared sense as localized zones of micro-0f unity. A smeared approach is more
cracks with a certain finite width. Since this 2aPpropriate when describing a micro-crack
formulation includes softening, it has to be formation process while a discontinuous one
equipped with a characteristic length of allows for a more realistic simulation of

microstructure to preserve the well-posedness discrete  macro-crack  propagation. Usually,
only one approach is used to simulate
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a fracture process in concrete during the entire
deformation process. A combination of
continuous and discontinuous approaches
make it possible (as in experiments) to
realistically capture all fracture stages. Such
a coupling can be done in several ways, e.g.
the latest approaches combine XFEM with
implicit gradient [2] or integral-nonlocal [3]
isotropic damage models. Wells et al. [4]
combined XFEM with the Perzyna
viscoplastic model.

The continuous-discontinuous constitutive
law presented here is an improved version of
the model earlier formulated [5, 6]. The
original one links a continuous and
discontinuous description of fracture defined
within continuum mechanics. In a continuum
regime, an elasto-plastic constitutive law with
a Rankine criterion and an associated flow rule
is used. In order to restore the well-posedness
of the boundary value problem it is equipped
with a characteristic length using an integral
non-local theory. Discontinuous displacement
jumps are described with XFEM. Discrete
cracks are assumed to follow smeared crack
patterns instead of using criteria based on
a stress distribution. An special algorithm is
responsible for transferring a softening from
bulk points into a newly created crack
segments. The proposed extension introduces
a transfer function which allows for a gradual
switch from a continuous (smeared) to
discontinuous (discrete) softening process. By
extending a crack with a new segment, nodes
and finite elements located in a band
perpendicular to this segment are doubled. The
width of a doubled zone covers the width of
a localized zone. Both doubled element sets
share the same nodes along zone boundaries
As a consequence no special algorithm is

2 CONTINUOUS APPROACH

2.1 Elasto-plasticity

In continuum, an elasto-plastic constitutive
law with the standard Rankine criterion was
used. The yield function for 2D case was
defined as:

f :max{a-vaz}_at(/(p)' 1)
where g1 and o> — the principal stresses; —
the tensile yield stress andqg — the

hardening/softening parameter (equal to the
maximum principal plastic strain &°).
An associated flow rule was assumed. To
define softening under tension, two alternative
curves: a linear or an exponential were used.
The first one was defined as:

) o

o lk,)= max{o, f{l—

where fi — the tensile strength ankl, — the
ultimate value of the softening parametgr
The exponential curve was chosen as:

o.(.)= f,{

Here the parameter controls the slope of
a softening curve (it can be interpreted as an
intersection point of a tangent line from the
peak point with the horizontal axis).
A formulation with this simple exponential
softening curve produces very similar results
to ones with more sophisticated curves, e.g.
the experimentally motivated non-linear curve
by Hordijk [7].
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2.2 Non-locality

required to force transfer of the Softening Strain SOftening causes the i||-posedneSS of the

mechanism. Such a modification overcomes boundary value problem and FE-results
some convergence pr0b|ems observed in become mesh dependent. In order to achieve

simulations with original models. The mMmesh-independent results, a non-local theory

effectiveness of the proposed formulation is in an integral format was used as
verified on several tests including uniaxial @ regularization technique. It is based on
stress states (tension and bending tests) and? spatial averaging of tensor or scalar state

multiaxial stress conditions (the so-called Vvariables in a certain neighborhood of a given
Nooru-Mohamed problem). material point. The rates of the softening

parameter &, were treated non-locally
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according to Brinkgreve [8]: they may pass through elements without

_ o A remeshing. Due to a local nature of the
dKP(X)_(l m)dKP(X)+deP(X) (4) enrichment, extra displacement degrees of

with: freedom are solely introduced into finite
elements cut by a discontinuity. They are
X Laomx - &)k, (€)ag gradually added to subsequent finite elements

d&(x) = W » (5) when a crack propagates. The formulation
J'Vaomx—fn 3 used in the paper follows (with some

improvements and modifications) the original
concept by Wells and Sluys [10]. In order to
describe jumps in the displacement field, the
so-called shifted-basis enrichment was used
[11]. The shifted-basis enrichment simplifies
the implementation of XFEM (two types of the
finite elements exist only). Moreover the total

where x — the coordinates of considered
(actual) point, § — the coordinates of the
surrounding points,m — the non-locality
parameter (it should be greater than 1). As the
weighting functionayp, the Gauss distribution
was assumed:

1 _(sz nodal displacements are equal to the standard
a,(r)=——=e ', (6) displacements.
N In the bulk continuum, a linear elastic

relationship was assumed. An extra consti-
_ - tutive law between displacement jumps]][
pointsx and¢ andl — the characteristic length  and tractions was defined in the crack. The
of the microstructure. The above averaging degradation process was controlled by the
was restricted only to a small area around eachariaple , defined as a maximum value of
material point (the influence of points at the normal displacement jumps uf] obtained
dlsta_nce ofr=3l is only of 0.01%). Therefore during loading. During active loading the
despite a theoretical unbounded support of the goftening of the normal component of the
weighting functionao, the bounded (limited)  traction vectort, was described by the yield

support could be assumed for practical cyryve g, using either a linear relationship:
considerations.

In FE-simulations, an approximated method f.k
" o,=D, f|1- @)

was used to evaluate non-local quantities. In n fh 2G,
the given integration point, the influence of its
neighbors was determined using the values or an exponential one:
from the previous iteration. It enabled us to
simplify FE calculations and to preserve the o =D. f.exg - fiky ®)
locality of plasticity algorithms noore '

where r =|x-¢| - the distance between

f

3 DISCONTINUOUS APPROACH where G; — the fracture energy ard: — the
correction term defined as:
3.1 General formulation

d, f
In order to describe displacement jumps in D; :1—exr{—/(x CfS tJ, 9
continuum along cracks, the Extended Finite f

Element Method (XFEM) was chosen. It iS \here g — the drop factor [12]. This factor
based on a local partition of the unity (PUM) improves the convergence in cases with

concept by Melenk and Babuska [9]. It enables tgngjon-compression changes. With increasing
adding 'ad hoc' extra terms to a standard FE d, the term D; approaches 1. During

displacement field interpolation. These extra unloading, the secant stiffness was used with

functions are responsible for capturing . otumn to the origin (damage format). In

displacement jumps. In XFEM cracks do not , compressive regime, the penalty stiffness in
have to be placed along finite element edges;

3
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the normal direction was used (it depends on
the drop factody). In a tangential direction the
following formula was assumed:
Un
=T, ] (10)
t

with the initial shear stiffnessTs. With
decreasing normal yield tractiam, the shear

tractionts also decreases (due to the decrease

of the resultant shear stiffness).

3.2 Crack growth algorithm

In the 'pure’ XFEM a new crack could be
activated or an existing crack could propagate,
if the standard Rankine criterioroax > f;)
was fulfilled at least in one point of the finite
element at the front of a crack tip. In the
extended version of the activation criterion,
this inequality was examined not only in the
integration points in this element, but also in
all integration points in a circle section with
the radiud¢x and anglege at the front of the
crack tip. This section was symmetrically
located along the extension of the last crack
segment (Fig.1).
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Figure 1: Examination of crack activation criterion:
a) standard method and b) extended method.

The direction of the crack propagation
usually is determined by analyzing the stress
field at the crack tip front. Here this direction
was assumed to be perpendicular to the

4

direction of the maximum principal stress. In
order to smoothen the stress field around the
crack tip, the average stress#swas used for
determining the crack direction according to
Wells and Sluys [10]:

c = IO'VVdV , (11)

\%
whereV — the semi-circle domain at the front
of the crack tip andv — the weight function

defined as:
r.2
GX{— 2I—2J ) (12)

wherel,, — the averaging length related to the
size of finite elements. Note that this operation
is not intended to introduce a length of
microstructure into the model. If the direction
of the crack propagation is known in advance,
a fixed value may be applied. A new crack tip
could be placed at the element edge
exclusively.

4 COUPLED APPROACH

1
CORRE

av

w(r) =

4.1 Transition process

Initially, in all finite elements (integration
points), a continuum constitutive law with
non-local softening was active. A new crack
segment was created if the following condition
was fulfilled:

>ch’ (13)
where kg — the softening parameter at the
transition moment. This inequality was
examined in all integration points in the finite
element at the front of the crack tip.
Alternatively, the extended version could be
used (Fig. 1). If this criterion was fulfilled at
least in one integration point, a new crack
segment was added. The direction of the new
segmenp was not derived from the stress field
(as in ‘pure’ XFEM) but it was calculated
using the following formula (after [4]):

p(x) = [ (e MRV, (1)

[l

where pis the direction from the crack tipto
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any point & in V and w denotes the weight
function defined by Eqg. 12.

Two conditions had to be fulfilled in the
formulation of the coupled continuous-
discontinuous constitutive law. The first one is

stress equilibrium. Initial tractiong™ and
t™ were calculated by projecting continuum

4.2 Gradual transfer

A change of the width of the active
localization zone from several finite elements
in a non-local model to one finite element in
XFEM may cause some convergence problems
[5, 6]. To overcome them an improvement was
proposed here. The proposed extension

stresses onto a crack segment line at the crackintroduced a transfer functigmwhich allowed

creation moment. On the basis on the known
tractions t™ and t™, values of initial
displacement jump‘ﬂui,”“u and [[u‘s”“” were
determined using Egs (7-10), see also Fig. 2.
The initial displacement jumt[u‘nnit JJ was also
added to the value of the parametgr As
a consequence, XFEM softening in a normal
direction started not from the valdie (peak)
but from the smaller value. A newly inserted

crack segment had already accumulated
softening.

A tn

it
tn
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»

Figure 2: Initial traction and displacement.

The second condition required the
equivalence of the dissipated energy. The
energy not yet dissipated in the continuum

softening should be equal to the energy to be
dissipated in the discrete softening process

(starting from ‘non-peak’ configuration).
When using elasto-plasticity with non-local
softening and XFEM, dissipated energies for

for a gradual switch from a continuous
(smeared) to discontinuous (discrete) softening
process. It was equal to zero at the tip (no
discrete softening) and increased to the
maximum value of 1 (no continuum
softening). The transfer function depended
on the value of the XFEM variablg, Fig. 3.
Usually the initial values corresponded tay

at the transition moment. Theq value
controlled the “transition speed”.
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Figure 3: Transfer functiorp.

By extending a crack with a new segment,
nodes and finite elements located in a band
perpendicular to this segment were doubled.
The width of a doubled zone covered the width
of a localized zone (it was equal tb i all
simulations). In the bottom layer of finite
elements, a continuum law with softening was
applied. In the top layer of finite elements,
linear elasticity in bulk and a discrete crack
with cohesive softening law were used. The

the same value of the yield stress are identical "eSultant stresseswere calculated as:

and no special modifications of the softening
curve in XFEM is required. To ensure the
equivalence of the total dissipated energy in
the both approaches, it is sufficient to relate
fracture energy G¢ from XFEM with
parameters x,, m and | in non-local
plasticity [6].

(15)

where oc — the stresses in the bottom
(continuous) layer andp — the stresses in the
top (discontinuous) layer. The values of the
transfer function o were perpendicularly
projected from the crack. The doubled element
sets shared the same nodes along zone
boundaries (Fig. 4a). As a consequence no

o=(1-poctpop
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special algorithm was required to force The modulus of elasticity was equal B30
transfer of the softening between both GPa, Poisson’s ratio was=0.2 and tensile
approaches. strength =3 MPa. Linear softening was
An extension of the proposed method with assumed in the both regimes. The ultimate
not perpendicular (to the last crack segment) softening parameter in plasticity was equal to
band front was also proposed. The deviation x,=1.74-1C. The characteristic length of
from the perpendicular direction was microstructure was=10 mm and non-locality
controlled by the angler. The isolines of the  parameterm=2. In order to induce strain

transfer functionp were accordingly inclined. localization, a zone of weak elements (with the
a) _ localisation zone tensile strength reduced to 2.99 MPa) was
A 7 assumed at the specimen mid-height. Its height

was equal to 10 mm. In XFEM, the fracture
energy wasGf=100 N/m, drop factod=10"
and tangential stiffnes§s=10"> N/m®. The
p=0 simulations were carried out with the transition

i i point in asoftening regime equal to
Ly g K:¢=0.88-10-3 (corresponding to 50% of the
| | tensile strength). The parametergy and &3
Tt were equal to 3.33-T0 and 5.0-16,
: : respectively (they corresponded to @.5hd
e e 0.25)). A family of regular FE-meshes was
discrete crack defined. Each mesh consisted ngfcolumns
b) , localisation zone and 1.\.-rows of finite cells. Each cell was
3 7 composed of one 4-node quad element. The
! ! plane stress conditions were assumed.
i i P 100 i Ip,u
L [ay p=0 T
;/I L L I\:
/! S b ——

discrete crack

Figure 4: Doubled FE mesh (grey region) with standard
(hollow circles) and doubled (black squares) naaes

N

isolines of functionp for: a) 2=90° and b)x%<90°. AN AN A N A N A\ S
Figure 5: Uniaxial tension: geometry with weak zone
5 UNIAXIAL TENSION location (shaded area) and boundary conditiéns (
. ) vertical force along upper edge and u — vertical

100 mm and height 150 mm (Fig. 5). All
nodes along the bottom were fixed in a vertical
direction. The tensile deformation was impo-
sed by enforcing the vertical displacement
increment of all nodes along the upper edge by
the same amount afu=0.1 mm. In order to
preserve the specimen stability, the bottom
mid-node was fixed in a horizontal direction.

Figure 6 presents the force-displacement
diagrams for different meshes. The identical
curves were obtained. No jumps could be
observed at the moment of the crack creation
or when the elasto-plastic model was turned
off. Although a general crack growth
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algorithm was applied (with a segment by

parameter k,=1.05-1¢° was chosen. The

segment crack elongation), the crack was characteristic length was equal t810 mm

created in one increment. By default the
simulations were performed with the front
angle &=0°. The calculations were repeated
with the different anglesx. No influence of

the front angle was observed in the uniaxial

and the non-locality parameter was2. In
XFEM, the exponential softening scheme with
the fracture energ®=120 N/m was assumed
and the shear stiffness was=10"* N/m°. The
default transition point wag.=7.28-10-3 that

tension; the same force-displacement curves corresponded to the 50% of the tensile

were obtained (Fig. 7).

300 -2 — 20 x 30
---- 30 x45
—-— 40 x 60
200 —

100 —

Force P [kN]

N\

W\

0 A -
T T T
0 002 004 006 008 0.1

Displacement u [mm)]

Figure 6: Uniaxial tension: force-displacement
curves for different meshes.

3008~ — ay = (1)5
———- ay =
[\ Ay =30
Z 2004 [ N ay =45°
= \
A /
o \
£ 100
o \
/ \
0 I I I I ™
0 002 004 006 008 0.1

Displacement u [mm]

Figure 7: Uniaxial tension: force-displacement
curves for different front angles a.

6 THREE-POINT BENDING

The geometry of the concrete beam under
plane stress conditions was given in Fig. 8.
Due to a problem symmetry, a localized zone
and discrete crack were formed along the
vertical symmetry axis. The imposed final
vertical displacement was,=0.4 mm. The
Young modulus and Poisson ratio were
assumed a&=30 GPa and=0.2. The tensile
strength was taken &s3.0 MPa. In plasticity,
the exponential softening curve with the

strength. Three different finite element meshes
were defined: coarse, medium and fine with
600, 1260 and 2280 4-node quad elements,
respectively. In the mid-region, the refined
meshes were assumed with 20, 40 and 80
elements along the vertical symmetry axis for
a coarse, medium and fine mesh, respectively.

lP,u

)

hodr
” 600

AN
"4
A /1

Figure 8: Three-point bendinggeometry and
boundary conditions.

Figure 9 presents the force-displacement
curves for the different meshes and front angle
a=15°. Only for the coarse mesh some force
jumps were observed. For the finer meshes the
curves were always smooth. The simulations
with the anglea;=0° resulted in convergence
problems with a fine mesh. It could be caused
by the regular alignment of finite elements.
The influence of the front anglex=15° is
depicted in Fig. 10. The simulations were
performed with the medium mesh. For the
front angle a=0°, the jumps were again
observed (even larger than for the coarse mesh
in Fig. 9). By taking non-zero values of the
front angle a, the bumps may be
reduced/eliminated. The simulations were
performed with parameters andx; chosen to
define the transfer zone with the decrease of
the tensile strength equal to f).JFigure 11
shows the influence of the length of the
transfer zone. When defining a longer transfer
zone, a smoother force-displacement diagram
was obtained, even when taking the front
anglea:=0°.
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120 -4 coarse was 50 mm (Fig. 12). Two notches with the
100 4 \ ---- medium dimensions of 285 mnf were located in the
_ \\ —— fine mid-points of vertical edges. During the
i 80 \ analyzed load scenario, the shear fdPgevas
a, 60 \ applied until it reached a specified value, while
g 40 AN the horizontal edges were free. Then the shear
SR ‘ force remained constant and the vertical tensile
_ displacement was prescribped. In the
0 I I I ™ experiment, two curved cracks with
0 0.1 0.2 0.3 0.4 an inclination depending uponPs were

Displacement u [mm)]

Figure 9: Three-point bending: force-displacement
diagrams for different meshes.

obtained (for the small value Bf — the cracks
were almost horizontal, for the large value of
Ps — the cracks were strongly curved), Fig. 13.
In order to evaluate the quality of cracks,
a measure called the crack height was

120 — ap =0°
100 - ay = 15° introduced. It was defined as a vertical
—— ay =30° distance between a horizontal line connecting
z 80 notches and the most far-distant point lying on
~ 60— crack lines. In the experiment, the heidiat
€ 40— calculated as the average value for 4 cracks,
L;a was equal to 3.5 cm (in the range 2.7=4.3 cm)
20 T for the horizontal shear force of 10 kN.
0 | | | e
0 0.1 0.2 0.3 0.4 IPMI
Displacement u [mm)] N
Figure 10 Three-point bending: force-displacement P, 5, -
diagrams for different front angles. —* 2
5(
120 — [Ap =0.1f,
100 — A ---- [Ap] =0.3f, 4_P5 %
Z \ A
60 — \
. s |
S 40 - X
5 ® 25, 150 25,
€9 20 — L A A A
T Figure 12 Nooru-Mohamed test: geometry and
0 I I I I= boundary conditions.
0 0.1 0.2 0.3 0.4

Displacement u [mm)]

Figure 11 Three-point bending: force-displacement

diagrams for different lengths of transition zone.

7 NOORU-MOHAMED TEST

Finally a double-edge notched (DEN)
concrete specimen under combined shear and
tension was analyzed (so-called the Nooru-
Mohamed test [13]). The length and height of
the specimen were 200 mm, and the thickness

Figure 13: Nooru-Mohamed test: experimental crack

pattern forPs=10 kN.
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The Young modulus and Poisson ratio were experiment. The calculated crack-patterns are
assumed aB=32.8 GPa ang=0.2. The tensile  depicted at Fig. 15. For the plasticity model
strength was taken &s2.3 MPa. In plasticity, the crack heighth, was equal to 2.8 cm
the exponential softening curve with the (slightly smaller than the experimental value
parameter k,=4.20-1¢ was chosen. The of 3.5 cm). In turn, the XFEM simulations
characteristic length was equallt2 mm and
the non-locality parameter wasn=2. In a)
XFEM, the exponential softening scheme with
the fracture energ®=75 N/m was assumed
and the shear stiffness was=10"? N/m>. The
default transition point wasa.¢=2.91-10-3
(50% of the tensile strength).

Figure 14 presents the computed force-
displacement curves for 3 approaches. Each of
them provided the results very similar to the

a) 124 N —— FE-simulations
10 \ ---- Experiment
' 8
=)
A, 6 b)
5}
xS
=,
0 | | T g
0 0.05 0.1 0.15 0.2
Displacement § [mm]
b) 12 4 — FE-simulations
\ ---- Experiment
z
22,
R,
5}
I
=
0 | | T — ©)
0 0.05 0.1 0.15 0.2
Displacement § [mm]
c) 123 —— FE-simulations
/ ---- Experiment
]
!
_ I
A, )
) I
g I
o
0 | | T —
0 0.05 0.1 0.15 0.2
Displacement § [mm]
Figure 14: Nooru-Mohamed test: force-displacement Figure 15 Nooru-Mohamed test: crack patterns for:
curves for: a) pure elasto-plastic model, b) XFEM a a) pure elasto-plastic model, b) XFEM and c) codple

¢) coupled formulation. formulation.
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resulted in the too curved cracks (their height
was 4.6 cm). In the coupled approach the
heighth. was 2.8 cm (similar as in plasticity).
Figure 16 shows the influence of the transition
point. For the largest value of 5.82-10-3 (25%
of the tensile strength) some discrepancies
with other curves were observed. In turn, the
influence of the front angle was insignificant,
(Fig. 17). The same conclusion was drawn for
the influence of the length of the transition
zone (Fig. 18).

—— Kea—1.32-1073
Sm e Req = 291-1073
—— Keq = 5.82-1073

4
12 —

Force P [kN]

0 0.05 0.1 0.15

Displacement ¢ [mm)]

Figure 16: Nooru-Mohamed test: force-displacement
curves for different transition points.

— ay=0°
=== ay=30°

12

Force P [kN]

0

0.05 0.1 0.15
Displacement ¢ [mm)]

Figure 17: Nooru-Mohamed test: force-displacement
curves for different front angles.

8 CONCLUSIONS

A coupled continuous-discontinuous
constitutive model for concrete was presented.
Its performance was tested under uniaxial and
complex stress state conditions. The model
was able to reflect basic properties of concrete
specimens and to reproduce complex crack
patterns during the Nooru-Mohamed test.

10

Force P [kN]

0

0.05 0.1 0.15
Displacement ¢ [mm)]

Figure 18 Nooru-Mohamed test: force-displacement
diagrams for different lengths of transition zone.

The presented constitutive law enables
amore realistic description of cracks in
concrete elements. The formulation is general
and it allows for using any constitutive laws in
bulk continuum (e.g. isotropic version of a
continuum damage mechanics) and any
displacement jump-traction relationships along
cracks. It may be also easily extended to take
into account a decrease of a characteristic
length upon loading and to obtain more
realistic displacement profiles in localized
zones.

Currently the comparison of results from
‘pure’ continuous and XFEM calculations and
from simulations with the original coupled
model is under way. In order to investigate the
influence of the finite element size on the
convergence and obtained results, the FE-
simulations with other meshes will be also
performed.
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