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SYNOPSIS 

In the first of it5 5erie5 of four state-of-the-art reports under preparation， the Committee describes 
the basic concepts of fracture mechanics of concrete， the existing theoretical models， and the methods 
for determining the material fracture parameters. Chapter 1 0仔ers自vereasons for introducing fracture 
mechanics into certain aspects of design of concrete structures， including some code provisions: (1) a 
theoretical energy argument; (2) the need to achieve objectivity of finite element solutions， i.e.， eliminate 
刷 rioU5mesh sensitivity; (3) the pr叩悶ive(propagating) nature of failure， implied whenever the load-
deflection diagram lacks a yield plateau; (4) the need to rationally predict ductility and energy abso刑 lon
capability; and most importantly， (5) the effect of structure size on the nominal strength (iιnominal 
st問5Sat maximum or ultimate load) as well as on ductility and energy absorption capability. The 
slze e'仇ctis due to stored energy release into the fracture front， and is not governed by Weibul1句pe
statistical th回 ry.Experimental evidence on the existence of the size e仔'ect，hitherto ignored in design 
practice and code provisions， i5 documented. 
Chapter 2 gives a brief review of the necessary basic results of linear elastic fracture mechanics 
(lEFM). In concrete， departures from this c1as5ical theory are caused by the existence of dist巾Ijted
cracking (or damage) in a progressively softening fracture process zone which surrounds the tip of a con-
tinuous crack. In Chapter 3 nonlinear fracture models characterizing the softening stress-displacement 
or st問 s-st凶nrelations (such as those of Hillerborg's fictitious crack model， crack band model， nonlocal 
strain-softening models， etc.) are de5cribed and random particle simulation of aggregate microstruc-
ture is discussed. The principles of implementation of these models in finite element programs are al50 
outlined. Chapter 4 presents simpler nonlinear fracture models which represent adaptations of linear 

elastic fracture mechanics， such as Jenq and Shah's modeJ and the R-curve， along with determination 
of geometry-dependent R-curves from the size efTect law proposed by Bafant. This law， describing 
the approximate dependence of the nominal stress at maximum load on structure size， is discussed in 
Chapter 5， and structural response i5 characterized by the brittleness number. 
Chapter 6 presents in considerable detail the current methods for experimental and analytical deter-
mination of material fracture parameters， including the quasi-lEFM methods， RllEM (work-of-fractu問)
method， the Jenq-Shah and Karihaloo-Nallathambi methods， and the size-efTect method. Experimen-
tal determination of the characteristic length for nonlocal continuum models and the strain-50f白ning
properties is then examined， and material parameters for modes 11 and 111， shear fractures and mixed 
mode fracture are also discussed. Chapter 7 then proceeds to de5cribe various influencing factors， such 
as the loading rate， humidity and temperature， as well as the efTect of cyclic loading. Chapter 8 is 
devoted to the efTect of reinforcing bars and their bond slip on fracture propagation， and to fracture 
of fibeトreinforcedconcrete. Chapter 9 deals with more theoretical problems of modeling systems of 
interacting cracks. Attention is focused on systems of parallel growing cracks. Their stability decides 
the spacing and width of the cracks from the mechanics viewpoint. 
It is concluded that， after a decade of rapid progress in 問search，the time appears ripe for introducing 
fracture mechanic5 into design practice. This should not only bring about more uniform safety margins， 
thus improving safety and economy of design， but al50 pave the way for safer and more efficient use of 
high-performance concretes and permit design extrapolations beyond the range of previous experiments 
and design. 

KEYWORDS: Brittle且ess，concrete， concrete structures， crack spacing and width， cracking， da.rnage 
mech姐 iω，design codes， ductility， failure， fiber-reinCorced concrete， nonlocal continuum models， 
reinforced concrete， size effect， strain softening， structural design， testing methods， ultimate loads. 
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Introduction 

Concrete structures are fuU of cracks. Failure of ωucrete structures typically involves 

stable growth of large craεkingzone渇andthe formation of large fractures before the maximum 

10叫 ISre叫 hed.Yet design is not based on fracture mecha.nics， even though the basic fracture 
mecha.nics theory has been a.vailable since the middle of this century. So why has not fracture 
mecha.nics been introduced into∞ncrete design? Have ∞ncrete engineers been guilty of 
jgnorance? Not at all. The forms of fracture mechanics which were available until recently 
were applicable only to homogen田 usbrittle materials such制 glass，or to homogeneous 
brittle-ductile metals. The question of applicabiJity of these classical theori田 toconcrete 
was explored long ago -the id伺 ofusing the stress intensity fa.ctor appeared already in the 
帥 rly1950's (e.g.， Bresler姐 dWollack， 1952) and serious investigations star句din the 1960's 
(e.g.， Kapla.n， 1961，姐dothers). But the叩swerw出，a.t tha.t time， negative (e.g吋 Kesler，
Naus and Lott， 1971). As is now understood， the reason w剖 thatin concrete structures one 
must take into accοunt strain-softening due to distributed cracking， localization of cracking 
into la.rger fractures prior to failure，組dbridging stresses at the fracture front. A form of 
fracture m民 h姐 iωthatc組 beappJied to such structures has been developed onJy during 
the last decade. 

Concrete d田ignh副a.lrea.dys田 ntwo revolutions. The first， which made the technology 
of ∞ncrete structure日possible，was the development of the elastic no・tension姐 alysisduring 
1900・1930.The second revolution， based on a theory conceived chiesy during the 1930's， was 
the introduction of plastic limit 如 alysis，which oc叩 rredduring 1940-1970. There釘 egood
reasons to believe th抗 theintroduction of fracture mechanic8 into the design of concrete 

structur倒， both reinforced and unreiuforced， might be the third major revolution. The 
theory， formulated mostly during the Jast dozen years， finally appea.rs to be ripe. 
Fr】ra舵.ct旬ur，問eresearchers ha.ve a.t the p戸r伺 e叩ntno doubt t凶ha“tもu凶heiI叫1北trodu町I民cも“ωiぬo∞noff合r悶a拭ct旬ur，陀'eme令ト
chaI凶csm叫もωothe design criteria for all bri川efailures of reinforced concrete structures (such 

as diagona.l shω， punching shear， torsion or pull out， or for∞ncrete dams)， c組 bring
about significant benefits. It wi1l make it possible to achieve more uniform safety margins， 
especially for structures of different sizes. This， in turn， wi1l improve economy as well as 
structural relia.bility. 1もwillmake it possible to introdu回目wdesigns and utilize new∞n-
crete materials. Fracture m田 hanicswill be particularly important for high strength concrete 

structures， fiber-reinforced concrete structures， concrete structures of unusually large sizes， 
a.nd for prestressed structures. The application of fracture mechanics is most urgent for 
structur回 such槌∞ncretedams and nuclear reactor vessels or contaiQ.IIlents， for which the 
safety con白血sa.re particularly high a.nd出econsequenαs of a potential disaster enormous. 
Surveys of concrete fracture mechanics have recently been prepared by various commit-

tees (Wittmann， 1983，叩dElfgren， 1989). However， due to the rapidly advancing resea.rch， 
the contents of the present state-of.叶le-artreport訂equite different. A unified， systematic 
presenta'もion，rather than a compilation of all the contributions by va.rious authors， is at-
tempted in the present state-of-art repo比 Thereport is aimed primarily at resea.rchers， not 
ne偲 ssarilyspecialists in fracture mech組 ics.However， it shouJd also be of interest to d田 ign
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engin田 rsbecause it describes a theory tha.t is likely to profoundly influence the design pra.c-
tice in the nea.r future. Subsequent reporもsdealing with applica.もionsin design， finite element 
analysis of fra.cture， and dynamic fra.cture ana.lysis， are in prepa.ra.tion by ACI Committee 
446. 

Chapter 1. WHY  FRACTURE MECHANICS? 

Fra.cture mech組 ics，in a broad sense， is a. fa.ilure theory which (1) uses energy crite-
ria， possibly in conjunction with strength criteria，組d(2) which takes into配∞un色failure
propagation through the structure. 

1.1 Five Reasons for Fracture Mechanics Approach 

Sin田∞ncretestructures have b田ndesigned姐 dsuccessfully built according to codes 
which totally ignore fracture mechanics th回 ry，it might日eemunnec閃 saryto ch姐 gethe 
current praιtice. Nevertheless， there are five compelling re出 onsfor doing so. 

Reason 1: Energy Required for Crack Formation 

From the strictly physical viewpoint， it must be recogni民dthat while craεk initiation 
may depend on stress， the actual formation of cracks requires a certain energy← the iracture 
energy -which represents the surfa.ce energy of a solid. Hence， energy criteria should be 
used. This釘 gumentmight su缶ceto a physicist but not乱designer.But there a.re other 
reasons. 

Reason 2: Objectivity of Calculations 

Any physical山eorymust be objective in the sense that the result of calculations made 
with it must not depend on subjectiveωpects such舗 thechoice of coordinates， the choice 
of mesh， etc. If a thωry is found to be unobjective， it must be rejec七ed.There is no need 
to even∞mpare itもoexperiments. Objectivity comes ahead of experimental verification. 
A powerful approach to finiもeelement analysis of concrete cracking is出econcept of 
smea.red cracking， introduced by Rashid (1968). Aαording to this approach， the stress in a 
finite element is limited by the tensile strength of出ematerial， f:， and after reaching this 
strength limit， the stress in the finite element must decrease. As initially practi田 d，出estress 
was assumed to decrease suddenly to zero， in a vertical dropj but 600n i七W剖 realizedthat 
better and more realistic results a.re usually obtained if the stress is reduced gradually， i.e.， 
the material is assumed to exhibit strain-softening (Scanlon， 1971; Lin and Scordelis， 1975); 
S田 Fig.1.1a. The concept of strain-softening， though， proved to be a mixed blessing. After 
stra.in-softening h吋 beenimplemented in large finite element program.s and widely applied， 
it was discovered that the ∞nvergen偲 propertiesa.re incorrect and the calculation results 
are not objective with regard to the a.nalyst's choice of山emesh， i.e.， the results signifi白川ly
change if the mesh is refined (B話姐t，1976， 1982j Ba.iant and Cedolin， 1979， 1980， 1983; 
Baiant and Oh， 1983a; Darwin， 1985j Rots， Nauta， Kusters and Blaauwendraad， 1985). 
Sirnilar problems a.re encountered when cracking is modeled as discrete interelement cracks， 
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b剖吋onthe山 engthconcept (tms approa.ch was introdu句 dinto finite element analysis by 
Clough， 1962，組dby Ngo and Scordelis， 1967). 
The problem of spurious m包 hsensiもivityωnbe illustrated， for example， by the rectan-
gular panel in Fig. 1.1b and c， which is subjected to a uniform vertical displacement at the 
top boundary. A small region near the center of the left side is掛 sumedto have a slightly 
smaller strength th回出erest of the panel， and consequently a. smeared cra.ck band sta.rts 
growing from left to right. The solution is obtained by incrementalloa.ding with two finite 
element meshes of very different mesh sizes as shown. By stability checks it is found that 

the cracking must always localize into乱 bandof single element width a.t the cra.cking front 
(Fig. l.lb，c). The typical numerical results for 出向回 well錨 variousother problems are 
illustra.ted in Fig. 1.1d，e，f. ln the load-de:fiection di乱gram(Fig. l.1d)， it is s伺 ntha.t the peak 
load as well剖 thepost-peak softening is strongly dependent on the mesh size， being roughly 
proportional to h-1/2 where h is the element size. Plotting the load (reaction) versus the 
length of the crack b組 d，large differences制 againfound (Fig. l.le). 
The energy which is dissipated dueもocracking deαe出回withthe refinement of the finite 
element mesh (Fig. l.lf) and converges to 0 as h→O. 
The foregoing unobjectivity is physically unacceptable. The only wa.y to a.void it is some 
form of fracture mecha.nics. By specifyingもheenergy dissipated by cracking per unit length 
of the crack or the crack band， the overall energy dissipation is forced to be independent 
of the element subdivision (the horizqntal dashed line in Fig. l.lf)， a.nd so is the maximum 
1000. 

Reason 3: Lack of Yield Plateau 

B剖 edon load-deflection diagra.ms， one may distinguish two basic types of structural 
failure: plastic and brittle. The typical characteristic of plastic failure is that the struc-

ture develops a single-degree-of-freedom mechanism such th抗 failurein various parts of 
the structure proc田dssimultaneously， in proportion to a single parameter. Such failures are 
manifested by the existence of a long yield plateau on the load-deflection diagram (Fig. 1.2a). 
If the load-deflection diagram does not ha.ve such a plateau， the failure is not plastic but 
brittle (or brittle-ductile) (Fig. 1.2b). If there are no significant gωmetric e仇ctssuch制
the P-s effect in buckling， the absence of a pla.teau implies the existence of softening in the 
materia.1 due七ofracture， cracking or other da.magej it implies that山efa.ilure process ca.nnot 
develop a single degree-of・freedommechanism but consists of propagation of the failure zone 
tbroughout七hestructure. Soもhefailure is non-simultaneous a.nd propag乱ting.
To illustrate this behavior， consider the punching shear fa.ilure of a slab (Fig. 1.3). The 
typical (approximate) distributions of tensile stressσalong the fa.ilure surfa.ce are drawn in 
the figure. If the material is plastic， the cross section gra.dually plasticizes until a11 its points 
are at the yield limit. However， if the material exhibits softening， then the sもresspeak moves 
across the failure zone， leaving a reduced stress (softening) in its wa.ke. The stress reduction 
is mild only if the structure is small， in which日se出epI舗 ticlimit a.nalysis is not 50 far off. 
If the structure is large， however， the stress profile develops a. steep stress drop behind the 
peak-stress point， and therefore the limit a.nalysis solutions grossly over-estima.te the fa.ilure 
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1000. 

Reason 4: Energy Absorption Capability and Ductility 

The area under the entire load deflection diagram repres四 tsthe energy which the struc-
ture will absorb during failure and must therefore be Bupplied by the loads. Consideration 
of出is四位gyis impor同且tespecially for dynamic loading， and determines the ductility of 
the structure. Plastic limit analysis c孤 giveno information on the post-peak decline of the 
load and the energy dissipated in山isproα別.Some form of fracture mechanics is ne四四位y.

Reason 5: Size Effect 

The size effect is， for design engineers， probably the most compelling re品目onfor using 
fracture mechanics， and so a thorough discussion is in order. 
The size effect is defined through a comp釘isonof geometrically similar structures of diι 
ferent sizes， and is conveniently characterized in terms of the nominal stressσN at maximum 
(ultimate) load，九.When theσN ・valuesfor geometrically similar structur田 ofdifferen t 
sizes are the s晶me，we say tha.t there is no size effect. A dependence of σN on the structure 
size (dimension) is called the si問 effect.
The nominal stress n田dnot repres田 t姐 yactua.l stress in the structure but ma.y be 
defined simply回 σN= Pu/bd when the similarity is twかdimensional，or出凡/cFwhen 
the similarity js three-dimensionalj b -thickness of the tw令 dimensionalstructure，組dd
cha.racteristic dimension of the structure， which ma.y be chosen a.s a.ny dimension， e.g.パhe
depth of the beam， or its span， since only the relative values of σN matter. 
According to the cla.ssical theories， such as elastic analysis with allowable stress， pla.siic 
Iimit ana.lysis， a.s well却姐yother th田 rieswhich use some type of strength limit or failure 
criterion in terms of耐 esses(e.g.， viscoela.sticity， viscoplasticity)，σN is constant，出品 is，
independent of the structure size. This ma.y be illustrated， e.g.， by considering the ela.stic 
組 dplastic formula.s for the 柑 engthof bea.ms in hending， shear and torsion (rega.rding the 
definitionσN=凡/bdfor torsion， note tha.t one ma.y set 凡 =Tu/r where Tu== ultimate 
torque，九==force acting on an arm， r， such thaもr/ H or r / a is constant for similar structures 
of different sizesj H = cross section depth， a = crack length). It is seen that油田eformulas 
釘 eof the same form except for a fa.ctor. Thus， if we ploもlogσNvs. log d， the failure states 
according to a sもrengthor yield criterion are alwa.ys given by a horizontalline (dashed line 
in Fig. 1.4). So failures乱ccordingto strength or yield criteria ex:hibit no si田 effect.
By contra.st， failures govern吋 bylinear elastic fracture mecha.nics exhibit a rather strong 
size effect which in Fig. 1.4 is d回cribedby the inclined dashed line of slope -1/2. The reality 
for concrete structures is a transitional beh前 iorillustra.ted by the solid curve in Fig. 1.4. This 
curve approaches the horizontalline for the strength criterion if the structure is very small， 
組 dtbe inclined straight line for linear elastic fra.cture mechanics if the structure is very large 
(the precise meaning of“very small"姐 d“ve可 large"will be clarified by Eq. 5.11). This 
size effect， which is generally ignored by current codes (with a few exceptions)， is obviously 
important in design. 

Another size effect which calls for the use of fracture mechanics is effect of size on ducti1ity. 
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Ductilih of a struesure may be charaC4erized by the deformation at which出estructure fails 

mおむニ;rrrニiむozrJ;i;:::;と22Jぷ立:eu;エ71J
A i s p l a捌 len t conkol ( i e . i叫m叫n叩lpOωs吋 disがpμIa.蹴c回悶em醐1
dev吋ice偲sf芯aili泊n色出h隠凶eirpost-peak， str3oin-softening r却炉・ In a. plot of σN versus desection， the 
failure point is ch3ora.cterized by aもmgent(dashdline in Fig.15)d a certain eon伽 nも

な丘公立政ぷh;22e;出品治誌とぷねじ;Zdtt;:沈
type st1OLn in Fig.15.As illustr晶，ted，failure occurs closer to the peak回 Slzemcre国ω.
This efTed isagain generally predicted by fracture mechanich due to the fact that in a 
l30rger structure mo陀 str30inenergy is肝包l30bleもodrive the propa.gation of the failure zone. 
A deczease of ductility of a sU11cture represents an increase in its brittleness-
The well-known effect of structure size or m四 lbersize on cr30ck sp30cing a.nd crack width 

is also expliC30ble by fr30cture mecha.nic渇・ The spu巾 useffect of mesh si田(Re剖on2) c組
be rega.rded as 30∞nsequen田 ofthe structu凶 sizeeffect (this c姐 beshown by ∞nsidering 
struchums of diferent size buwith the same mesh sim，組dthen scaling all structures to 

the same size 3olong with the meshes). 

1.2 Is Weibull's Statistical Theory of Size Effect Applicable? 

Traditionally， the size e仔ecthas been explained statistically， by ra.ndomness of出estrength 
value.The failure load of a ch&in is ddermined by the minimum value of the strength of 
the links in the chain-and the sutMical Bim etreet is due tobhe fact thaもthelonger the 
chain， the sma.ller isふ耐eng出 valuethat is likely to be encountered in the chain. This 
explanation，which is certainly correct for the simebd observed in the failure of a lopg 
-formIv shressed concrete bM in henSion (Fig. la)， is described by Weibd's w哨ea北k悶e剖s凶も llnk

s“t凶胤凶a抗凶t“is“蜘t
d30紅.requestionable for the following r問eaωson.
According to Weibull-wpe theory offailure(Weibull，1939;Zaibev姐 dWitt中ann，1973; 
Mil邸 hia.nd Zaitsev， 1981; 組 dCarpinteri， 1986)， the probability of failure of a structure 
under 1000 Pωd the mean nomina.l stress 30t failure a.re: 

日 (P)= 1-exp {-L r但豆r号斗 (1.1) 
I JV Iσ'0 I Vr J 

O'N =主=土f∞[1-P帥 (P)]dP
bd bd 10 

(1.2) 

WIleze P=mean load.x=coordinate vectors，V=volume of sbmctuEe，E4=represenも30tive
volume of maherial {the smallest volume for which a material with discrete microstrmure 
an be tre30ted回 a∞ntinuum)，m = Weibull modulus of the maもeria.l，σ。=sca.le parameter. 
The key to applications ofU1e Weibull 山田町isfunction σ(P， x)， representing the stress 
sed by lo3od P 30t point x (for t伽h並re砕e吋dime叩ns凶B叩i

imu叩1mp戸ふふikhTnm1

円・園田・ーー幽
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in general， failure occurs right a.t the initiation of the macroscopic crack growth. For those 
s山ctures，functionσ(P， x) is known;σ(P，x) = PSe{と)where ( = x/d = relativeωrdinate 
vectors， d = cha.ra.cteristic dimension of the structure， and se({) is the ela.stic str回 sdistri-
bution due to unit 1000 (P = 1). The s30me assumptions ha.ve often been implied in various 
Weibull-type studies of concrete structures. 
Concrete structures， however， beh30ve differently. Due， to reinfor四mentas well as the 
existence of str3oin-sofもeningin a Ia.rge zone of microcracking ahead of出etip of a oontinuous 

cr低k，concrete struct町田 donot fail at crack initiation. In fact， design codes require the 
failure 10M to be signific叩 tlyhigher than the crack initiation load; for bending， a.t lea.st 1.25 
times higher for u印刷ressedbea.ms and 1.2 times higher for prestressed bea.ms (according 
もoACI 318)， but in pra.ctice this ratio is usually much higher. Consequently，品∞ncrete
structure undergoes pronounced inelastic deformation 岨 dmacroscopic crack growth prior to 
reaching the failure load. This causes stress redistributions， such that the stress distribution 
σ(P，x) a.t failure is very different from the elastic stress distribution se(C). 
This distribution is difficult to determine， but the near-tip asymptotic elastic stress field， 
PSe({)， ma.y be used as an叩pr似 imation30もdistancesnot too fa.r from and not too c10se 
to the tip of出emacrocrack a.t the moment of failure. Now， due to singularity of this field， 
the stress va.lues f，紅白eraway from the tip of the macrocrack are relatively small a.nd make 

a negligible contribution to O'N (Eq. 1.2)∞mp30red to出e山間偲 inthe volume 竹 ofthe 
台actureprocess zone砿oundthe tip. This of course reflects the fa.ct that the volume in which 
the macrocrack tip at failure might be located (as dictated by the laws of mech30niα) is very 
small (e.g. the diagonal sh悶 crackin Fig. L6b ca.nnot grow toward the lower midspan 
regiωor toward the upper left corner of the beam， regardless of the strength values there). 
Consequently， the statistica.l size effect must be smaller than in a uniformly stressed 
tensile bar， where fa.ilure is precipitated by a m3ocrocrack 30nywhere within the volume of the 
bar. Thus， as pointed out by Ba.zant (1986， 1987a)， if one calibrates Weibull pa.rameter目
m 姐 dσ。onthe basis of uniaxia.l strength tests a.nd then uses the same p30rameters to 
predict PJ and O'N for di乱gonalshear failure， one must find the statistic30l size effect to be 
rather small. Thus， even though limited test results for diagona.l shear f30ilures ha.ve been 
successfully fitted by formulas based on the Weibull distribution， the size effect d30ta for both 
the diagona.l shea.r failures a.nd the uniaxial failures cannot be successfully fitted using the 
same materia.l para.meters (unless姐 i且∞rrecもelasticstress field Ps.(() is used). 
Thus， the principa.l fault of the Weibull-type st3otistica.l explana.tions of the size effect in 
concrete structures is thωthey ignore the si民 effectcaused by the redistribution of sもress
σ (P，x) prior tωof.仏悩a必ilure.This size effect， which is of the fra.cture m配 ha.nics type， is 踊 S民 ia.t 吋
with the energy release into the front of a. large crack a.nd would exist even if the material 
behavior were deterministic. 

Therefore， the proper approach is to fit the size effect data. for a cODerete structure first 
by a. fracture mechanics theory， a.nd only if some part of the observed size effect rema.ins 
unaccounted for it m晶ybe attributed to Weibull-type sta.tistical phenomena (Ba.zant， 1986， 
1987a). 

WeibuIl theory then describes a size effect of the volume of the structure， expressing the 
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facももhatthe larger the volume， the gr帥 teris the chance of en∞untering a critical microscopic 
flaw that triggers failure. Thus，回 f乱r加 theloa.d at initiation of craεking (or damage) is 
∞n伺 med，Weibull-type 油田ryis， ofωurse， applicable. Saouridis (1989) demonstI叫edthat 
by analysis of L 'Hermite's tests of si田 effectin unnotched beams. Ind田 d，出 longa.s there 
are no s紅白8redistributions， i.e.， all str側部 arefixed in their proportion to the 1000， the 
interaction of the elem四 tsof the structure is mathematically equivalent to a series coupling 
of elements， the same a.s in a uniaxially str邸 sedbar of variable cross section. When出ereare 
stress redistributions， however， the structure behaves as a∞mbination of series and parallel 
couplings. But Weibull's theory is va.lid only for series coupling，舗 ina chain of elemen旬
(hence the term “weakest-link山 tistics"). 
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1.3 Simple Energy Explanation of Size Effect 

The fra.cture mechanics type size effect， which is due to energy release， can be simply 
explained by considering the uniformly stressed planel with a crack or crack band of initia.l 
length a :0 ao， shown in Fig. 1.7. It may be imagined that the formation of a. crack band 
of thickness h reduces the strain energy densityσゐ/2Ein the cross-hatched ar伺 tozero (E 
:0 elastic modulus of concrete). When the cra.ck ba.nd extends by a， the additional strain 
energy that is relea.sed comes from the densely cross-hatched strip of horizontal dimension 
Aα(Fig. 1.7a). If the failure modes are gωmetrica.lly 5i凶 lar，拙 isusually由ec剖 e，then 
the larger the panel， the longer is the crack band at failure. Consequently， the area of the 
densely cross-hatched strip is also larger， being given by h6a + 2ka6a where k = empirical 
constant depending on the sha.pe of the structure. This illustrates tha.t， in a. la.rger structure， 
more energy is relea.sed by the same extension of the crack band. The energy released from 
the strip is -6IT/6α :0 Gjb， i.e.， 

土(h6a+ 2ka6a)生 =G，b
6a、 '2E -J 、.，J。d'i r・・、

where II = p卯ot総en凶ti凶叫e叩ne釘rgy自“to町r吋 i泊nt出hes蜘tむru町ct旬ur凧e，b = thickness and G匂f= fracture e叩neぽrgyy 
(dimension J刀'1m2η)= en巴r喝gyneeded tωocαr白 t旬e晶f仕ra配ct削ur児eo叫rc.αrack hand of un山1
the third direction) unit width. The value of Gj is approximately∞nstant and represents 
a material property. Solving from Eq. 1.2 for the nominal stress， one obtains the size effec七
law proposed hy Bazant (1984a): 

+
+
z
b
 

z 
yコ

{ロ
)

(1.4) 

where B = (2GjEb/h)1/2/f;， do = (h/2k)(d/α) = reference size which depends on the shape 
of the structure but is independent of structure size if the structures are geometrically similar 

(because d/α= constant);刀=tensile st問ngth，introduced for conveniencej and h = width 
of the crack band front， which may be treated approximately出 constant，independent 
of struCture size. Empirical1y， do竺 ndawhere da = maximum aggregate size and n is 
approximately constant when d 01' da is varied， but depends on structure geometry. Eq. 1.4 
will be discussed more in Chapter 5 and derived in Appendix 1. 

s= d/ゐσN=Bf:(I+β)ー1/2，
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L回tone might get出eimpression thathhis explanation of tbe size efect works only for 
p，d band but not forashrp line crack，consider the sagEe panel withaline craιk of 
lengthωhow山 Fig.1. 7b for 5凶叫anelsof制 erents問 Iωn伺いhereis always 
izeable合acurepm-zoneahead ofthetipofacontinuouscmkof回 mefinite length 
hich may， in the crudes七approximation，beconsidered coastanb.Over bhe length of th-
zn the transverse normal stms gradually drops fromれ oO. Because of出iszone， the 
l部 ti c al l y 叩 lV 伽 t crack length which cau 附 the 附 aωs鈴se0刊ofstra日叩，
t旬eria凶ali抱slonger t出ha釦nthe continuous cαra配.ck1佃 gt出h，a， by a. dist組問cwhich is approximately 
a material COIlsharib.(SKidly speaking，c vazies，but much less bhan in proportion toUIe 
size-Anyway，a rIloreinvolved derivation in which c is variable yields the sune reE111t，md 
ill be indicated jusもbeforeEq. 5.5.) 
When the crack extends by length sa， the fr邸 tureprocess zone travels with the crack-tip， 
d the asea from which additional strain energy is released consists ofbhe Mrips of horizontal 

dimensionωwhich are densely cros山a.tchedin Fig. 1ル Theira.rea is k( ao + c) where 
k is approximately a constant.The energy released Per unit crack advance，-6h/6a，must 
equal to G Jb where G J ~ the仕a.ctureenergy of the materia.l， and自O

• _2 

ヰ2k(ao+ c)ßa;~ = GJb (1.5) 

Solving this equa.tion for σN， one again obtains the size effect law in Eq. 1.4 in which now 
B = (EG Jb/ kC)1/2 /刀，do= c(d/α)=constani-
Eq. 1.4， which describes出etransition畠1si民 effectgiven by出esolid curve in Fig. 1.4， 
h山oobdinedformiOIlsother BU11ctu叫 geometries.For la.rge siz民 thecurve of Eq. 1.4 
in Fig. 1.4 approaches a straight line of slope -1/2， which repr白entsthe size effect of linear 
lastic fracture mech回 ics(see Sec. 1.2). 
Eq.1.4can also be derived，in a COInplebe1y general way，by dimensional 姐 alysis姐 d
dniliudeuguments(Batant，1984a)・ThiBgeneralddvMionmts?n twoba肌 hypotheses:
(1)the propagabion of a fracture or crack band requmsmapproxmately∞nstant energy 
supply (出efracture energy， G J) per unit a.r帥offracture pla.ne， and (2) the potential energy 
leased by the structure due to the propagation of the fracture or crack band is a function 

of both the fracture length aad the size of the fracture process zone at the fracture front. 
It must be kept in mind th以 Eq.1.4 is appro泊mate，valid only within a size ra.nge of 
about l:20(i.e.，the largest structure for which Eq.1.4can be applied is about 20tiE犯S
1argerぬmitlesmallest shrMure)For a broader simrange，a more complicated formula 
would be required. Neverthel由民tbeaforementioned size range is su館cientfor most practical 

purposes 
The-ain problem with the weibull句 pestatistical theory for the size effect is th抗
the existing works ignore stress redistrib凶ionsand the consequent energy release from the 
structure (as illustra.ted in Fig. 1. 7 and manif，倒edby hhe size efectlaw).The shatMi?1 
e:ffect、shouldproperly appear only出回 additionto the fracture mechanics type Slze 
e:ffect (which is determinis州， and would ha.ve to describe only山 tpart of the size e:ffect 
whichis not explMried by th-fracture mechanics size eRect.So hr，such ∞mparisons have 
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not indicated any la.rge systema.tic deviations which would require some other expl.組ation，
such as statistical. 
Applications of Eq. 1.4 to brittle failures of concrete structures r田 ton two additiona.l 
hypotheses: (3)もhefi必luremodes of gωmetrically simila.r 印刷resof different sizes a.re 
d田 g回 metricallysimila.r (e.g.， a dia.gonal shear cra.ck 1同 atfailure a.bout the sa.me slo戸
組dthe same relative le碍th)，a.nd (4) the抑 uctured附 notfail at crack initiation (which 
is a requirement of good de田SI沼gn斗 Thesehypotheses are usually applica.ble， but not always 
over the entire size r組geof interest. A su伍cientlyla.rge cha.nge of size ma.y alter the failure 

mode and thus render Eq. 1.4 inapplica.ble beyond that size. (This a.ppa.rently is the case 
for the br詔 illiansplit cylinder tests.) 

1.4 Experimental Evidence for Size Effect in Structures 

Extensive tests have been ca.rried out to verify Eq. 1.4 for va.rious types of failure of 
concrete structures (using microconcrete specimens). Good agr田 mentof Eq. 1.4 with test 
results has been demonstra.ted for: 

1. Diagonal shear fa.ilure of beams (Ba.Za.nt組dCω，1986bj Ba.Z組t組dKazemi， 1989a.). 

2. Punching shear fa.ilure of slabs (Ba.Z組tand Cao， 1987). 

3. Torsional f，心lureof beams (Ba.Zant， Sener and Prat， 1987). 

4. Pullout failure of reinforcing bars (Ba.丞姐b組 dSener， 19槌).

5. Double-punch tests of cylinders (Ma.rti， 1989). 

Typical experimental results， which c組 berega.rded回 averification of the applica.bility 
of fracture m配 hanicsto the brittle failures of ∞ncrete structures， a.re shown in Fig. 1ふ
1.11 (tests ma.de at Northwestern University ∞ microco恥 retespecimens with a.ggregωe 
of maximum diameter 3/8 in. or 1/4 in.). As further evidence of applica.bility of f:日cture
mechanics， Fig. 1.12 shows， for the punching shear fa.ilure， that the pos七・pea.k 10ad drop 
becomes steeper and la.rger as the size increa.ses. This is because in a larger specimen there 
is (for the sameσN) more enぽgyto be released into a u凶 cra.ckextension， but since the 
金actureextension dissipa同 the制限amountof energy， the value of dN (姐 d出usthe 10吋)
must be reduced踊 thestructure size incr回 ses.
Note alωthat the shape of the measured size effect curv閃 (Fig.1.8・1.11)does not rea.lly 
a.gr偲 Wlもhthe Weibull-type statistical model， for which the slope of the curve would ha.ve 
to diminish rather th組 increasewith increasing size and approa.ch a. horizontal asymptote. 

The existing test data on∞ncrete specimens with regular-size aggregate reported in 
the literature also offer evidence of size effect， and山eneed of a. fracture mechanics based 
e却la.nationhas been pointed out by va.rious resea.rchers， e.g.， Reinha.rdt (1981a，1981b) or 
B話相ta.nd Kim (1984). The d品同 fromthe litera.ture are generally found to agr関 with
Fig. 1.4， buももhisevidence is not very strong because the da.ta exhibit very la.rge sta.tistical 
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scatter. Due to 8catter， about equa.lly good五ts臼.nbe ob句inedwi出 othertheories of 
size effect， e.g.， Weibull's statistical theory. Although part of the scatter is inevitable and 
random， most of the huge scat七erobserved in brittled failures such ωdiagonal shear probably 
stems from the fact tha.t the test specimens of va.rious sizes were oot geometrically simila.r， 
姐 dso theoretical adjustments must be made for the factors of shape before a comparison 
with Eq. 1.4 can be made. Since出eexact theory is not known， such adjustmen旬 introduce
additional e町'Or8.1n addωi比七“10叩nt句othe 自“tructu町1げr色佃slisted aぬbo仰ve久，available ∞mpa紅叩risonsw別it山ht旬es“t 
d也at句aalso i泊ncl山lude色出山hebeam and ring f.仏ωωa♂'ailリlu町re田sofun町r附e
1悶984;B乱a.Za:組.nt組dCa.ω0， 198筋6a吋).Comparisons with the bulk of test data a.vailable in出e
litera.ture were made for diagonal shear failures of both unprestressed and prestressed beams， 
姐 dbeams without and with stirrups (Bazant and Kim， 1984; Ba.Z叩tand Sun， 1987; Ba.Zant 
姐 dCω，1986b)， as well as torsional failures (Baza:nt and Sener 1987). Statistical analysis 
W剖 includedin these studies. 

1.5 Explanation of Size Effect on Ductility 

Structural action is normally a combination of series and parallel couplings of the cra.cking 
zones and the uncracked (elastic) zones. The size effect on dudility is e却 lainedby the seriω 
coupling aspect. Consider a cracking element coupled with an elastic element as shown in 
Fig. 1.13. The load-displacement dia.grams of these elements are also shown. Sin白山eforce 
in both elements is the same and the deformations are superimposed， the response of both 
elements combined is obtained by passing a horizontalline at each level P and summing the 
corresponding deformations a回 db，舗 shownin Fig. 1.13. If the elastic element is sufficiently 
soft， this c組 obviouslyproduce a load-di自placementdiagram which exhibits the so-ca且ed
snapback， in which the displacement dia.gra.m turns back a.t a positive slope. The sna.pback 
behavior is unstable even under displacement ∞ntrol， and the structure fails at the maximum 
displa.cement， la.beled as Ucr• This displacement represents a. ductiliもylimit for the system. 
Since the addition of a:n ela.stic element is equiva.lent to increasing the size of the structure， 
it is clear that姐 increaseof size tendsもod田reaseductility. Ductility is not a ma.terial 
property but a strudure property which is governed by fracture m配 hanicsand depends 
on structure size (as well as the type of∞ncrete). It is worth noti碍 tha.tHawkins (1984) 
identified twenty-nine provisions in the ACI Code which seem to be empirical but could 
probably be explained by fracture mechanics. They include va.rious ductility limi泊tions，
conditions for minimum reinforcement， crack spa.cing and crack width， etc. 
To sum up， the experimentally observed strudural size e宜ect，国 wella.s the related 
spurious effect of the mesh size， presents the most potent ar伊 mentfor the application of 
fracture m民hanicsto concrete structures. 

P 
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Fig.1.13 Ch臼 gein Post-Peak Load-DeB.ection Diagram Due to Series 
Coupling with Elastic Element 
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Chapter 2.ESSENTIA_L !!-~S!!_LTS FROM LINEAR 
ELASTIC FRACTURE MECHANICS 

In linear elastic fracture mechanics (LEFM) it is assumed that all of the fracture proc倒
happens at出ecrack tip and thaももheentire volume of the body remains elastic. Under 

this assumption， the questions of cr拭 kpropagation and structural failure can be solved by 
methods of linear elasticity. 
It is convenient to distinguish three elementary {racture mod民 Modes1， II姐 dIII， a1so 
called the opening mode， the planar shear mode and the antiplane shear mode; see Fig. 2.1. 
Modes 1 and II are planar symmetric a.nd antisymmetric， while Mode III is three-dimensional. 
General fra.dure is a linear combination of these three modes. 

2.1 Stress Singularity 

Introduction of a. cra.ck inもoa. linear elastic body produces stress concentra.tions near the 
crack tips. This may be illustra.ted by the perturbation of the traj民tori田 ofthe maximum 
principal stress shown in Fig. 2.2. The stress field is singular at the crack tip， with a11 the 
Donzero str伺 S∞mponentsapproaching infinity as the ra.dial distance r from the crack tip 
tends to zero (Fig. 2.3). ln a sufficiently close neighborhood of the sharp crack tip， the s紅白B
components町jare the same regardless of the shape of the body and the manner of loading， 
姐 dmay be expr田sed部:

σL = Iufl(l})(2付t1/2，σu= J(llfi~[(())(2附)ー1/2 ， σUI = kmLYI(6)(2πrt1/2 (2.1) 

Here the subscripts and superscripts 1， 11 and 111 refer to the elementary modes， 8 is the polar 
angle， J(I ， /(II and 1(111 are parameters called七hestress intensity factors， and functionsん
a削 hesame regardlωs of the body geom向 andthe manner of loading. For example， f[l (0) 
=0ωα(1 -sinαsin3α)， fム(0)=∞sα(1 + sinαsin3α)， fl2(0) = Cοsαsin2αcos3α， where 
α= 0/2; see e.g.， Knott (1973)， Broek (1974)， Owen and Fawkes (1983)， Hellan (1984)，回d
Kanninen姐 dPopelar (1985). 

2.2 Energy Criterion 

The fact that， according to the th田 ryof elasもicity，もhestress near the cr晶cktip approaεhes 
inn.nity， no matter how small the load， was noted by Griffith (1921， 1924) on the basis of the 
previous solution for elliptical holes by Inglis (1913). He concluded that， if linear elasticity 
is used， one cannot introduce a strength criterion as a condition of failure， b凶 mustinstead 
decide failure on the basis of an energy criterion. As the crack tip propagates， energy 
flows into the crack tip where it is dissipated by the fracture pro印 5S. The energy fiow is 
characterized by the energy release rate which is expressed出:

θll(α) _. 1 rTTI ，Lla， TTI .d.aJ 
b=ーすf2-E lH(a+す)-II(αーτ)J (2.2) 
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Fig.2.2 Principal Stress Trajectories in a Cracked Specimen 

Fig.2.3 Stress Distribution Nea.r Crack Tip 
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in which II = U -W = potential en釘gyof the structure， W = work of loads， and U = 
strain energy of the structure as a function of the crack length a. Eq. 2.2 also gives a finite 
difference a.pproxim叫ionwhich ma.y be us吋 toca.lculaもeG by the finite elem叩 tmethod. 
For that purpose one ma.y model the crack剖 aline gap betw.四nadja伺 ntelements a.nd 
calcula.te the strain energy stored in the mesh for the crack tip displaced by eiもher-Aα/2 
or Aa/2. Instead of using姐 interelementline cr拭 k，one may， for the sake of convenience， 
model the crack byωnsidering a band of elements to have zぽostiffness (if one uses a mesh 
of square elements whose size is not more th姐a.bout0.1 of the cross section dimension， the 
error of considering a crack band instead of a line crack is usually less山拍 1%;s閃 BaZa.nt
姐 dCedolin， 1979). 
According to Gri伍th，the condition of crack propagation (critical state) is 

G=G， (2.3) 

G is the fracture energy， which hasもhedimension of J /が (or N/m) and represents a ba.sic 
material property. For Gく G，， the crack cannot propagate， and for the case G > G， 
equilibrium is impossible. If G = G， and dG /θa > 0， which is normally the case， the crack 
is unstable under 10吋 control(i.e.， the structure fails). There exist，'however， some cases in 
which G = Gf and dG/θα< 0， and then the crack can grow under load control in a stable 
manner. 
The energy release rate for modes 1， II and 111 may be expressed on the basis of the stress 
intensity factors as foIIows: 

GI = Ki/E'， GII = KldE'， Gm == KlII/μ (2.4) 

i立whichμ= elastic shear modulus， for the case of plane stress E' = E = Young's elastic 
modul民 forthe c剖 eof plane strain E' = E/(l -v2)， and v = Poisson's ratio. For general 
loading， the tota.l energy release ra.te is: 

G = GI + GII + Gm  (2.5) 

The stress intensity factors are proportiona.l to the applied load， and may generally be 
expressed in the form: 

IfI=EJ石f(α)= :: v'd~(α) ， α = α/d bd V .• -. ¥ -， bd (2.6) 

in which f is a certa.in nondimensional function of the rela.tive crack length α(d = character-
istic structure dimension)， and ~(α) = f(α).j石:::::a.no山ernon-dimensional function. For 
various simple geometries of notched fracture specimens， accurate expr田 sionsfor function 
f are available inもextbooksand handbooks (e.g.， Tada et al.， 1985， and Mura.kami， 1987). 
For other geometries， the function f can always be calculated by linear elastic analysisj e.g.， 
through a finite element program. For the special case of a single line crack of length a in an 
infinite solid subjected aもinfinityto nominal str回 SσNin the dir配 tionnormal to the crack 

plane， one h硝 f(α)= 1. Eq. 2.6 shows 由民forg加 metricallysimila.r structures of different 
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siz回，the stress intensity {actor is proportional to出esquare root ofもhesi田，and the energy 
release rate is proportional to the size of the structure. 
Instead of Eq. 2.3， the condition of mode 1 crack prop乱.gation(critical state) can be 
expressed in terms of the stress intensity factor as: 

KI = K1c (2.7) 

in which Klc = critical value of K[ ， which is also called fracture toughness and represents 
a 回以erialproperty; /(Ic = GfE'. H Eq. 2.7 is substituted into Eq. 2.6， the nominal 抑制
at failure (crack propagation) is obtained as: 

Kfc Klc 

σN=百雨=万ね (2.8) 

It may be noted出at，according to Eq. 2.8， 

logσN=十ogd+∞M (2.9) 

This relation shows tha.t the size effect ploもaccordingto linea.r elastic fracture mechanics is 
佃 i吋 inedstraight line of slope -1/2 (Fig. 1刈.

2.3 Limits of Applicability 

In reality， the fracture process cannot take place at a point. The f旨actureprocess zone 
must have some finite si民.According to Irwin (1958)， a crude estimate of the length r， of 
the fracture process zone may be ob臼inedby setting the transverse normal stress in Eq. 2.1 
ωbe equal to the tensile strength刀.This yields 

1 /(10 lo 
r， = 211' f:-(.= 211" P.n = K~c _ E'G_' --

U - f? -ff (2.10) 

Note that this length is expressed only in terms of materia.l properties，組dtherefore is 
a materia.l property， too. An alternative estimate of the size of the fracture process zone of 
∞ncrete can be b出 edon the maximum a.ggregate size da • B話相もandOh (1983a) concluded 
thaもthelength and effective width of the fracture process zone of concrete in three-point 
bend specimens are roughly 12dQ 組 d3da， respectively. 
Linear elastic fracture mechanics is applicable when r J is much smaller than the cross sec-
tion dimension of the structure. This condition is not sa.tisfIed for most concrete structures， 
with the possible excepもionof some very la.rge structures such as concrete dams. However， 
a more precise criterion for the applicability of linear elastic企配turemechanics， which also 
takes into account the structure sha.pe and the m組問rof loading， c組 begiven in terms of 
the回・臼且edbrittleness number，β， which wiIJ be explained in Sec. 5.2. 
The inapplicability of linear elastic fracture mechanics to brittle failures of typical ∞E 
crete structures is clearly apparent from the test results shown in Fig. 1.8-1.11. The data. 
points indicate a milder size effect th回 thestraight line of slope -1/2. 
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Chapter 3. NONLIN~AR_ ~~AC_TP"~ß MODELS 
WITH SOFTENING ZONE 

The reason for deviations of concrete behavior from linear elastic fracture mechanics 
is the development of a relatively large企actureprocess zone which undergoes progressive 
softening damage due to microcracking. The effect of this microcracking is: (1) to reduce the 
a四 ofene曙ythat can be released into仕lecrack tipi and (2) at the sameもimeto increase 
the combined surface area of cracking， and thus enhance the energy absorption capa.bility of 
the fr拭 tureprocess zone. 
Therefore， a relation describing the softening damage needs to be included in the fr配 ture
model. This can be done basically in two ways: (1) in the form of a. stress-displacement 
relation for the frontal zone of a line crack， or (2) a. stress-strain relation for the strain-
softening (microcracking) region in front of the main crack. We will first describe these 
approaches and then discuss their relative merits (For further discussions， s田 e.g.Plan舗
and Elices， 1988a;恥 ts，19郎).
In general， one m可 distinguishtwo types of nonlinear fracture mechanics: (1) ductile 
(metals)， and (2) nonductile (concrete， as well as田ramics);see Fig. 3.1. In contr却 tto linear 
elastic fracture mechanics， the nonlinear zone is large for both typ邸 ofnonlinear fracture 
mechanics. For ductile fracture mechanics， most of the nonlinear zone undergoes pla.stic 
hardening or perf，民tpl制 ticity，and the fracture process zone is stil1 a. very small part of 
the nonlinear zone. By contrast， for nonductile fr邸 turemechanics， which is the case for 
concrete， the fracture process zone is large and occupies nearly the entire nonlinear zone. 
Thus， although many results of the fracture theory of metals which evolved earlier are useful， 
most of them cannot be dir民tlytra.nsplanted. 
Remarks: The fracture process zone is defined as the zone in which the material under-
goes strain-softening， i.e.， the stress normal to the crack・planedecreases with increasing 
凶rain.The stress can be understood as the macrostress or average stress σ;; that is calcu-
lated回 (l/flt)-timesthe force resultant tra.nsmitted across area fl1 on which the heteroge-
n岡山 materialwith a邸regates回 dmicrocracks can be approximated出 acontinuum (on 
the macroscale). Alternatively， (and customarily)，σ匂=んσ'(]dVjv..where σr; are the mi-
crostresses (actual stresses in the aggregates， matrix and interfa.ces， which show high random 
local scatter)， a.nd v，. is for the representative volume of the material， defined below Eq. 1.2 
(its si回 isthe characteristic length i). These concepts乱開 developedmore precisely in the 
statistical theory of heterogeneous materials (e.g. Kr'るner，1967; Krumhansl， 1968). 

3.1 Softening Stress-Displacement Relations 

This approach developed回 amodification of a similar approach previously formulated 
for metals. Dugdale (1960)組 dBarenblatt (1959， 1962) proposed that a plastic (yielding 
cohesive) zone of a certain finite length must exist at the front of a crack (Fig. 3.2a). The 
length of th.is zone must be such thaもthestresses from the fracture process zone cancel 
the stress singularity caused at the tip of the equivalent elastic crack by the applied load 
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(0) Lineor Frocture 

(b) Metols 

(c) Concrete 

Fig.3.1Linear Zone(L)，Non-Linear Zone (N)and Fracture Process 
Zone (S) in Fracture of Different Ma.terials 
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(0) 
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(i.e.， ](1 = 0)・ Thecrack opening at the beginning of the pla.stic zone， where the sもress
sudd回 lydrops to zero， may be regarded as a material property which controls propagation 
(Fig. 3.2b). 
For some metals and other materials it wωlater noted that the cohesive zone should 

邸 hibita gradual rather th阻 suddenstress drop， characterized by a softening relation of 
the normal stress σa.cross the cra.ck vs. the crack-opening displacementι(Fig. 3.2d)j see 
e.g. Knauss (1974)， Kfouri and MiIler (1974)，姐dWnuk (1974). For concrete， this type of 
model was proposed by Hillerborg， Modeer姐 dP悦 rsson(1976) under the name of fi.ctitious 
cr8心kmodelj see also Pete位，rs
“旬ficω叫色“it“10叩us♂"refers 色ωothef.畠配ctもt出ha“tthe p卯or尚t“10叩，nof a crack which transmits tensile stress cannot 
be a continuous crack with full s鈴epa鉱ra叫もtionof the sur(，仏aα渇町iも吋山hereal crack ends at the poωin叫t 
where the stre団 isreduced to zerOj Fig. 3.2d.) In this model， which ha日beenwidely applied 
in finiもeelement analysis of concrete fracture， the material fracture properties are defined 
by the softening str田s-displacement rela.tion: 

(e) 
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(see Fig. 3.2d)， where 円 isthe 抗ressin the direction normal to the crack. The紅 eaunder 
the curve represents the fra.cture energy of the material， i.e.: (d) 
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The crack begillS to open when the stress at the tip rea.ches the tensile strength limit f:. 
If the shape of the softening curve is fixed， then the fracture propertie~ are completely 
characterized by two parameters:刀andG J. The precise shape of the softening stress-
displa.cement diagram has a consider功leinfiuence on the calculation resul比 Invarious 
works this shape is considered triangular or bilinear， in which case the stress is reduced 
もozero at a五nitedisplacement 60・Anexponential shape has also been used. When the 

softening zone is unloaded and reloaded (Fig. 3.2d)，七hebehavior Is制 sketchedin Fig. 3.2d. 
Hillerborg's fic色itiouscra.ck model was verified岨 dcalibra七edby various comparisons with 
test data.. However， it seems tha.t a.n exhaustive compari回 nwith all the importa.nt concrete 
fracture da.ta. from the literature has not yet be四 presented.But due to equivalence with 
the crack b叩 dmodel，もheextensive comparisons of the latter with test da凶 (Bazantand 
Oh， 1983a.) indirectly validate the fictitious crack model. 
The shape of the stress-displacement curve was studied on the basis of micromechanics of 
microcra.cks by Horii (1988)， Horii et al. (1987， 1988)， a.nd Ba.iant (1987b)， and on ceramics 
with simila.r behavior by Ortiz (1988). From these models it transpired that the microcrack 
coalescence generally tends to produce snapback insta.bility of the stress-displacement curve. 
However， the existing mea.surements， albeit limited in scope， do not show a.ny snapback. 1t 
ma.ywell be tha.t some other mechanism， such a.s frictional pullout of aggregate a.nd fragments 

Oc 

Fig.3.2 Stress Distributions 1n and Near the Fracture Process Zone in 

Different Models 
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from the crack fa成 8，eliminates the snapback. 

3.2 Softening Stress-Strain Relations 

Sin田 thecracks in concrete are not straight but tortuous， and the microcracking zone in 
front of出econtinuous fracture is not likely to develop along a straight line， the behavior 
of出efracture proc伺 szone c岨 equallywell be described by stress-strain relations with 
stra品司softening，i.e.， declining stress 抗 increasingstrain. This approach is quite convenient 
for computer programming since no separa.tion of the nodes of two adjacent elements neerls 
to be introduced and fracture is handled by adjustments of the incremental stiffness of finite 
elements， basically in the same way回 anyinelastic behavior. 
Strain-softening in the form of a sudden vertical drop w踊 introducedin finite element 
analysis by Rashid (1968). The need to consider progressive strain-softening in加 lsionwas 
re∞gni田dby Sc晶.nlan(1971)， who introduced a sequ担問 ofsmall stress drops. The fact 
thatωncrete exhibits strain-softening in tension w槌 experimentallyobserved by L'Hermite 
(1959)， Rusch and Hilsdorf (1963)， Hughes釦 dCha.pman (1966)， and Evans乱.ndMarathe 
(19回).Extensive a.nd carefully controlled measurements were recently reported by Pet聞 son
(1981)， Reinha.rdt and Cornellisen (1984)， Gopalaratnam and Shah (1985)， and others. 
From the continuum mechanics viewpoint， the ∞ncept of sもrain-softeninginvolves certain 
seve回 mathematicaldi伍culties，such a.s imaginary wa問 speed(or change of type of the 
partial differential equation of motjon from hyperbolic to elliptic) and ill-posedness of the 
boundary value problem， which were pointed out and叩 alyzedby Hadamard (1903)， Thom剖
(1961)， Bazant (1976)， S姐 dler(1984)， Read and H号:gemier(1984)， Wu and Freund (1984)， 
Ba.iant， Belytschko組 dChang (1984)， and others. The chief problem is that the zone of 
energy dissipation tends to localize to a zone of zero volume (a surface) so that the total 
enぽgydissipation at failure is incorrectly indicated to be zero (cf. review by Ba.iant， 1986). 
These di侃cultiesare circumvented if sもrain-softeningin finite element models is introduced 
tbrough fracture concepts in 0問。ftwoforms:(1)山ecrack band model and (2) the nonlocal 
model. The latter requires a finer mesh but allows better resolution of localized strain fields. 

3.2.1 Crack Band Model 

The basic idea of出ecrack band model， which was propos吋 byBa.iant (1976)， is: 
(1) to characteri配 thematerial behavior in the fracture process zone in a sr問 aredmanner 
through a. strain-softening constitutive rela.tion， a.nd 
(2) to impose a fixed width Wc of the front of the strain-softening zone (crack band)， 
repres叩 tinga material property. 
The imposition of constant 叫 isrequired in order to avoid spurious mesh sensitivity 

姐 dachieve objectivity， assuring that the energy dissipation due to fracture per unit length 
(and unit width) is a constant， equal to the fracture energy of the material， GJ . In k伺 ping
with the cla.ssical approach to smeared cracking， the detailed formulation of the crack band 
model (Ba.iant and Cedolin， 1979， 1980， 1983) first employed a sudden stress drop ins旬ad
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of a gradual softening. Later ∞mp釘 isonswith numぽoustest results， however. indicated 
that the reduction of stress to zero must be gradud，thus creatingarelasivebio-g fraebure 
proc聞 zone ahead of the front of 山 fracture (Fig. 3.2e). This {.おorm町m叫晶机叫4“lon似∞n，w吋hi凶chw剖
g炉i討ve.佃，n1泊ndetail b匂yB加a.ia副n凶t(仰1凶98鈎2幻)，制dBa.iant凶 Oh(1983a)hasbeen shownhagmwith 
essentially all the b担 icfracture t回tdata available in the Hter畠ture，particularJy those on the 
effect of specimen size on the maximum load， the R-curve (see Chap附 4)，and the differences 
be色weenvarious specimen g印 metries.At the same time it w回 shownthat the crack band 
model aad milerbOIrg's actiti0118 crack model give essentially the sameresults，exceP4when 
closely spaced parallel cracks occur-(Thus，the extensive experimental justincation of bhe 
crack band model also indirectly provided justification for the貧ctitiouscrack model. ) 
Softening is caused by fracturing抗日h，tf，whichis superimposed on She elastlcitmn. 
Assuming a11 the cracks to be parallel and smeared (continuously distributed)， and choosin.l!: 
axis X2 to be normalもothe cracks， we have in two dimensions (x) -X2 pl如 4j: ロ

(i;)=[?;:?;;:i212/Fl(引十日) (3.3) 

The ∞，lumn matriCE泡 onthe left hand姐 dright band sides consist of the strain阻 dstr側
components (γ= 2f12 = shear angle)， C1111， C1122 = C2211 ， C2222姐 dC1212釘ethe elastic ∞mpli姐 C民組dβis姐 empiricalfactor， (0く F壬l)，calledthe s}mr!?etention fad f 
(introduced by Suidan and Schnobrich， 1972，叩dYuzugullu組 dSchnobrich， 1973， Phillips， 
lm，岨dPhillips 組 dZienkiewiez，1976).If the material is isokopic，C1111=C2m= 
りE'，Cll~12 :::: C22l1 =〆/E'， C1212 = 2{叫べinwhich E' = E， v' :::: 11 for plane山口 d
E' = E/(l -11)，〆=ν/(1-v)forplane strain-The fracturing Mmin can be incorporatd 
into the ∞mpliance， in which the expression f = [，ωα222/(1 -ω)Jσ22 h部 b田nintroduced: 
ωC姐 beregarded a.s damage and c叩 beconsidered to be a function of the strain normi.l 
to the crack， f叫 orthe maximum principal strainjω/(1ーω)=ゆ(f22).Initially we ha.ve 
ω:::: 0 (no d叩 age)，and complete damage (continuous fractu吋 occursforω=  1. Always 
0::;ω三1.The fracture energy is obtained as 

GJ::::Wcf句，dfJ (3.4) 

The fully cracked sta.te is obtained for ω→1. lt w剖 shown(Bazant and Oh， 1983a.) 
th前 ifEq. 3.4 is inverted and the limit of the ensuing sti汗nessmatrix for ω→ Ois ealc，f 
la叫 ther田 ult∞incideswith the wel1-kr附 nstiffn倒 m前市fora mater凶 thatiscMEd 
unidire伽 nally姐 dco凶削ously，a.s introduced by Ra.shid (1968)・
Eq.3.4regects only a very special form of damage.In general，damage needs to be 
introduced through the formulation Of the internal variable theory (for COZIerebe，間 e.g.
Pijaudier-Cabot and Mazars， 1989，姐dPijaudier-Ca.bot and Ba.iant. 1988) 
The uniaxial softening stress-蜘 ainre1ation underlying the cαra舵ckhn  d ;λいmmO吋d由似eliおsd
凶凶i砲刷db匂'yf加u叩nctωt“10叩n吋ゆ州仲仇(恥仇正匂ωω叫2幻叫2)仏)，w耐hichdeti白悶d制晶略郁g酔eω The削 11tωtsa“ar，陀'ea却ss回e叩伽伽n邸nsit凶凶s討i川もu伽i片v刊e叫t川吋
oぱfthe softening str色伺s目仔-s凶古仕r問a吋Jnr，閃ela晶“もtion卸 ar陀ethose for the f貧icti比tiou田1悶scrack model. 1t appears 
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that the simple formulaゆ(f)= (Ej刀)exp a( f -fp)， with empirical constants α姐 dfp，is
generally adequate. A straight line softening， i.e.， a triangular stress-strain diagram， h副
also been used successfully. 
There are two討mplevariants to the c阻止bandmodel. The original one (Ba.Zant and Oh， 
1983a) presumes that the smeared parallel cracks伽 rtto form in the direction normal to 
the maximum principal stress but subsequently the crack orientation is fixed in the material 
even if the principal stress direction rotates. More re白川research(eιGupta and Akbar， 
1984; Cope， 1984)附 msto indicate that it is better to assume that the crack orient抗10n
rotates with the direction of the maximum principal stres8， which means that shear sもresses
on the crack plane can never arise. For山isvariant， the general triaxial stress-strain relation 
for the microcracked material叩 bewritten in the form (Ba.Z叫叫 Lin，1988b):

f;; = Il";;;1- 十ーーーーー一ー_'l7'T1_.nr'rl__ l I'Tr l叶 (3.5) 

in which ni == direction cosines of the curre凶 ma杭.x1m宜m
もωenso討叫 s削ubscαn中pt匂simply summation) and C，α.仰 n is the el嗣 tic(undamaged) compliance 
tensor. 
When the principal stress directions ro同tesignificantly， the nonrotaもingcrack method 
must be generalized to allow for the formation of secondary and tertiary cracking of different 
orientations. Such multidirectional smeared cracking models were especially perfected by de 
Borst (1984). 
1n reality， the microcracks prior to出.efinal continuous fracture are distributed over all 
orientations， with different frequencies for various orientations. This feature is captured by 
the microplane model (Ba.Zant and Oh， 1985) which s田 msto be physically the most realistic 
as well邸 conceptuallysimplesもmodelof damage due to cracking but is very demanding 
for ∞mputerもime.1n this model (which wilJ be considered further in Section 3.2.5)， the 
hypothesis that the cracking strain tensor is additive to the elastic strain tensor is abandon吋
叫 crackingIs modelled as strain-softening separat均 onplan伺 ofa.ll orientations (called 
microplanes)， subject to出ehypothesis that the strain components on each microplane are 
the resolved components of the (macroscopic) strain. The stre蹴 sa.fter cracking on the planes 
of various orientations are not exactly in equilibrium， but overall equilibrium is enforced by 
using the principle of virtual work. 
It may be pointed out that linea.r elastic sta.bility a.nalysis in which the microcracks are 

剖 sumedto grow in a homogen∞us elastic continuum indicates that the softening stress-
displac即 lentor stress-strain relation should exhibit a maximum displacement or strain 
(snapback)， after which the stress suddenly drops to zero (Ba.Z姐t，1987b). But it is noも
yet known whether the prediction of snapback also results from models taking into account 
inhomogeneiti田，inelastic behavior， and friction. 
The width of the crack band front can be assumed to be a.pproximately Wc竺 3da(da
= maximum aggregate size). This conclusion w踊 drawnon出ebasis of optimum fitting 
of numerous test data (Ba.Zant and Oh， 1983a.). However， the optimum was not sharp;叫
values ra.nging from da to 6d" gave almost equal1y good results， provided， of ∞urse， the 
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post-peak function O( (22) w出 adjustedfor each different value of 叫
Once the shape of the softening stress-sもrainrelation is fixed， the crack ba.nd model is 
fully chara.cterized by three materia.l parameters: 1:， G a.nd Wc (although the influence of 
the叫-value is rather weak for situa-もionswith isolated cracks). By contrast， the fictitious 
cr晶ckmodel has only two basic parameters，刀姐dGf・Whythe e.対ra.parameter in the 
crack b姐 dmodel? The extra parameter，ω'c ， is important only in situations when there are 
p叫 lelcracks (句・， in the presωof tension reinforcement); then w basically determines 
the minimum possible crack spacing， as a material property. It should be pointed out出品t
the fictitious crack model， because of its lack of the extra parameterωc ， c組 giver田ults
4hatue nob objectivein si411ations with parallel closely spaced cracks-(A certain length has 
also been defined組組additionalma.terial parameter in出efictitious craεk model; however， 
in contrast toωc ， it is not an independent parameter.) 
The finite element size h =叫， required by the crack b岨 dmodel， may be t∞small in 
the case of very large structures. In that日se，it is possible to enlarge the element si配 (i.e.
use h > 叫 ) provided that the sofも匂刷en凶1
自帥品，meener略gydissipation， GI-This is illustrated in Fig. 3.3. In view of the series coupling 
model， already discussed in connection with Fig. 1.8， the given sもress-straindiagram OPA 
for the strain-softening crack band n田dsto be repla臼 d，at increasing element size h， by 
必agramsOPB， OPC， OPD， etc.， such that when the紅側 underany of these diagam-
is multiplied by h the same fra山 reenergy value GJ is obtained (Fig. 3.3c). In terms of 
the stress-displacement diagram for lmghh h ofSnite element，a chaage in h requires that 
the actual stress-displa閃 mentdiagra.m 012 in Fig. 3.3b be replaced by diagrams 032， 042， 
052， etc. These stre時 displacemeMdiagramhavethe propedy that the am  under bhern i-
constant， thus回 suringconsta.nt fracture energy G /. 
One can， of course， also use elements with hく ωc(say 0.1ωふprovidedthe post-peak 
slope is decreased as shown by the σ-f diagram OPF in Fig. 3.3cωthat the σ-8 dia~ram 
082 (Fig. 3品)would again have the same area鎚 012.In this c槌 e.therow d cri-ked 
elements can be narrow町七hanthe adjacent elements and the mesh may look as shown in 
Fig. 3.4a but with ω。replacedby h. Obviously， when h→0， the crack b姐 dmodel in the 
limit becomes i判 icalto HiIlerborg's model (which inもhissense is a special c蹴 ofthe 
crack band moden. 

As the element size is increased，もhesoftening slope gets steeper， until for a certain 
element size h a vertical stress drop OPC or42is obtained.For a still larger element size-
thediagrm OPD or052would exhibit snapback，which would causenmericaldi血叫ti偲 J
ln tha.t case， one ma.y repla.ce the snapback segment 52 of the element鈴阿佐displa臼ment
dlagram by a verbid stress drop，67in Fig.3.3b.The poiMof Vedicai drop is ddermined 
again from出econdition th4the area under the diagram 067must be the same槌 the
area under the diagram 012 or 042. This consideration indicates出atthe equivalent tensile 
strength jんofthe large finite element of size h >ωc is given by 

ん=1:吾、 hn =竺生一紘一 一
切 1[2 一刀2 (forh三ho) (3.6) 
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(e.g.， BaZant阻 dCedolin， 1979， 1980) in which ho is the element size for which a vertical 
stress drop (diagram 042) is obtained. Note that the ex pression for ho is similar to Irwir内
Eq. 2.10 for the size of the yielding zone. 
The foregoing adjustments are ideally defined for square finite elemenもssubjected to 
tension or shear (normal or parallelもothe sides). However， extensions to non-square elements 
are possible. In this c制 e，if the dimension of the element in eaεh direction is about the same， 
one may again use Eq. 3.7 in which h =ゾ互， where A = element area (in 2D). 
Eq. 3.7 follows fromもherelation hf;q/2E = hof?/2E = G/ where h represents either 
the actua.l width of the craεking element in the dir配 tionnormal to the cracks， provided the 
elem回 tis square or rectangular， or the effective width of the element defined a.s h =叫 A.，fA6
where A./， Ab are出e紅 ea.sof the element姐 dof the crack band within the element. For 
elemen七widtbh < ho ， for which the posιpeak slope is reduced but the strength limiもiskept 
a8刀，出e向 e時蜘a.indiagram may be expressed， ac∞rding to the series model (Fig. 1.8)， 
a.s follows: 

f=竺ZEsoft+(1一生)funl，h =ω竺竺 (forhく 110) (3.7) nL， .. -~c Ab 

f.o/t， funl = the strains corr田pondingto the same stress according to the strain-softening 
stress-stra.in diagram and叩 unloadingstress-stra.In diagram starting from the pe北 stress
point. 
If larger elements need to be used， another possibility isもokeep the size ofもheelements 
on the line of crack band constant， equal to size wc， and enlarge all the remaining elements 
as shown in Fig. 3.4a. If the crack band is much thinner th姐 theadjacent血liteelements， 
山emodel， of ∞urse， be∞mes practically identical to the fictitious crack model. 
In the case of crack propagation in an arbitrary direction， the crack band model as well 

拙 thefictitious crack model requires remeshing so出atthe boundary lines of the crack 
b姐 d白色hecrack line would conform to the intereleme叫 boundaries(知 thefictitious 
crack model， these techniqt瑚 wereto perfected by Ingraffea (1985)， Ingraffea叩 dGerstle 
(1985)，組dIngraffea and Saouma (1985). If the remeshing is not done， it is stilJ po回ble
to approximately represent fracture running in an arbitrary direction by allowing the crack 
band to have a zig-zag form ωshown in Fig. 3.4b. Some adjustments of the fracture energy 
are then ne偲 ssary七otake into aιcount the品刊ragewidth of such a zig-zag band (Bazant， 
19部品)
Even with such adjustmenω， however， there is a certain bias imposed by the mesh ori-
entation. Moreover， if shear stresses parallel to the overall crack b叫 ddirection arise， the 
zig-zag band can introduωspurious shea.r locking of the OPPωite faces. These problems can 
be over∞me either by inもrodudnga nonlocal version of the model， described la句r，or by 
enriching tbe finite element either with a strain field that is di自∞ntinuousalong the bound-
ari回 of姐 arbitrarilyoriented b姐 d，槌proposedby Droz (1987) for tension， (similar to the 
models reported by Ortiz et al.， 1987; Leroyand Ortiz， 1989，加dBelytschko et al.， 1988 for 
shear b姐 ds)or with displacement field discontinuous along a line， as proposed by Dvorkin 
et a1. (1989). 
The crack band model offers the possibility of introducing the insuence of nonsingular 
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three-dimensional stresses on fracture. For example， it is known that a compressive stressσz 
parallel to the crack plane promotes cracking. Based 00 the known shape ofもhebiax:ial failure 
envelope of concrete， this influenc怠 (forむく 0)may be taken into accouot by repla.cing f: 
with 

万=ft(l +σ，，/fD (3.8) 

(Ba.iant， 1985a) where f~ = compr白 sionstrength. For σ= 一f疋~ (compression fa必'ail泊lu町lr開e)，.on
must have斤=0， which agr問 withFig. 3.9. Note油 othat， in contra.st，σ"h剖 noeffect 
if linear elastic fracture m民 hanicsis used; nor when line crack models with softening zones 
are used. 
The crack band model has been implemented泊 somelarge generaJ purpose finite element 
∞des (e.g. DIANA， TEMP-STRESS， NONSAP). 

3.2.2 Crack Layer Model 

A variant of the crack band mod巴1is represented by Chudnovsky's crack layer model 
(B飽sendorffand Chudnovsky， 1984; Chudnovsky， 1986). This model is more general th叩 the
crack ba.nd model in that the widもhofthe craεk band front is not considered to be a constant. 
Rather it is allowed to expand or shrink based on a material property. This property links a 
certain path-independent integral tha.t characteriz.田 theenergy change due to the expansion 
to another path-independent integral around出ecrack front which characterizes the energy 
flow into the crack front due to crack propaga.tion (町ce'sJ-integral). 
This model， however， has not been developed for application in∞ncrete and has not b伺 n
compared to typical test data for concrete. The properties governing the band expansion 
nught be unidentifiable from出eexperimental data at the current degree of sophistication 
of testing roethods. 

3.2.3 Composite Fracture Model 

The composite fracture model is essentially an adaptation of the crack b組 dmodel to 
finite eJements of a larger si配 thanthe crack band width Wc ， thus permitting large structures 
to be analyzed with a cruder mesh. The model assumes that a crack ba.nd of width ωc， 
which is a material property (町anequivalent line crack) is embedded within a 1釘 gerfinite 
element， approximately酪 illustratedin Fig. 3.3d. This id伺，which is sinular to Eq. 3.8， wω 
proposed first for pl拙 ticshear ba.nds by Pietruszczak and Mroz (1979) and later developed 
for tensile cracking of concrete by Willam et al. (1985， 1986). If the element size shrinks 
toωc， this model becomes essentially identicaI to the crack band model. The crack band 
within the finite elemenもisintroduced by enriching the smooth distribution function with a. 
discontinuous strain fieJd function which chara.cterizes craεking. The乱pproachis sinular to 
those by Droz (1987)， Ortiz et aJ. (1987)， Belytschko et al. (1988)， Leroy and Ortiz (1989) 
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叫 dDvorkin et al. (1989) already mentioned at the end of Sec. 3.2.1. 

3.2.4 Noniocal Continuum with Local Strain (Nonlocal Damage) 

A nonlocal continuum is a continuum in which some state variable depends not only on 
the stress田 orstrains at the same point but also on the stress or s七rain五eldin the neighbor-
hood d the point.As shown by krisner(1967)，kmmhand(1968)，kmin(1968)，Eringen 
姐 dEdelen(1972)，and others (cf.Bdant，1986)，the nonlocal concept is appropriate for 
statidically heterogeneous materials and follows logically from stabistical micromechanical 
∞nsidera.tions. R怠切ntly，the nonloca.l approach has been shown to be very effective for 
企actureroech姐 icsof distributed cracking. 

The nonlocal concept represents a general approach which makes it possible to use stress-
stra.in relations with strain-softening. As mentioned before， if the 5もrain-softening∞ncept
is introduced in the local consul1111IRsoftening zones localize to a vanishing volume，causinR 
improper ∞nvergen明 onmesh refir悶 nens，spuriousmdEseMtivityand physicallyincorrect 
predictions such as failure with vanishing energy dissipation舗 もhemesh size is refined to 
zero. To avoid such behavior， the comput抗ionalmodel must include some ma.thematical 
devi田 tha.tIimits the localization (Ba.zant， Belytschko and C1加 19，1984). The simplest， 
albeit crud田t，way to linut localization is to impose a fixed size，ωc， on the frontal finite 
element， as done in the crack ba.nd model (unless the post-peak stress-strain relation is 
arti宣ciallymodified). However， this approach makes it impossibJe to resolve the field in the 
fracture proα出 zoneitself， or deternune how the fracture process zone width could vary 
during山e企acturegrowth (no modification of stre時町ainrelations could be permiもtdfO} 
those purpo告白).

A more general way to limit localization，in order to cope wish such problems，is the 
nonlocal continuum. The concept may be introduced in va.rious forms， such剖 averagingof 
strains or strain-related qu姐 titi田 overa neighborhood of a point (Bazant， 1984b; Ba.iant， 
Belytschko叩 dChang， 1984)， or i山吋uctionof白川姐dsecondspatialfledUtivesOf町 ams
or other qu岨 titiesinto the constitutive relation (eιSchreyer岨 dChen， 1986; and for 
the Cosser机 mediumformulation for rocks by SuJem組 dVardo由 ，kis，1988)Thespatial 
derivative formulaもioncan be obtained by expanding出espatiaJ a.veraging integral in Taylor 
series. Only the spatial a.veraging approach h倒的 farb四 nworked out in detail for 凶e
multidimensional analysis of fracture of materials such出∞ncrete.
1n the early formulation， spatial averaging was applied through the total strains used in 
She strain-softening constitutive relation.However，thaもapproach，which resulted in c叫al1凶e吋dim帥b伽凶ric臼at旬ec∞on凶凶ti泊nu削11
hav刊es叩om'ロlec∞ompu叫l比ta凶品d叫t“ionallyinconvenient p戸ro叩pe釘rt凶t“le郎8.Recently (Baiant and Pijaudier-Cabot， 
1987， 1988a; Pijaudier-Cabot組 dBdmt，1987;Batant and Lin，1988a，h邸川， it wム
found that amoreeRectiveapproach is to considerbileelastic strains ωlocal (no…raging)， 
a干dapply the nonlo叫a.ver叫ngonly to the softening part of the は凶nswhich repmejt 
dlstributed microcrazking-ThIS new approach has the advantage that the continuum hid 
equations of equilibrium as well as出eboundary conditions remain the same酪 forthe 
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classical local continuum， and that there is no possibility of zero-energy instability modes 
(previou均 shownto exist for fully nonlocal models). It has also been mathemaもicallyproven 
出品 theaveraging of the fracturing part of the strains is su伍cientto prevent localization 
of strain-softening damage into a zone of zero volume. The unloading-reloading behavior is 
always local in this a.ppro邸 h.
The spa.tia.l averaging opera.tor， denoted by姐 overbar，may be defined in terms of stra.in 
ell as follows: 

tll(X) = TT ~__\ lα(s -x){fll(s)}dV = Lα'(x -S)(E11(S))dV Yr(x) Jv -¥- --，，-..¥-，，-. Jv 

in which 
I _'1_ _¥..ItI" _I_ _¥_α(s -x) Vr(x) = l_ 0'(8 -x)dV， α(x -s)一一一一一Jv -¥- --r" -，-- -， Vr(X) 

(f11) =ε11 if Ell > 0， (1:11) = 0 if f11壬O

(3.9) 

(3.10) 

(3.11) 

Here V = volume of the structure， x = coordinate vector， s = coordinate vectors of adjacent 
points，α=  given weighting function of the dist組 ceIs -x!， consideredもobe a material 
property (Fig. 3.5). v，. has approximately， but not exactly， the same m田 ning槌 therepr争
sentative volume in the statistical theory of heterogeneous materials. 
The weighting function could be defined回 uniform(α= 1) over volume v，. representing 
a. circle in two dimensions， a bar segment in one dimension， or a sphere in three dimensions， 
with a zero value outside Vr • However， it has been experienced that the calculations converge 
better if the weighting function is smooth. One po自siblechoice (Bazant組 dPijaudier・Cabot，
1987， 1988a; Baz組 tand Lin， 1988b) is a Gaussian distribution function， which， however， has 
nonzero values over the entire structure. It seems preferable to use a polynomial bell-shaped 
function which is exactly zero beyond a certain distance， e.g. (Fig. 3.5) 

1. 18 -xl¥ 2 
α(ト x)= t 1一寸e~I) 時-xl < kl， otherwiseα(8 -x) = 0 (3.12) 

Here k is a norma.lizing consta.nt deteruuned 50 that the integral of αover品linesegment， 
or a. circle， or a sphere of size kl would be the same舗もheintegral of α= 1 over the same 
regionj k = 15/16 = 0.9375 for lD， (3/4)1/2 = 0.9086 for 2D， k = (105/192)1/3 = 0.8178 
for 3D. The pa.ra.meter l is the so-cal1ed cha.racteristic length of the nonlocal continu町n，
which is a material property that defines the size of出eaveraging volume and is determined 
by the size of the inhomogeneities in the microstructure. For one quite typical concrete， 
m伺 surements(Baiant and Pijaudier・Cabot，1988b) have shown that {= 2.7d.. where d.. = 
maximum aggrega.te size (Sec. 6.9). 
If point x is too close to the surfa叩 ofthe body， p紅色 ofthe a.veraging zone protrudes 
beyond the surfa偲. This is handled by deleting the protruding part from the integration 
region. This deleもioncauses v，.(x) to depend on location x. 
In finite element calculations， the i凶egralsin Eq. 3.10阻 d3.11a. are approximately 
evaluated舗 finitesums over all the integra.tion poinもsof allもheelements in the structure. 
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ve)Tensile Strain Softening Curves，Compared with Size ERect Law 
of Basant(Eq.1.4，solid curve)and with test results of Batant組 d
Pfeiffer (1987) (da.ta points) 
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However， the integration points whose dist日 cesfrom point x exceed kl may be omitted 
from the sum since for them α=0. 
Ideally，出eform of functionα(s -x) should be derivable from micromecha且ica.lmodeling 
of the microstruChure with aggregates and micmcracks，same as the form of functionO(ε) in 
Eq. 3.4姐d3.6.However，thisgoal is too dimcuuat present，while at the same time the 
DrecIse form of functionα(s -x) has only little infl.uence onωmputa.tion results (出isfa.ιb 
Lakes ideMiaωtion of f即 tionαfromt制 da.ta.p帥 lema.tic)・Whatis important is the 

alue of i (provided the body is notも∞ largecompared to l). 
The simpledEtonlocalmlSUMMErlodel，appropmhefor unidirωional cracking， is ob-
tained by generalizing the CEack band model (B話相tand Lin， 1988b)・Onea.ltemative is to 
Mm  e the crack direction to be axed at the time the cracks start to form.In this cue，the 
mnlodgeneralization is obtained byreplacingωin Eq. 3.4 with nonlo叫 damageρ，such 
that 

(1 -wt1 = cp(fI) (3.13) 

where fI is the maximum nonlocal principa.l山ain臼 lcul80tedfrom the nonlocal (averaged) 

stra.in tensor fi; 
The se氏c∞o∞InJ1
s叩umedt句orota.te w叩it出hthe maximum principal stress， is obtained by replacing ωwith w in 
Eq.3.6 
It his been verihd畑山ntand Lin， 1988b) that this nonlocal gene叫 izationof the 
crack band model ロ閃ermi首it日st伽heuse問巴of fi伝h脳n泊1吋向i
s叩pu巾 u凶srr附 hs鈴enEゐi比tivi吋it句yand improper convergen侃 Forelemen t sizes no自mallerthan l， 
the nonlocalmodel becomes identical to bile cra£k band model，aad the skesE4rain Eelation 
for the finite element which undergo田 crackingmust be adjusted ac∞rding to the elem田も
sizeー却a.lreadyexplained. 
it has also been shown that the nonlodmmed cmking modelprovides祖 excellent
批 ofvarious fradure test data-See e.g.，Fig.3.6，in whichdIe test results from Bdaab 
and Pfeiffer (1987) are compared wi出 nonloca.lfinite element results of BaZant and Lin 
(1988b) (d回hed組 ddash-dot curve唱)叫dwith the si田 effectlaw (Eq. 1ムsolidcurve) (the 
dashed curve correspondsもoa softening tensile山倍付も問nrelation in a.n exponenti心form，
which fitsもheda.ta better tha.n出eda.sh-dot curve which ∞rr凶 pondsto a. linear stress-stra.in 
relation;still better ats couldprobablybeobtained with obher shapes ofthis relation)・From
Fig.35it should be especially notedもh80ta nonlocal finite element code exhibits the correct 
transitiona.l size effect of nonlinear fracture mechanics， 剖 a句pp戸ro似Xl凶r町ma】胤凶a“.telydescribed by the 
s討izeef晶T島'ectlaw p戸ro叩po伺se吋:db句yBaおE叫1北もι.By c∞ontra泌.st，も山helocal 貧fin凶iも旬eeleme阻nも乱na凶a乱.々sisexhibits 
no s討iz民ee釘ecdt，asobserved on gmmetrically similaz specimens of diferent sizes，with similar 
meshes. 
One practical a.dv姐 tageof the nonlocal formulation is that if the hite element sizesue 
less than about l/3of the characteristic length t，thenもhereis no directional bias of the 
mdl withREardLo crack propagaM.This Mbeen附 ified(Ba.Zant and Lin， 19働)by 
mlyzing thefmure ofbhe same rectangular spぬmenwith胡a.ligned叩 aremesh組 da.
sla.nted squ訂emesh.Thus，the nOBlocalmodel cm be used in general fEazure situabions-
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An interesting，阻dpotentially useful property of the nonlocal formulation is that the 
width of the cracking zone is not fixed but varies during the ∞urse of loading. The 
consequen田 isthat the nonlocal fracture model does not correspond to a unique stress-

displacement diagram for the line crack model (五ctitiouscrack). This fact might e却lain
why it has proved rather difficult to obta.in unique values of the fracture energy on the b80sis 
of the fictitious crack model. 
It should al自obe noted that a large finite element progra.m for the nonlocal fr80cture model 
usuaIly runs faster than the corresponding local progra.m， despite tbe fact th80t 8odditiona.l 
∞mputer time is neededもocalculate the spatial晶.ver8og回.Ther同 sonapparently is thaももhe
nonloca.l a.veraging sta.bilizes the response， thus c晶usingthe itera.tions in the loading steps 
to converge faster. 

3.2.5 Multidirectional Cracking and Nontensile Fracture 

For ∞ncrete structures subjected to ∞mplicated loa.ding histories， it may be ne伺 ssary
切組a.lyzefracture ta.king into ac∞unt出eeXIstence of multidir庇 tionalcracking (BaZ祖t
1983; de Borst， 1984， 1987a.， 1987b; de Borst and Na.uta， 1985; Ottosen阻 dDahlblom， 1986; 
Willam et 仏 1987;Rots， 1988; Rots組 dBl品uwendra.ad，1989; Crisfield and Wills， 1989). 
An effective approach to such behavior appears to be the microplane model， which was 
already mentioned below Eq. 3.6 in connection wi山由edama.ge law. Instea.d of a macrcト
scopic stress-strain relation， the material behavior in the microplane model is characterized 
independently on planes of various orientations， called the microplanes. In practi田， only 80 
certain number of discrete microplanes is consider吋， a.ccording to a numerica.l integration 
formula for sp80tial directions. The macroscopic response is determined as a certain aver-
age of the r田 ponsesfrom出eindividual microplanes， obtained according to the principle 
of virtual work. This model， whose basic concept is similar to the slip theory of plasticity 
(Taylor， 1938; Batdorf姐 dBudianski， 1949)， was first developed in a. local form (Ba加 lt
and Oh， 1985). It was a.lso shown that this model can represent well not only the existing 
test data on tensile fracture but a.lso those on crack shear， including the effects of出etrans-
verse normal stress and shear-induced expansion晶crossthe crack (Baおnt叩 dGambarova.， 
1984). Recently (BaZa叫 andOzbolt， 1989)， the microplane model has been generalized to 
a nonlocal form. 

There are other types of fracture which need to be modeled for concrete structures. A 
new th即時 willhave to be developed for Brazilian tensile splitting fracture of very large 
cylinders， which cannot be adequately阻 alyzedwith the existingもensilefr叫 turemodels. 
On the other hand， shear fracture seems， at least partially， am~nable to analysis by the 
existing tensile cracking models. In those models， the shear fracture is described祖 aband
of inclined microcraιks， governed by a softening stress-stra.in rel8otion. 

3.3 Stress-Displacement vs. Stress-Strain Softening Relations 

There has been an incessa.nt debate on the relative merits and deficiencies of the line 
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crack and cra.ck band repr白 entationsof fracture. There are three viewpointsもomention: 

3.3.1 Isolated Cracks: Moot Point Computationally 

F町民 onemust realize that the line cra.ck model (i.e. the fictitious cra.ck model of 
Hi1lerborg) and the cra.ck b組 dmodel yield about the same results (with dぽeren側 ofabout 
1 %) if the stress displa.cement relation in the first model and出esもress叫 rainrelation in the 
se∞nd model are ca.librated in such a way that 

ι=ωcf.' (3.14) 

i.e.， the cra.ck opening displa.cement is takenωthe fracture stra.in， f.f， a.ccumulated over the 
width ωc of the crack b岨 d.This equivalence is already suggested by the fa.ct tha.t， in linear 
ela.stic fra.cture mechanics， an interelement line crack組 da single-element wide cra.ck band 
with a symmetry line出品 coincideswith th邑linecrack give essentially the same results in 
the calculation of the energy relea.8e rate， with differences of only about 1%， provided the 
element sizes near the fracture front do not exceed about 1/10 of the cross section dimension 
(Bai姐 ta.nd Cedolin， 1979). In fa.ct， the differen伺 betweenthese two methods of calculation 
of the energy release rate for linear elastic fracture mechanics is noもlargerthan the error of 
approximating the continuum by finite elements in the first place. 
Therefore， the question“line crack or a crack band?" is moot from the viewpoint of 
approximating reality by computational modeling. The only point worthy of debate is com-
putational effectiveness and convenience. But even in that regard， the two models appear 
to be equal. 
Various numerical modeling aspects， however， deserve attention. Leibengood， Darwin 
and Dodds (1986) showed that the re叫 tsfor stress-displa.cement and stress-strain relations 
match close!y if the cracking directions at the integration points within the finite elements 
are forced to be parallel to .each other (and to the actual cra.ck). If the cracking direction 
JS noもknowna priori，剖 inthe general case， it is di伍cultto achieve出ispara.llelness. But 
then， if cracks are allowed to form at ditferent orientations at ea.ch integration point， the 
response of the finite elem回 tmodel with smeared craεking is somewhat stiffer th叩 that
with discrete interelemenもcracking，even if the element sides are pa.rallel to the true cr配 k.

3.3.2 Parallel Cracks: Third Parameter 

As already mentioned， if the shape of the tensile softening curve is fixed， then the line 
cra.ck (fictitious craιk) model is defined by two pa陪 meters，G f and刀， while the crack 
band model is de貧nedby three para.meters G" f: and Wc・Forthe貧ctitiouscrack model， 
too， a. length p紅a.meter(called the “characteristic length") hil.9 been defined; eo::: EG，/刀2
(which is si凶 larto Eq. 3.7 as well回Irwin'sEq. 2.10). However，出isparameter is a. 
derived parameter， not an independent one， while ωc is an independent p訂 ameter.Why 
this differ四回?
For isolated cracks， it turns out that the etfect of 叫 onthe r，回ulもsis almost negligible， 
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provided that the softening part of the 8tress-strain diagram is adjusted 80国 toalways yield 
the sa.me fracture energy G， for組 Y叫・ However，the parameter Wc do回 makea ditference in 
the case of densely spaced parallel cracks， since it prevents adjacent cracksもobe closer th姐
the distance叫 (otherwisethe adja.cent craιk bands would overIap， which is inadmissible). 
$0 the physical勾IliacanceofU1c is not really ule width ofthe actual cmkingzone at th 
fracture front， but the minimum admissible spacing of paral1el cr民 ks.Is it ne偲ssaryth抗
this spacing be a material fracture para.meter? 

For組組swer，consider that elastic longitudinal fibers are bonded to a long，出inconcre旬
bar subjected to tension.The cross sediorlof theabers iB so luge shb the composise 
specim四 exhibitsno softening under tension， although出.econcrete part does. Then the 
state of uniform strain is always stable. According to the line cra.ck model， cracks c姐
form ωarbikarily close spacing in such a system，and depending onもhespacing，もheloa.d-
elongation dia.gram P( u) may foIlow a町 ofshediagrams shown as0129，0139，O149.orO159 
in Fig. 3.7. Thus， there is an ambiguity， 0町ri泊ino加oぬbj片ect凶t“iv吋it句yof re田s叩'po∞ns紙 Theproblem can of 
COuse be eliminated by enriching Hillerborg's line crack model with a third independent 
material parameter， the minimum crack spacing， s (independent of e). This is， of course， 
equivalentもoparameterωc・

3ふ3Relation to Micromechanisms of Fracture 

The normal micro蜘 ahsamss the fracture proc倒 zonemay be distributed roughly舗
shown in Fig. 3.8a. The line crack model simplifiωthis strain distribution taking it as a 
∞nstaMplus the Dirac delta function，Fig.3.8b.The crack band model siupliftes it.too-
taking it as a constar句 lusanother con山叫withinttmmckband(mtangulaz distrib-ioバ
Fig. 3.8c. The nOI伽 alcontinuum model gives a smooth bell-shaped dist出 uSionacmss thl 
b如 d，asshown in Fig.3.8d(BahM and Pijaudier-Cabot，1988a)，and in thebite elemmt 
form as Fほ.3.8e.
Measure-ents of the l午前Ionsof乱cousticemissions during the fracture pro閃58(Labuz 
Shah，Do?d時， 1985;Maliand Shah，1988)indicate，despite their inevibable scatt;r，that 
the emission sourωs are located over a relatively wide band in the fronsal region of fr&cture 
(Fig. 3.8f)， as in the crack band model. On the other h組 d，various measurements of strai回

目立，Y;出官民;:?;;zJ22足立己主;J:;:422'zr;rよ:忠良
zone at the front fracture，which might be bebter modeled by a line crack model.Iもmavbe
not仙 hatthe fra.cture町 ainsmight be more loca!ized at the s凶 ceof a specimen山ふm
the interior， due to the wall etfect and other effects. 
As for the visible continuous bachIre behind bhe fracture process zone，it must be Embed 
ωib is fmumsly highly t04uoum meandering So eachdde of the symmetry line by a 
dist姐句ofup to about the maxmum aggregate sim.Even if dl microcracking were ∞ncen-
hated on a.line，in view of the tortuosity of this line，the fracture is represented no better by 
?sMgM Imecmkth叩 byacmkbandofwidUldoneorMageqatesizesihowever 
Ior∞mputational results this width陀allydoes not ma伽 inmost仙討ions，前4entioneJ
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Meshes 1，2.3 
The stress-strain or stress-displacement relations for the fracture process zone which 
have be回 describedso far take in色oaccount only tensile cracking in one direction. However， 
the fracture proc問 szone may undergo multiple cracking in many directions and may be 
subjected to high compr回sivestresses parallel to the crack plane， as well as shear stresses. 
To handle such situations， finite element analysis needs to be based on a general nonlinear 
triaxial model. In the fraεture process zone， the material undergoes degradation of its 
mechanical properties， which is basically of two kinds: 
(1) degra.dation of material stiffness dueもodama.ge such as cracking， which is described 
by continuum damage mechanics (or the fracturing ma.terial theory of Dougill， 1976)， and is 
characterized by unloading according to the secant modulusj and 
(2) degra.dation of the strength or yield limit， which is described by modern adaptations 
of plasticity. 
The real behavior is a combination of both. Such combined behavior has b田ndescribed 

for ∞ncre旬， e.g.， by the endochronic theory， plastic-fracturing出切ryor the damage th田 ry
of Ortiz. For a review，附Ba.iant(1986). 
General nonlinear， triaxia.l constitutive models cannot be a.ccommodated in the stress-
displacement relation自forsharp line cracks， which are basically counterpar旬 ofuniaxial 
stress-strain relations. The crack band model c佃 beextended to a.ccommodate such models， 
but for a properもreatment，the nonlocal appro叫 hs田 msto be ne田ssary.
A very general constitutive rnodel， which can handle both the process zone of tensile 
fracture， as well出∞mpressionand shear damage， and describes well the nonlinear triaxial 
beha.vior in general， is the micropl却 emodel. That this model gives出ecorrect r田ponsefor 
fractures is evidenced by the fa.ct that it yields a. correct transitional size effectj see Fig. 3.9 
taken from Ba.iant組 dOzbolt (1989). 
When there is a larger compressive stress σ'z parallel to the cra.ck， at least simple adjusレ
ment of出esoftening stress-displacement curve of 円 vs・dcor stress-displacement curve of 
円 vs.fll n白 dsto be made. Biaxial failure envelope da.ta. indicate that the tensile strength 
limit should be sca.led down from f: approximately to the value fi given alr回 .dyin Eq. 3.9. 

品bove).
Along乱 profileacross the fracture process zone， microcracking is ma.nifested by an in-
cr.品 sein the a.verage ma.gnitude of the tr姐 sversestrains. This increase is probably gra.dual， 
as shown in Fig. 3.8a， or in a finite element form in Fig. 3.8e. Obviously the width of 
the fracture process zone obtained by measurements depends on the choice of出.ecut-off 
va.lue of the strain. This might explain the di品目ncesin interpretation of various types of 

observations. 
To sum up， there s田 msto be no compelling reasons for rejecting either the crack band 
model， characterized by softening stress-strain relations， or the line cra.ck model， charac-
terized by softening stress-displacement rela.tions. The choice is essentially a matter of 
convenience of analysis. 
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Whether the 円(oc)curve or円(ら)curve should be scaled down proportionalIy， or shifted 
down， or subjected to some more complex transformation to resect the effect of む isnoも
known at pr田ent.When σzくoand Fig. 3.9 is observed， then， of ∞urse， the areo under 
the円(ι)curve does not repres四 tthe fra.cture energy GJ， but Is 1ωs than G f， i.e. Eq. 3.2 
Is invalid. 

3.5 Random Particle Simulation of Microstructure 

The most realistic， yet computationally extremely dem組 ding，model for nonlinear frac-
ture behavior of concrete is provided by the random particle simulotion. Extensive investi-
gations ofぬistype have been carried out by Wittmann et al.， (1984);蹴 a180Roelfstra et 
a1.， (1985)， and Roelf前回 (1987).Crack formation and propagation in computer generated 
composite structures was 8tudied numerically. These investigators used standard finite ele-
ment techniques， subdividing ea.ch aggregate piece and the mortar regions into many finite 
elements， and also considering weaker aggregate-mortar interfaces. The calculations pro-
vided valua.ble insights but are extremely demanding on computer time and storage which 
made it impossible to model very large structures. 
In the simplest version of random particle simulation， also called the interface element 
model (Zubelewicz and Ba.zant， 1987; Ba.zant， T.めbara，Kazemi and Pijaudier-Cabot， 1989)， 
the aggregate piec回 areconsidered as rigid discs or spheres. An important副 pectis that their 

configuration is generated randomly by the computer. A method to do this so回 tosatisfy 
the prescribed mix ratios of aggregωes of various 'sizes has been successfully formulaもed
(Ba.zant， Tabbara， Kazemi and Pijaudier-Cabot， 1989). 
These models represent an adaptation of an earlier model of Cundall (1971)， Serrano and 
Rodriguez-Ortiz (1973)， Cundall and Strack (1979)， Kawai (1980)， and Plesha and Aifantis 
(1983) for granular materials such as rock， sand or gravel. ln contrast to Cundall's model， 
もhesimple frictional tension-resisting connection between parもiclesmust be replaced by an 
Inelastic interaction with fracture. This has been done by assuming a11 the interparticle 
deformations to be concentrated at a point a七七hemiddle of the in旬rparticlecontact layer 
of the matrix (mo山 r).In the 0柑 nalversion of this model， both the normal and shear 
intera.ctions (but not moments) were ta.ken into accou爪 theshear interaction being el副 ic，
組 dthe normal interaction exhibiting a sudden loss of strength after乱chievingthe prescribed 
strengもhlimit for出einterparticle force. A simpler version， in which the shear interaction 
between particles is neglccted and the normal (axial) interaction is characterized by a forc仔
displacement curve with post-peak gradualωftening in tension， has been developed by 
BaZant， T，晶bbara，Kazemi組 dPijaudier-Cabot (1989) and shown to be sufficient for most 
purposes， ex伺 ptもhatit tends to give a fracもureprocess zone that is narrower and shorter 
th叩 thatobtained when interparticle shear stiffness is taken into乱ccount(and also th組
that expected from size effect data from ∞ncrete fracture tests). This version of the model 
i~ equivalent to a random truss with softening members and represents a generalization of 
the model of Burt副 Dougill(1977). The programming is quite si凶 arto nonlinear fInite 
element programs. 
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Fig. 3.10 continuation 
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Chaoter 4. SPECIAL NONLINEAR FRACTURE 
恥iOIJELSBASED ON ADAPTATIONS OF LEFM 

Special nonlinear fra.cture models do not ωtempt to model出ebehavior of the fracture 
pro伺 8Szone through stress-displacement or stress-strain relations. Instead， they introduce 
80me adaptations of linear elastic fracture mechanics (LEFM) which叩prox凶 atelyreflect 
the nonlinearity of fra.cture behavior. 

4.1 Effective Crack Models 

The effect of a large-size fracture process zone aもthetip of出enotch or continuous 
crack is to re山田 the5もressesnear the cra.ck tip and push the peak stress farther ahead. 
Consequently， the specimen behaves roughly as an elastic specimen with a longer， effective 
cr叫 k1叩 gth，ae • This length can be defined in various ways， giving somewhat different 
results. 1n Dugdale-Barenblaもt・typemodels (or ductile metals， the effective crack length is 
calculated usually from the condition that the sum of the strぉsintensity fa.ctors at the tip 
o( the e晶ctivecrack due to the far field stresses and to出eyield stresses in the fra.cture 
pro倒 szone be zero (Dugdale， 1960j Barenblatt， 1959). 
But this definition seerns neither quite appropriate nor too convenient for brittle mat令
rials. For these materials， an elastically equivalent (Gri伍.th-type)effective crack has been 
defined as the crack for whichもheelastically calculated compli組問 ofthe specimen is the 
same as the measured unloading compli乱nceCu for unloading of the specimen from the peak-
load point (critical state). E賀町tivecra心kmodels for concrete using this definition have been 
pr叩osedby NalIatha.mbi加 dKariha.loo (1986a) and Swartz and Refai (1989). The effective 
crack length， a.， depends on出emicrostructure， a.s well制 theg曲 metryof the specimen. 
When Klc is calculated using the effective crack， the results s肥 mto be approximately size 
independent. Thus it appearsもhata. and J( Ic might be used as two fra.cture p訂 ameters.
To this end， empirical relations for relating the effective crack length to the notch length in 
a fracture specimen have been developed on the ba.sis of experimental data by Nalla山ambi
and Kar泳叫∞ (1986a).
The need for empirical equations relating the effective crack lengthもothe notch length 
reduces the scope of applicability of this method. In addition， one needs empirical equations 
for each specimen ge~~etry. These limitations are over∞me in the two-p訂 ametermodel 
proposed by Jenq and Shah. This model is described next. 

4.2 Two-Parameter Model of J enq and Shah 

This model (Je叫 andShah， 1985a，1985bj Shah， 1988)， which appears to give a rather 
re引i抗icprediction of concrete fracture behavior， involves two fra.cture parameters: (1) the 
cr~ticaI stress intensity factor Klc at the tip of an effective cra.ck of lengもhae at Pu， and the 
~~ítical value OCTOD of the crack tip opening displac泡ment，which is calcu1ated at the tip of 
the pre-existing c~~ck or notch， wh~se iength is d~noted 出 ao， and at凡.The effective crack 
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length， as mentioned before， can be calculated from the compli姐 ceCu recorded at unloading 
when the specim四 isloaded to the critical st80te (Fig. 4.1). Jenq and Shah experimentally 
obsぽvedthat when a. wωcalculated from the compliance m伺 surementsfor notched heam 
specimens， the calculated values of dCTOD were more or less independent of the size部 wellas 
geometry of the specimens. This indica.ted that dCTOD and Klc may be fundamental material 
parameters. Using these two parameters， Jenq組 dShah also predicted the uniaxial tensile 
strength， the split cylinder strength， the size effect on ∞nventional K1e， and the size effect 
on the modulus of rupture. 
The effeclive crack length，αe， calculated on the basis of these two fracture parameters is 
found to depend on the size of the specimen， on the compressive strength of concrete， and 
on the strain ra.te. The value of a. deαeases wi出 increasingstrength and with incr回 sing
strain rate. For the c出 eof an ela.stic perf，田tlybrittle material， dCTOD appro品cheszero and 
a. approaches ao・
The value of Klc from this model has b開 nshown to be essentially independent of the 
geometry of the specimens. Rβsults obtained using compact tension tests， wedge sp}itting 
cube tests and large， tapered， double cantilever beams conducted under the auspi田sof 
RILEM Committ伺 FMT89 showed that the two fracture parameters (Klc and dCTOD) 
might be considered剖 g回 metry-independentmaterial parameters (Jenq and Sha.h， 198880)， 
although a later study (Jenq and Sha.h， 1叩98部8b吋)indicated 80 s討ign凶11包fica.組n叫1tinfl丑flu田lenc白eof g∞metげ
I恥tshould be noted t出ha“tt出hiぬsmodel臼 n bea叩pp凶lie吋dtωospecimens and s“古位加ructu町1汀re田sw叩it出hoωrwi比thou叫1凶b 
noωtcheωs. The model has been extended to mixed-mode loa.ding and to impact loa.ding (John 
制 dShah， 1985， 1986， 1989). 

4.3 Geometry-Dependent R-Curve Determined from Size Effect 
Law 

A quasi-elastic an80lysis of nonlinear fracture c姐 beaccomplished by considering the 
energy required for crack growth， R， to be variable r80出erthan constant. The curve of R 
vs. the crack extension c is caUed the R-curve (or resist組問 curve).The cra.ck propagation 
condition is G = R(c) rather than G = G" and if the value of R(c) is known， the response 
is calcul80ted according to linear elastic fracture mechanics， repl80cing G， with R(c). Alter-
natively， but equivalently， one can define the R-curve in terms of the critical stress in句nsity
factor K lt! wiもh!( IR == (E' G， )1/2， a.nd use the crack propagation condition K 1 == J( IR instead 
of f{1 = J(lc・Thephysical re邸onthat the energy release rate， R， required for crack growth 
inαe臼eswi山 cisもhatit is determined by the si回 ofthe fracture process zone， which grows. 
A larger proc回 szone dissipates more energy. How the zone grows， of course， depends also 
on interaction with the boundaries. 
The∞n切 pもofR-curves was suggested by Irwin (1958) and formulated for metals in detail 
by Krafft et al. (1961). For c色rtaintypes of ∞ncrete specimens， R-curves were measured 
by Wecharatana and Shah (1980， 1982) and Jenq and Shah (1985a). For a long time it was 
thought that the R-curve measured experimentally on a specimen of one geometry c回 be
used universally，副 amaterial property applicable approximately to other geometries. But 
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this has not turned out to beもhecase. Tod8oY we know (e.g. Wecharatana a.nd Sh油， 198380;
BaZ姐も，Kim and Pfeiffer， 1986)出品forconcrete， R-curves depend strongly on the sh叩eof 
the sもructureor specimen. Therefore， to ena.ble the use of R-curves which certa.inly represent 
80 very simple approach， one needs some method to obta.in the R-curve for a given specimen 
geometry from some ba.sic fr拭 turechar8oderistics. 
As proposed by BaZant a.nd Cedolin (1984)， and Bazant， Kim and Pfeiffer (1986)， the R-
curve for a.ny given geometry ma.y be determined on the ba.sis of the size effect la.w (Sec. 5.1). 
This law (Eq. 1.4) app回1"Sadequate for tha.t purpose since (unlike the R-curve) it is a.ppli・
cable， in the s80me form， to most geometri回 withina si民 r組 geup to a.bout 1:20， which 
印鑑cesfor most a.pplica.tions. The R-curve is then obtainedωthe envelope of the fracture 
equilibrium curv四 forgeometrically similar specimens of va.rious sizes. An e回 ycalculation 
of the R-curve is possible on臼 theparameters of the size effect law have been determined. 
In particul8or， the R-curve， giving the fr80cture energy required per unit cr80ck growth， c組 be
obtained (低cordingto Ba.zant and Ka.zemi， 1988)出 follows(for deriva.tion，蹴 Appendix
1): 

R(c)=Gfz:色lヱ (α=2，αo=22，c=a-ao)
J g(α。)cJ 、 d'--V d 

'(α) ( g(α) -， -， 
which ー=一一一 l一一一一α+α。I

Cf . g(α。)¥g'(α) ・U)

(4.1) 

(4.2) 

where G J = fracture energy (obtained from the size effect !aw)， c = a -ao = crack extension 
from the notch or initial crack tip， g(α) ;; nondimensional energy release ra.te defined by the 
total energy relea.se ra.te G in the form G = g(α)P2/{Eb2d) (using G = K}/E'， g(α) c組 be
found from the Kl -values which a.re available in ha.ndbooks such酎 Tadaet a1.， 1985， and 
Murakami， 1987， for the ba.sic specimen geometries， and can a.lwa.ys be obta.ined byelastic 
祖 alysis);α。=ao/d， and Cf = dog(α。)/g'(α。)where do is a constant from the size effect 
law; CJ is the e恥ctivelength of the fracture process zone in叩 infinitelylarge specimen (see 
Eq. 5.5)， defined as the distance from the notch tip to the tip of the equivalent ela凶iccrack. 
The actual proc側 zonelength (defined as the dist姐 cefrom the notch tip to the point of 
ma.x泊四もensi!estress) is a.bouも2cj， a.s indica.ted by∞mparisons with various models of 
the process zone (eιHorii， 1988; Horii， et al.， 1987， 1988; Pl姐剖andElices， 1988a; BaZ80nt 
and Kazemi， 1988). 
Eqs.4.1叩 d4.2 define the R-curve parametrica.lly. Knowing Gf and do， one may choose 
a. series ofα-vaIues， a.nd for each of them calcula.te 員凶 cfrom Eq. 4.2組 dthen R( c) from 
Eq. 4.1. The R-curves which a.re obtained from Eqs. 4.1・4.2for very different specimen 
g回 metriesare very different from each other，部 illustratedin Fig. 4.2a.. 
Recently i比tw晶制sfound (但Ba量za.n帆 Gett凶u組 dK 拙 em叫1
loadι-deHectも“iぬo∞ncurve iおstωo be correctly predicted， the i泊ncαre位as犯eof R must be arrested at the 
p戸eak-loadpoint (point p in Fig. 4.2)，回 indicatedby the horizontaI line 13 in Fig. 4.2. 
The reason the critical energy relea.se rate R cannot exc田dtha.t for the peak Ioad st80te is 
that: (1) the increase of R is due to an increase of the fracture process zone size (a large 
zone dissipates more energy)，叩d(2) in the post-peak response， the fracture process zone 
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detaches itself from the tip of the notch or initial crack 80nd tra.vels forw8ord wi山outgrowing 
in si戸・ Thisbeha.vior h剖 previouslybeen experimentally identified， e.g.， from m伺 surements
on alumiDum (BaZ組t，Lee and Pfeiffer， 1987)飢 dwas v印刷 especia.llyby t倒 sof rock 
(B話相t，Gettu and Kazemi， 1989) and high-strength∞ncrete (Geもtu，B話回t姐dKa.rr， 
1989). 

The study of the R-curves indicates that the ωn田ptof ela.stically equiva.lent effective 
crack lmgth cannot give very good results ifaconstant fraduEe energy value is回目ociated
with出eeffectiveロack.Calculation according to Eqs. 4.1-4.2 implies that not only must 
the crack length，a=ao+c，ditrer from ao，but also the energy release rate required for 
α'ack growth must be considered to inα'ea.se with the crack length if a. solution tha.t is 
a.pproxima.tely equivalent to nonlinear fracture mechanics should be obtained. This is not 
done in some re白川lyproposed models (e.g. Karihaloo's model， Sec. 4.1 and 6.6)・
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Chapter 5_.__SI~E EFFECT AND BPJTTLENESS OF 
STRUCTURES 

where α。=the actua.llength of the continuous cra.ck or notch， a.nd c = dista.nce of the tip白
of the equivalent ela.stic cra.ck from the tip of the initial cra.ck or notch (Fig. 4.2). 
Assuming tha.t 9'(α) > 0， which applies to the ma.jority of specim佃 gωmetri田， the 
fradure process zone first grows in size while remaining attached to the tip of notch or 
initia.I crack. Since the value of G must depend on the length of the fra.cもureprocess zone， it 
roust depend on c. The fra.cture energy GJ may be ∞nsidered to be the value of G rea.ched 
for crack leng出sC ;::: cJ where cJ is a. roaterial consta.nt. The value of C at maximum loa.d 
is equa.I to cJ only for an infinitely large specimen (d→∞)， but is smaller than cJ in finite 
size specimens. Based on Taylor series expa.nsion， we have The size effed is the most important ∞nsequence of fra.cture m舵 h叩 icstheory. Therefore， 

it is 10gica.I to determine fra.cture properもiesfrom it. Knowledge of the si田 effectis needed 
for the desim of strucMreh which generally involves extrapolation from lゆoratory-sizeto 

r叫 4

review its f，おormu叫11a.叫叫b“io∞nand consequen 偲5 in further detail. 
g(αJ) ~ g(α0) + g'(αo)(cJ/d) (5.4) 

5.1 Size Effect Law for Maximum Nominal Stress 

where αJ = cJ/d組 dg'(α。)= dg(α。)/dα.1t is reasonable to assume th抗出eG-value at 
the peak-load is not constant but is proportiona.l to the g(α)-va.Iue at the peak 1000， i.e. 
G = GJg(α)/g(αJ). Substituting this and Eq. 5.4 into 5.2， setting凡=(σNbd/cn)2， and 
solving for σN， one obtains 

We consider geometrica.Ily similar structures or specimens with geometriαlly similar 
notches oE cracks.We will now illustrate the analysis for similariby in two dimensions， 
hthough themults m the sme formihiもyinもhree-dimensions(BaZant， 1987a)・The
no凶na.l山 essat failure (maximuro 1000) ma.y be defined as 

σN=らしい)九(句)a) (5.5) 

凡一
Mn 
e
 --

N
 
σ
 

(5:1) 

This四p1'esentsthe size effect la.w expr'田sedin te1'ms of material para.meters (B話a.ntand 
Kazemi， 1988). Eq. 5.5 is equivalent to the size effect law σ'N = B刀(1+ s)-1/2，β= d(ゐ
(Eq. 1.4) if one makes the notations: 

in which P.. ultimate load， b = thickness of the structure， d = certain chosen characteristic 。fもhestructure， and Cn = coe伍cientintroduced for ∞nvenience. (For example， in 
the c蹴 ofbending of乱simply叫 portedbea.m of span l a.nd depth， d， with∞ncentmtedlO吋
抗出dspan，we may int1'oduce σN品目 themaximum bending stre回， i.e.σN = 3凡l/2bd

2= 
ιpjbdwhereら =1.5l/d = constant; but we can equally well take the chara.cte1'istic 
34hsidnω d=l=自pan，anddenoting h =beam depbh we then have σN = c..Pu/bI. 
where cn=322/2M=consunt，providedbhe beams are similar). 
Noting th斗σゐ/2Erepr飴entsthe nomina.I stra.in energy density，もhe町 ainenergy i5 
u = V(σゐ/2E)ψ(α)，whe1'e V =匂bd2= volume of the structure (eo = constant)姐 d
=GId-The energy release rate is given by bG=-OU/θa=一(δU/θa)/d.Now with the 
notatiムィ(α)C!eo/2= g(α)， the energy rele蹴凶eof the structure is found to have the 
form 
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(5.6) 

1t m晶ybe noted that a more general size effect la.w has been derived; 

σN = BI:(1 + srt1/2r， 
but r depends on geomet1'y， and for all g句 metriescombined the value r ~ 1 was found to 
be approximately optimum (BaZant and Pfeiffer， 1987). 
It is further useful to rewrite the size effect law in the form 

P2g(α)σμ 
G=一一一 =--g(α)
Eb2d c!E 

(5.2) 

叩=(部y/2 (5.7) 

】nwhich 

in which g(α) is a known function of the凶 tivec1'ack lengthα = a/d. Beca.use G = 
K] / E， function g(α)may be obtained from the expmSions for th stress intemty factors， 
hich are always of the form KI = Pk(α)/.，fd where k(α) = non-dimensional function. For 
typical specimen geometries， function k(α) c叩 bedetermined from the KI va.lues available 
in handbooks and bextbooks，and for obher gEomdries it cmbe obtained by linear elasUc 
analysis 
Nonlinear fracture wi七ha. softening cohesive (fracture process) zone is a.pproxima.tely 

equiva.Ient to linea.r elastic fra.cture of回 increasedcrack length 

ロ7てPu n _ g(α。)
九 =..jg'(的)話，D=訳可d (5.8) 

~ere.7'N a.nd D may be interpreted as the shape-independent nominal stress at failure and 
the sha.pe-independe凶 characteristicdimen討onof the山 ucture(Ba.孟姐も姐dKazerru， 1988; 
BaZa.nt， Gettu姐 dKazemi， 1989)・

α=向 +C or α=α。+(c/d) (5.3) 
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1n the c回eof thre&dimension晶l自i凶larity，we have U = V(σゐ/2E)ψ(α)，V =匂♂ and
CldG = -oU/δa=一(θU/δa)/din which eo組 dCl are some constants. Denoting 
-ft'(α)eo/2Ct c! = g(α) weob凶inagain Eq. 5.2， and all the remaining derivation is the same. 
Therefore， the resulも8are again the same aB Eq. 5.5・5.8.
The size e.ffect law (Eq. 1ム5ム5.7)国 na180 be derived very generally by means of di-
mensional analysis and si凶 litudearguments (see BaZant， 1984a， 1985b， forもwodimensions; 
and B話ant，1987a， for thr.田 dimensions)if the following hypothesis is adopもed:
The total enぽgyrelease from the structure of any日ized into the fracture process zone 
depends on both: (1) the length， ao， of theωntinuous craιk or notch， and (2) a length 
∞nstant of the material 1.0・Hぽeio may represent the material constant combination 
lo = E'GJ! f? (Irwin's characteristic size of nonlinear near-tip zone)， or the e.ffective 1田 gth
CI of the fracture process zone in姐 infinitelylarge specimen， or the effedive width ωc of 
this zone. If only part (1) of this hypothesis is adopted， one obtains the size e.ffect of linear 
elaBtic fracture mechanics (σNαd-1!'l)， 組 dif only part (2) is adopted， one obta.ins thaもof
plastic limit analysis (i.e. no size e.ffect). 
From this hypothesis it appears that the size effect law is restricted neither to the cr舵 k
band model nor to the line crack model but is valid for any nonlinea.r fracture model with 
a large process zone. Since the length or width of the fracture process zone is related to 
the characteristic length i of a. nonlocal continuum， the size effect law also applies for the 
nonlocal continuum approach to fracture. This has been demonstrated by finite elements 
for a simple nonlocal smeared cracking model in BaZant祖 dLin (1988b) (see Fig. 3.6)姐 d
for the nonloca.J micropla.ne modeJ (which also describes well nonlinear triaxial behavior in 
compressive st前田)by Bazant and 0量bolt(1989) (Fig. 3.9). Particle simulation of raD-
dom microstructure (Bazant， Tabbara， Kazemi and Pijaudier-Cabot， 1989)山oshows good 
agreement with出esize effect law. 
A baBic criterion for acceptabiJity of nonlinear finite elemenもcodesfor ∞ncrete structures 
is that they must describe the transitional size e.ffect (Eq. 1.4) 
An extensive comparison of the size e.ffect ]aw with fracture test data for di.fferent spec・
imen geometries for concrete ωwell剖 mortaris found in Bazant叩 dpfei恥r(1987); see 

Fig. 5.1 (where Ao = do/d，，). These t田 tshave shown that very di.fferent types of specimens 
(bending， c回 trictension， eccentric compression) yield about the same fracture energy (even 
though出eotl町 parametervalues in Fig. 5.1 di.ffer considerably). 

5.2 Brittleness Number 

Eq. 5.6 expresses七hesize e.ffect law in terms of material fracture parameters， G I and cJ 
(conversely， their definition and mωurement may be based on the size e.ffect law， Eq. 1.4). 
This fact was exploited by BaZant (1987乱)to define the陀e砂 calle吋dbr凶ri川も“川もtlen問es凶SDl即1
approximately describes the brit“ωtleness 0ぱft仕出hestructural response regardless of the stru邸1κctur印e 
shape. Based on Eq' 5.7， the brittleness number is expressed aB (BaZant and Kazemi， 1988): 
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while on the basis of the size effect la.w expression in Eq. 1.4 it is equivalently expressed酪

(Ba.Z叩t，1987a; Bazant and Pfeiffer， 1987): 
， rt2 

s=え=内州合;=AB2fd (5.10) 

Eq59makesitpossiblehoedcuMepsolelyonthebuisofalinearelasticf日CMeme1hanicB
solution、forwhich the shape and the length of the cο凶 nuouscra.ck at ultimate loa.d (or the 

notch lcngth in a fracture specimen) must be known. 
Eq.510yields the bIittlenesB E11Inberwhichexactly agE伺 ?withthe tralsition ofthe siZE 
efTech law to the plastic analysis solution when the structure日izeis very small. Coe伍cienもB
can be determined as B = cnPu/bdf: where Pu. = ultima.te load 蜘 essa.ccording to a pl越もic
limit analysis form山 forthe structura.l failure， s叫 asemploy出 nthe curren t ωdesやr
diagonal sheaz failure，punching shear failure，torsional failure，etc.Eq.510is moEe accura巴
for自malls， while Eq. 5.9 is more aιcurate for la.rge s. 
As a third method fOi: determining b， if出emaximum loads for a given structural geom-
etry紅eknown for f:ligni五cantlydifferent sizes， e.g.， on the basis of la.boratory tests or on the 
basis of SIlite element aIlalysis basdon some method of nonlinear fracture mιh姐 ics，then 
regression ofもhetest results by m位 nsof the si民 effectlaw yields the parameter d ， from 
which b = d/ゐ
AItemauveiy iも品Isosu伍C国 toobtain the failure load Pu for a very small size (s→0) by 
plMic limit anaiysis，which yields B=du/叫， a.nd then det釘 mineσN from the LEFM 

olution， which yields do/d = (σN/BfD2. 
The value F=1(or d=do)corresponds inU1esimefect ploh of logσN vs. log d to the 
point where t1叫orizontal掛 Y町 totefor the st回附hc山 rionand the indined出 ymFo七e
forもhelinea.r elastic fracture mech姐 icsintersect; Fig. 1.4. For s < 1， the behavior is clo 
to plastic limit叩乱lysis，and for s > 1 it is closer to linea.r elastic fracture mech岨 lCS・If
s <t:: 1 or s >> 1， nonlinear fracture mechanics is not ne印 ssary.The method of analysis may 
be chosen as follows (Ba.Zant， 1987; Ba.Zant and Pfei狂er，1987): 

sく 0.1 plastic limit analysis 

0.1 5. s 5. 10 nonlinear fra.cture mechanics 
s > 10 linear elastic fracture mechanics )

 

'
i
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D
 
，，.‘、

For s < 0.1， the error ofもheplastic limit analysis is less tha.n 4.7% of σN・andfor 
β>lothe error of linear elastic fracture mechanics is also less than4.7%，compared to the 
nonlinear fracture mechanics solution. If an error under 2% is desired， then the nonlinear 
nge must be expa.nded to 1/25壬9三25.
Other deanitions of the brittleEless number of asbructure have been proposed before. 
Beginning with Irwin(1958)，researchers in rndalE knew that structural britsleness is basi-
cally characterized by the ratio of the structure size to Irwiri's size of the nonlinear zone， 
Eq. 2.10. This definition w回 co-optedfor concrete structures by Hillerborg (1985b) (cf. 
also E1fgml，1989)who proposed to characterize the structural brittlemss by the ratio d/ゐ
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where eo = EGJI f? (he callea eo the “characteri抗icl叩 gth";but this consicts with p児吋・
ous terminology in nonlocal continuum theoη). Therefore we will calllo the characteristic 
prωess zone size. Ca.rpinteri (1982) proposed the brittleness number s = Gj/ f:d. Simi1a.r 
definitions wぽ e回 rlierproposed for ceramics by Gogotsi et al. (1978)岨 dHomeny et al. 
(1980). The britt1eness numbers of 凹m削lle的E出bo叫r喝g，Cωaむ叫叩r叩巾p戸阿i泊nt凶釘凶i，Goゆg酔ot旬凶s討ia凶n吋dH恥Iom附l
紅enot independent of t出hestructure ge印ome抗tr可y却 dt山hu凶scannot be used as universal， a.bso-
lute chara.cteristics (e.g.， s = 3 could then m品 na very brittle behavior for one structure 
gωmetry組 da very ductile behavior for another geometry). 
Although Eqs. 5.9 and 5.10 define the brittleness number in relation to the size effect 
on the ulもimateload，もhebrittleness number .also determines the nature of the post-pea.k 
response， particularly the steepn悶 ofthe post-pea.k softening (1000 decrease 叫 increasing
displacement). That was already illustrated by the series model in Fig. 1.13. 
In view of the universality of the brittleness numher proposed by Ba.Z叩t，it appe町sthat 
a simple adjustment of the current limit-analysis-based code formulas， taking into account 
nonlinear fra.cture m配 hanics，can be mOOe by replacing the nominal stress at ultimate loaa， 
九，as given without consideration of sizc effect， by the expr四 Slon

九
一何

(三 v~n) (5.12) 

However， the method to calculate do， on which s depends， still needs to be resea.rched. 
Eq. 5.12 indica.t回 thatthere might be a lower limit v::am on出enominal strength， due to a 
possible transition to some non-brittle frictional f心lurem配 hanism.An example of such a 
limit is s田 nin Br招 iliansplit-cylinder tests (see e.g. B話相t，1987a). 

5.3 Other Size E:ffects and Limitations 

5.3.1 Effect of Residual Ductile or Frictionai Limit 

In Brazilian tests of spliもcylinderstrength， Hωegawa et al.(1985) ob悶 vedthat the 
nominal stress at f，乱山re(i.e.， the split cylinder 抗rength)decreased with increasing diameter 
of the cylinder， however， beyond a certain 1arge size of cylinder， no further decrease of the 
strength w白 observed(this behavior has now been confirmed by tests of Bazant， Kazemi， 
et al (1990)). This sugg回t5that for a certain sufficiently large size， there is a transition 
も0叩menon-brittle failure m氏 hanismat the maximum load. The re晶 onmigh t be that for 
large sizcs the maximum load is decided by friction on a small wedge-shaped region under 
the load application points. For small specimen diameters， the load to cause出espliもting
crack is much higher出anthe 1000 to cause frictional slip of the wedge-shaped region，組d
therefore the brittle mechanism of cracking decides. How~ver， if the si~ is ~ery la;ge about 
100 d"， the nominal自tr回S机 whichthe splitting fracture occurs becomes very small， smaller 
th柏 thenominal自tressσhwhich causes the frictional slip of the wedge; see Fig. 5.2. Thus， 
~t 1eas~_ for this type of failure， iもseemsappropri乱teto put a lower limit on the 5ize e:ffect 
!a.w，σ;." beyond which σN C姐 notbe decreased. This mighもalsobe true for some 0仙er
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f♂lure mechanisms， especially those involving splitting cracks in compression. 

5.3.2 Statistical Size Effect Due to Random Strength 

Statistical heterogeneity of the material no doubt plays an important role in the mi-
cromechanisms determining the material strength. It describes the effect of the size distri-
bution of the flaws in the microstructure on the material strength. However， for reasons 
already explained in Chapter 1，山erandomn自由 of strength due to the heterogeneity of the 
material，回 describedby Weibull-type probabilistic models， does not seem to have a major 
influen田 onthe size effect ohserved in bri“le failures of most concrete structures， ex田p七
those where the maximum s色E伺 sis uniform over a. large pa:吋 ofthe strucもure(e.g.， a long 
uniformly 目tressed specimen in t民ens四凶s討山ion小o町rwhere the structure fails at 五rst macrocrack 
initiation. 

5.3.3 Diffusion-Type Size Effects 

It must be kept in mind that signifi伺 ntstructural size effec凶 C姐 beobtained due to 
the diffusion process of drying of concrete in structures， the conduction of hea.t produced 
by hydration， and the non-uniformities of cr田 pproduced by differences in temperature and 
moisture content throughout the structure. 

5.3.4 WaIl Effect as a Source of Size Effect 

Still another type of size effect is caused by the fact that a boundary layer near the 
surface of concrete inevitably has a different∞mposition and strength than the interior 
of concrete structure. This layer， whose thickness is about one aggregate size， contains a 
lower perαntage of large a，邸regatesand a higher per田 ntageof morta:r. This phenomenon 
is known as“wall effect". In a small structure， the effect of this layer is la:rgerもhanin a 
large structure because the boundary layer thickness is independent of structure size. For 
very thick cross sections， this effect becomes negligible. 

~.~.5 Size Effect Due to 3D Singularity at the Ends of the Crack-
Edge 

According to three dimensional linea:r elastic solutions， the stress intensity factor of a 
crack in a plate with a straight or出ogonalfront edge is not constant along the edge (i.e. 
across the thickness of the plate) but drops to zero at the intersections with the surfaces of 

the plate (Ba.Z組も叩dEstenssoro， 1979) (except if the Poisson's ratio were zero). The con-
符q_uenceis that the front edge of a propagating crack must be curved， such tha.t the surface 
吋 pointsof the crack edge must be trailing behind the interior of a propagating crack. 
This engenders組 effectof plate thickness on the average value of the stress inもensityfactor 
over the entire plate thickness. This si記 effectmight not be large but can be completely 
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elimina.七edif the thicknesses of specimens of all sizes are the same. 

5.3.6 Effect of Aggi"egate Size 

The f合蹴a拭訓£
for on田ea組.ndthe s 乱mec∞οncαrete鳥，which implies も由hes拍amea喝.ggre，句:ga“tes討i配 . If the aggrega.te size is 
ch姐 g叫 tl吋凶ureparameters a.ndもhesize effect la.w pa.ram山 sch回 ge.ABproposdv
Bdmt，the simefeet law needs to be djusted掴 follows(8白色180Baz姐 t阻 dKim， 1984): 

σN=品 ，f: =.ft (1 +伺，s=え (5.13) 

in whi廿ichf伊?i拘st由hedire氏c七tensile strength for a chosen reference ∞n即cr陀eも旬e，刀is t出h巴 dire伐ct
i匂en悶s討ile蜘附hfi知oぽrma対泊加ximπmu
i包s姐 a.log伊。u凶sも旬othe Petch formula. for the e宜ffectof gra釘ins討i問 o∞n the yield strength of poly-
rystalline metals，which is derived by the dishcauon thmEy.Eq.5.13has been shown to 
agr田四回onぬlywell with the fracture test data of Cha.na. (1981)， Taylor (1972)姐 d19uro 
et al. (1985)，組d∞efficient向 hasbeen calibra.ted. 
Fig. 5.2 (Baia.nt， 1986)∞mpares the size ebd plots according to Eq.5.13for Bpecim?ns 
with differ叩 tmaximum aggrega.te sizes d... The ∞mparison is made under the assumption 
thudo=da where n=constant，which is only approxmate(and might be invalid if very 
diferent agFegateもypes，e.g. round and very elongated a.gg時耐久 or crushed組 d山 er
aggregates Me used.According to Eq.5.13，the size etrect curves in the plot of log σN vs logd 
ha.ve出esame shape forany d，i.e.，one transfOEmsMmottleE bybranSIMba-An increase 
of d" not only shifts the size e宜ectcurve vertically downward (dueωthe term匂jd..) but 
also to the right (because do = nd.. is contained in the brittlen田snumber s)・
Consequently， the size effect curves for diπerent d.. may intersect， as shown in Fig. 5.2 
(this must happeE unless the material constant cuis luge eno略的・ Thus，fora su直ciently
small specimen size，品highernominal s七rengthis obta.ined wi出 smalleraggregate sizes d，刷
while for a. su伍dentlylarge specimen size，a higher nominalstrength is obtained wiU1larger 
aggrega.te sizes. For intermediate structure sizes， the aggregate size m山田littlediffer叩 ce.
Since the intersection point of the two cu何回 inFig. 5.2 is not known very accura.ωly， 
there may be乱largerange of structure sizes in which the effect of the maximum aggregate 
size is uncertain. For small beams and slabs，出isfra.cture岨 alysiswould suggest using a 
sma.ll a.ggrega.te. Concrete da.ms a.re so la.rge that the la.rger the aggregate tl叫 etter，ωfar
剖 thedam strength is concemed. However， recent fracture tests of dam concret田 ofSaouma 
et al. (1989) indica.te a. surprisingly'small effect of a.ggregate size a.s compa.red to the effect 

of aggrega.te shape. 
Aggrega.te size a.nd gra.dation effects ha.ve 叫sobeen studied for polymer ∞nCretes(ViP? 
l組and岨 andDharma.raja.n， 1987，1988， 1989a丸山Dharmaraja.n組dVipula.na.nda.n， 1988) 
For exa.mple， they found that a. polymer ∞ncrete with well graded sand has 20% higher K lc 
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tha.n that with a uniform sa.nd. 

5.3.7 Effect of Matrix Strength and High St:rength Concretes 

The re目 ntspec同四laradvances in the strength of ∞ncrete have been achieved mainly 
by increasing the strength of the matrix a.nd the a.ggregate-matrix bond. 1n high streng出
concretes， the differences between the strength and elastic modulus of the aggrega.te a.nd the 
ma.t山 (mort紅)are much smaller tha.n they訂efor normal 抗reng出∞ncrete.Consequently， 
high strength concreもebehaves as a more homogeneous material， a.nd the result is that the 
fracture pr，侃伺szone becomes smaller (John and Sha.h， 1989b; Gettu， BaZant and Karr， 
1989). ln view of the discussion of the size effect (伺peciallythe fact tha.t coeffi.cient do 
in the size effect law is related to出esize of the fracture proc悶 zone)， it is clear that， 
for the sa.me strucもuralsize， the behavior of high strength concrete is closer to linear ela.stic 
fracture mechanics， i.e.， more brittle， tha.n the beha.vior of the sa.me structure made of normal 
∞ncrete. Therefore， fracture mechanics姐 alysisand size effects are much more important 
for high strength concretes than for norma.l strength concretes (e.g.， Shah， 1988). 

5ふ8Suppression of Size Effect by Yield of Reinforcement 

Aside from providing an additional ductile mechanism which carries pa.rt of the load， 
the effecもofreinforcement is to spread the fra.cture process zone. Therefore， reinforced 
concrete is generally less susceptible to fracture effects a.nd the a.ccompanying size effects 
than unreinforced concrete. Further studies are needed in this rega.rd. 
I七mustbe kept in mind though， that despite reinforcement， m姐 yfailures of ∞ncrete 
structures are brittle. According to出ecurrent philosophy， the ultima.te load is a sum of 
that due to yield mechanisms (e.g・，the yielding of stirrups in diagonal shear) a.nd that due 
to concrete alone， without reinforcing ba.rs. This mighもoftenbe a conservative approach， 
which in fact implies that the concrete contribution to the ultimate loa.d should be a.na.lyzed 
according to fracture mechanics. lt is likely， however， tha.t the presen回 ofsteel and its 
yielding alters the fracture behavior of concrete， increasing the contribution to failure load 
due to concr山 alone(Ba雲仙も andSun， 1987). Th悶 problems{leed to be studied further. 
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Chapter 6. EXPERIMENTAL OR AN ALYTICAL DE-
TERMINATION OF MATERIAL FRACTURE PA-
RAMETERS 

After a slowね叫madeas early部 1961(Kaplan， 1961)， fracture testing of concrete has 
developed tr'四 lendouslyduring the 1980's. A number of experiment31 testing techniqu偲
姐 dspecim四 typ伺 havebeen tried， and the developments crystalized into some effective 
method目.

6.1 Notched Beam Tests 

6.1.1 Notched Beam Tests Using LEFM 

Bea.m tests have be四 mostpopula.r; probably because of similarities with the standard 
modulus of rupture t回t組 dbecause the first LEFM test standard for meta.ls used this 
(ASTM， 1983). In addition， testing proceduresむesimpler th姐 forother g回 metri田 and
alignment errors are minimal. Aもypicalbe釘ng四 metryand thr骨 pointloading紅 epre-
sented if Fig. 6.1a. The span to depth ratio frequently Is 4:1 which conforms with the 
requirements ofもheASTM standard E399 (1983). This is because formul回 foropening 
mode耐 ess-intensityfactors for beams are given for Sjd = 4 or 8 -Tada et 31.， (1984) and 
Murakami (1987) are typical sour倒-although formulas ca.n a1so be obta.ined for other Sjd 
ratios (e.g.， Go， Swartz and Hu， 1986). 
The test usually consists of the following steps. 

1. Notch the beam to depth向 atmidspan. This could be done by a sawcut or by姐
insert cast into the beam and later removed. 

2. Using a constant ra.te， about 1 to 10 min. to fa.ilure， increa5e the load， desection or 
crack opening until failure. Re∞rd七he10吋-deflection (OLPD) or Ioad-crack mouth 
opening displacement (8CMOD) r田ponsecontinuously. 

3. The peak load凡 orthe load PQ a.t the inters民tionwith a. sec姐も ofslope 95% of 
initial slope， s開 Fig.6.1h， is then used to calcula.te the fracture七oughnessfrom the 
rela.tionship (ASTM， 1983; Ta.da et a1.， 1985; Go， Swartz and Hu， 1986; Murakami， 
1987) 

K1c = F(S， d， b，αQ，PuorPQ) (6.1) 

The v31ue of Klc 50 determined is presumed to be the critical， opening mocle stress intensity 
factor剖 sociatedwith unstab1e cra.ck growth組 dis a. materia.l property. 
If Klc is， in fact， a ma.teria.l property obtaina.ble from the unmodified use of LEFM， the 
following should be true: (1) K1c should be invariant with respect to beam size a.nd notch 
depth or crack dep出.(2) Any zone of“pl回 tici句"or“凶α0・cracking，"i.e.， the fracture 
proc間 zone，should be very sm31l compared to the notch depth. ASTM E399 (1983) gives 
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a formula to determine if this requirement is satisfied. This has been adapted to concrete 
(Sec. 6.8). (3) The critical energy release rate is related to K1c by 
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In which the (slight) influence of Poisson's ratio i自neglectedand E is the modulus of elasticity. 
The early researchers found that KIC! or Glc， w制 Cοnstantwith respect to neither beam 
size (Walsh， 1972， 1976) nor notch depth (Swartz， Hu， Fart卸 h姐 dHuang， 1982) for concrete 
beams. One possible explan抗ionfor this was provided by Shah回 dMcGarry (1971) who 
noted that cracks are arrested by the aggregate particles. Additional energy is required to 
propagate the cracks through and/or訂 oundthese particles. Another possible 阿部onfor 
the varia.tion in Klc mea.sured by LEFM w凶 su邸estedby Swartz and cかworkers(Swartz， 
Hu， Fartash and Huang， 1982; Swartz， Hu and Jones， 1978; Swartz and Go， 1984). They 
noted出atthe data evaluations in the early t倒 s(Naus姐 d1ott， 1969; Walsh， 1972， 1976) 
were referenced to the original notch depth，αQ. This violates one of the requirements of the 
ASTM method for metals， namely that a true crack -not a notch -is to be used. Of course， 
mea.suring the actual crack length in concrete is quite difficult 'and， in fad， a precise result 
is impossible， since the crack front is strongly non-uniform through the specimen thickness. 

6.1.2 Ccmpliance Calibration Method 

In姐 attemptto estimate the crack length in plain concrete beams subjected to three-
point bending，姐 indirectmethod based on the compliance of notched beams wωproposed 
by Swartz， Hu and Jones (1978). This test procedure is as follows: 

1. Notch a beam at midspan. 

2. Mount a displaιemenもgageto measure the crack-mouth-opening displacement dCMOD 
(see Fig. 6.1a) and cy必 theload on the beam three times while plotting load P 抑制

dCMOD. The ma.ximum load is selected to be less than 1/3 the expected failure 10M 
for that notch depth. 

3. Mea.sure the inverse slope of the P versus dCMOD plot. This is the compliance C for the 
∞tch depth. (This is， of course， only an勾parentindirect measure of compli乱nce.The 
true compliance would be obtained by measuring the verticalload-point displacement 
dLPD， or by loading the specimen at the crack mouth.) 
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4. Repeat steps a-c for different notch depths using the same beam. 

5. Plot C versusα。Id.A typical plot is shown in Fig. 6.2. 
Subsequently， the experimenもallydetermined ∞mpliance plot is used to estimate the 
initial crack length of precracked beams loaded to failure (Swartz， Hu and Jones， 1978)・
The use of precracked bea.ms was felt to be 町田ssaryin orderもoobtain valid fracture 

Fig.6.2 Compliance Calibration Curve for Notched B白血
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da.ta because the phenomenon of crack closing strωses mak回 itimpossible to model a 
real crack with a notch. 

The procedureもoprecrack a (different) beam for a sub叫 lentload test w回 asfollows: 
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6. C凶 asmall， starter notch at midspan. This w硝 typicallyα口/d三0.10.

7. Load the beam to a load beyond九togrow a crack企omthe notch until the P -OCMOD 
unloading or re-loading slope matches that associated with the desired crack length. 

After the beam i自precra.cked，then 
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8. Load the beam to failure姐 dme回 ure九orPq・CalculateK1c from 

Klc = F(S， d， b，αh九，orPQ) (6.3) 

Notice that the only difference between this and the earlier LEFM procedure is the use 

ofαi instead of ao・
Using the relation of compliance to crack length calculated from LEFM， one can de同-
mine the initial crack le時出向 fromthe slope of the P -dCMOD curve (Fig. 6.3) after the 
iniもia.lcrack closure stresses are overcome. 
This method of t田 tingrequires the use of a closed-Ioop electro-hydrodynamic system in 
which the controlled， feedback va.riable is the output of the transducer used to m伺.surethe 
dCMOD・Thishas traditionally been called “strain control." This term may a.pproxima.tely 
apply if the controlled variable is the dCMOD or some other beam displacement， but not the 
stroke displacement of the testing system. 
At白も W臼 madeto show a direct comparison between notched beams and precracked 
beams following the procedures described a.bove and using Eq. 6.1 for the notched beams and 
Eq. 6.3 for the precracked beams. It was found that the computed Klc for the precracked 
beams w踊 alwayshigher th組 forthe notched be釦 15(Swa巾， Hu， Fa巾.sh組 dHua時，
1982). However， tl由 approachwωcriticized because notched -not precracked -beams 
were used to construct the compliance calibration curves (悶steps日).A further ωiticism 
was that， due to slow crack growth， the initial crack length ai might not be appropriate for 
determining K1c' Therefore this method w出 modi自ed.
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6.1.3 Modised Compliance Calibration Method 

The modification was to use precracked beams which are impregnated by a. dye to reveal 
the shape of the crack front， and then use the extended crack length a. to determine ](1，. 
The method was first proposed by Go (Swartz and Go， 1984j Go and Swa.rtz， 1986)岨 d
subsequently refined by R品 i(Swartz and Refai， 1989). Precracked heams are used boもh
for the cr品もionof a compliance calibration curve and for failure tests. The method has the 
disadvantage tha.t it is quite time-consuming and a number of beams are required to obta.io 
a calibration curve instead of just one beam. The procedure for each beam is a.s follows: 
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1. Cut a. small starter notch at midspan. 

2. Using a ramping function and strain control， load the beam beyond九， grow a crack 
and then remove the load. Subsequently， plot P versus dCMOD using a maximum load 
壬1/3the maximum loa.d associa.ted with the crack. 

3. Introduce the dye and cycle the load to work the dye into山ecracked surfa偲・ The
bea.m must be loaded with出ecra.ck proceeding from the top surface downwa.rd. The 
1000 must be greater than that needed to over∞me crack c10sure stresses and must he 
less than a.bout 1/3 of Pu. 

4. Dry the dyed surfa田 andload the bea.m to fa.ilure. Plot P a.nd sCMOD. The initial 
slope after crack closure is overcome gives the initial compliance C.. 

5. After failure， m伺 surethe dyed surface area. The initial crack length is 

向=(area of dyed surfa田 )/b (6.4) 

Typical dyed surfa田sa.re shown in Fig. 6.4. 

6. Repeat steps 1・5for different cra.ck depths and establish ca.libration curves rela.ting C; 
and ai，凡回dα4・Thelatter relationship allows one to obtain an estimate of the cra.ck 
length a.ssocia.ted with any loa.d on the softening part of the load-displacemenもplot.

7. At the point on the unloa.ding plot corresponding toもheonset of unstable crack growth 
-taken to be a.t 0.95九 determinethe extended crack 1叩 gtha. from the 九一向plot
(step 6). The extended length must not be gr伺 terth叩 a./d= 0.65. Using 0.95凡
組 da. compute K1c from 

Iuc = F(S， d， b， a.， 0.95Pu) (6.5) 

The validity of the procedure to estimate the extended crack length a. may be a.rgued by 
referring to a.load-unload-reload diagram (Fig. 6.5). The objective is to determine the cra.ck 
length at some point on the softening branch -sa.y point C (which may be any point). Ifもhe
a.ctua.l unloa.ding tra.ce is a.va.ila.ble， the unloa.ding compliance Cu can readily be mea.sured 
a.nd used with a compli組 cecalibration curve to determine the extended crack length a.. 
Alternatively， the九一a;relationship ma.y be used where the load 以 pointC is used for Pu. 
In constructing出e凡 -a; curve， it is noted from Fig. 6.5 that an approximation exists in 
that Pu and a. imply the use of the slope of line OB instead of the actualline OA. The error 
in determining山ecrack length from this approximation was determined to be less th回 6%
with a coefficient of variation of 8.5% (62 samples) (Swartz and Refai， 1989). 
The results obtained by using this method on 8 In. and 12 in. deep bea.ms with a./d至
0.65 show J(Ic to be invariant with respect to the crack length and beam size， with a coefficient 
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variation of 5.5% (N = 19， 8 in. beams) and 3.5% (N = 19， 12 in. beams) (Refai and 
~wartz， 1988; Swartz姐 dRefai， 1989)・

76 

An a.dvantage of notched beam tests is that friction effect is small. To explain this 
u恥d，letηd be the distance from the bottom face (Fig. 6.1) to the point on the crack plane 
uch tha.t姐 axialforce p制 ing出roughthis point would cause no defl.e仰 nof the beamj 
tlbviously向/dく ηく 1(typicallyη= 0.75). If the horizonta.l friction forc回配tinga.t the 
同ea.msupports are denoted剖 F，the bending momen t at midspan n~姐ed to cause crack 
:Jlopaga.tion is M = (P/2)(S/2) -Fηd where S = spa.n， P = applied loa.d， F = kP/2組 d
k is-the coefficient of friction. Denoting九 =4M/S， which represents the force needed to 
t:ause the crack to propa.ga.te if there were no friction (k = 0) one gets九=P -d.Pj where 
P = measured applied force組 d(ac∞rding to B話相も):

6.1.4 Effect of Friction 

2ηd 
thRf=3-kP 

This represents the portion of the applied force needed to over∞me the friction. The 
l釘gerthe S / d ra.tio， the sma.ller is d.乃.For η=  0.75 a.nd k = 0.005 for roller bea.rings 
!manuiact町ersgive an upper va.lue of k = 0.01) a.nd for S/d = 2.5 (used by Bazant姐 d
Pfeiffer， 1987)， d.Pj = 0.003P. Thu8， we 5田 thatthe notched beam t旬es錦h旬sa.閃 rela.tively
i凶n悶附s民悶則e釘叩n凶l
h旬yP凹la却n剖 andE凹lice剖5，1988b)

6.2 Wedge-Splitting Test 

Another u5eful test for fracture of concrete is the wedge-splitting test (Fig. 6.6). It is 
imilar to the compa.ct tension test used for metals. Wedge splitting tests were studied 
or concrete by Hillemier組 dHilsdori (1977) and the present shape of the test specimen， 
Ilara.derized by a Bもarternotch and a gui必nggroove which can be either moulded or sa.wn， 
as proposed by Linsbauer and Tschegg (1986). The test w出 subsequentlyrefined by 
Hruhwiler (1988)， and Bruhwiler and Wittmann (1989) who conducted (at the Swiss Federal 
Institute oi Technology) OVel' 300 such tests on normal concrete， dam concrete and 0七her
.mentitious materia.ls. Very large wedge splitti碍 specimens，of sizes up to 1.5 m (5 ft.)， 
附 recentlybeen tested by Sω四叫 Broz，Bruhwiler and Bo鰐 (1989)at the University 
CAlorado， to study the size effect in dam concrete. 
Fig・6.6(a-d) shows various possible wedge-splitting specimen shapes. Specimen (Fig. 
'.cl requires eiもhera. deep notch or a longitudina.l groove on both sides， in order to prevent 
訂 failureof one of the cantilevers. Fig. 6.6 (e，f) il1us位以esthe method of testing. The 
!nbly of two wedges is pressed betw悶 twolow-friction roller or needle bωings (on 
l 副 e)which develop a pair of forc白 Nthat tend to split the specimen (Fig. 6.6g). The 

I ，~" assembly is loaded in a statically determinate m姐 nerso that each wedge re田iv郡山e
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same load. The dimensions of the notch and the groove must be chosen 80 that the crack 

propa.ga.tes symmetrically. 
During出etest， the splitting force N (Fig. 6.6g) must be m回 suredwith sufficient ac-
cur出 y.The cra.ck mouth opening displacemenもOCMODis measured by a transducer or a 
dip gage (Fig. 6.6f) which should be atもachedat the level of the splitting forc田， in which 
C掛 eo一CMODrepresents the loOO-point displ民町lentOLPD舗回Cla胞dwith the horizontal 
component of the splitting force N. The test is conもrolledby OCMOD in a closed-Ioop servo-
hydraulic testing maεhine. However， a 8table test can also be performed under actuator 
stroke COIlsml or under crosshead displacmIent cpntrol using conventiona14esting machines. 
In that case， the appropriate notch length ne偲 ssaryto ensure stability must be identified by 
considering the interaction between testing machine stiffness， specimen stiffness and materia.l 
properties (Bruhwiler， 1988; Bruhwiler副 Wittmann，1989). 
The OOv組.tagesof出.ewedge splitting test are as follows: 
1) The specimens are∞mpact and light， since the ratio of fracture areaもothe specimen 
volume is larger than for other te山 (eι5ユtim回 largerthan that for the three-poirルbend
test according to RILEM，1985)This is especially useful for the study of size efecb，since 
larger fracture are出 C担 beobtained with smaller specimen weight. Due to lesser weight， 
larger specimens are easier to handle，乱ndthere is a lesser risk of breaking them during 

handling. 
2) The cubical or cylindrical specimens (Fig. 6.6 a・c)can be easily cast at the construction 
site戸時thesame molds as for stre碍thtests， and the cylindrical shapes (Fig. 6.6 b-d) c組
also be obtained from drilled cor回 fromexisting structur田.
3) The use of wedges for inducing the load increases the stiffness of the test set叩日d
thus enhances stability of the test， making it possible to conduct the test even in a machine 
that is not very stiff. 
4) the effect of selfweight is negligible in cοntrast to notched beam tests (where the 
bending mom回 tdue to own weight c拍 beover 50% of the total bendiog moment) 
On the other hand， it must be noted七hatthe wedge 10晶dingh組乱150a disadvantage 
as it intensifies frictional effects. Let P = applied vertical load， N == specimen reactions 
n償対edto propagate the cracks which are normal to the wedge surface inclined by angle a 
(Fig. 6.6g)唱andk == friction coeffici叩 tof the bearings. Then， the equilibrium condition of 
vertical forc田 acting00 the wedge yields P = 2(N sioα+kN∞sα)=九(1+kcotα)，where 
凡=2Nsinαis th; force need;d to propa.gate the crack if there were no friction (k = 0)・
Sin田 k∞tα <t::1， we have九どP/(l+ kcotα) = P(l-kcotα) or P + Q == P -I:::.P， where 
(accordingもoBaZant): 

I:::.P， = P/( cot α (6.6) 

P is t恥hemea也邸s叩町red1000 叩副dI:::.P丹f
f恒討c叫tio叩ll.Ifα < 450， I:::.P， is larg~r than kP， which means that frictional effects are enhanced 
by the wedge loa.ding. 
For the typical wedge angle α= 150， I:::.PJ = 3. 73kP. The manufa.cturers of roller bearings 

give k-values rωging from 0.001 to 0.005 (and guar組も田 0.01as the limit)・ Assuming 
k = 0.005， I:::.P， = O.019P. This frictional effect is significant and is about 6-times la.rger 
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th姐 forthe short notched beams of BaZant and Pfeiffer (1987)， and about 20・timeslarger 
than for the longer notched beams re∞mmended by RILEM， for出esame value of k (see 
Sec. 6.1.4.). This disa.dvanta.ge of the wedge splitting test is surmounta.ble，岨dfrictional 
effects c姐 bereduced by (1) attaching hardened st田 1inserts along the inclined wedge 

surf，品目， (2) u叫 needlebearings， and (3) carefuily polishing the wedge sur:face as shown 
by Hillemeiぽ andHilsdorf (1977) who experimentally determined a /(-value = 0.00031 for 
their wedge loading set-up with needle bearings. 
If the value of k is nearly constant and well reproducible， one may introduce the correctioo 
llP， in the組 alysis.However， since the value of friction coe伍cientis often quite uncertain， 
it is bettぽ tom'品 surethe splitting force N directly by instrumenting the wedges and the 
shafts that carry the bearings with strain gag四.
The foregoing analysis shows that a very small wedge angleαis unfavorable from the 
viewpoint of friction. On the other h祖 d，the smaller the angle， the stiffer is the specimen-
machine assembly. The angJe α= 150 is a. reasonable ∞mpromise. 
Al叫 alarge wedge angle (α> 300) is undesirable because it leadsもoa significant normal 
stress parallel to the crack plane in the fracture process zone. The presen田 ofsuch stresses 
may affect the softening curve for the fracture process zone，制 d田cribedby Eq. 3.9. The 
area under the softening curve is then not longer equal to the fracture energy， G，j nor is the 
ar目 underthe load-displacement curve. 
The apparent fracture toughness， !(lc is obtained by the same method as described in 
Section 6.1 for notched beam tests. The effective cra.ck length， which accounts for the fracture 
pr恥凶szone， is determined by the compliance method， based on五niteelement calibration. 
For that purpose， unload-reload cycles are performed during the test. Other methods such 
asもheevaluation of fracture energy from the area. under the loa.d-displacement diagram and 
the size effect method are applicable， as described in the sequel. 

6.3. Work-of-Fracture Method (悶LEM，Hillerborg) 

This method， which w剖 originallydeveloped for田ra.凶ω(Naka.y制 a，1965; Ta.ttersall 
佃 dTappin， 1966)， is the first method of t田tingfor fracture properti回 ofconc同 eto be 
propo凶 asa. standard (RILEM， 1985). The basis for applying this method to concrete 
was developed by Hillerborg and his co-workers (Hillerborg， 1985b). Their method uses 
the “fictitious crack" concept (Hillerborg et al.， 1976; Hillerborg， 1980j Petersson， 1981) 
(Fig. 6.7) implicitly andもhusis noもanLEFM method. 

In orderもocontrast this with LEFM 00 the ba.sis of energy parameters， rec乱IIthat the 
critical en町gyrelease rate G Ic is the e且ergyrequired per unit cra<ユkextension in a material 

~n ~hich there is no process zone， that is， all the energy is surfa田 energy組 dno energy 
is dissipated away fro~ the crack' tip. In fact， a proces~-zone does exist ~d therefore th~ 
t?tal energy of fracture includes a11 -the energy dissipated per unit prop乱.gationdist叩 ceof 

the fracture proc側 zone剖 awhole. This is called the fracture energy GJ (Fig. 6.7). 
Conceptually， the method can be applied to a variety of t田tspecimen g∞metries but 
the proposed st~ndard uses a beam sp~cimen loaded in three point bending ~ with a cen tral 
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edl!:e notch (Fig. 6.1a). Complete details of the proposed standard are given in the RILEM 
b∞mmendation (1985)副 dare not repeated here. Briefly， the test procedure co凶 stsof 
the following steps. 

Al 

1. The bearn proportions are selected in relation to maximum aggrega.te size. The mini-
mum depth d is approximately six times the size of the aggregate. The ratios of S/d 
vary from 8 to 4. See Table 6.1. The beam specimen is notched to a dep出向/d=0ふ

2. The verticalloa.d-point deflection of the beam (called dLPD in Fig. 6.1a) is to be mea-
sured a.nd plotted continuously along with the applied Joad P. The resulting trace is 

shown in Fig. 6.8. 

3. The色白色 isto be conducted in a m組問rもoproduce stable crack growth. If closed-loop 
加 tingis used then strain control should be selected. If a cIosed-l∞p system is not 
available， then a stiff testing machine is required (stiffness re∞mmendations are given 
in RILEM， 1985.) 

4. The fracture energy is calculated as 

Al 
円 R _ Wo+mgdo 
一 一J!一 日 (6.7) 

c) 
E w 

in which Wo = area under P -dLPD curve up to do; do = displacement when P returns to 
0; mg = (ml + 2m2)g組 dm19 = bearn weight between supports， m29 = weight of fIxtures 
which is carried by the beam; and A1ig ::::: original， uncracked ligament area = b( d -ao). 
This formula is valid if the movement of load a.nd hPD are downward. If the beam is 

陥 ted“onits side"白山atthe applied loa.d P is normal to山ebeam's seH weight vector， 
then the term mgdo is neglected. Also， if the dead weight is otherwise compensated， this 
term i自neglected.
Further， if the movements of load and dLPD are upward -thus opposing the self weight 
vector -then itおshownthat (Swartz and Yap， 1988) 

GIJ = 尚一 ~mgðo
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n which do = displacement at出epoint on出eunload portion of the plot when P == 
屯t/2+m2)g.

Eq~. 6:6 a.nd 6.7 were derived by Swartz and Yap (1988). The se旺weighもtermmay be 
1I1ite significant， especially if yourig∞ncrete is being tested or the specimen is large. 
Extensive round-robin tests fro~ 14 laboratori~ in∞rporating about 700 be畠mswere 
l戸rtedby Hillerborg(1985c)With regard to variation of results widm a given bmu 
叶匂，~t~e coefficient of variation ranged f;om about 2.5% to 25% with mos七resultsa.round 
115%.Itwωnoted that仁.the悶凶ivityof the strength of a stn川urewith regardω 
略;esin G7 is normally less than 1/3 of the sensitivity with regard to cha.nges in ~ormal 

dJ 

Fig.6.7 Fictitious Crack Moclel Description of Tensile Fracture 
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TABLE 6.1. Specimen Sizes Recommended for 
Hillerborg's Me出od(RILEM. 1985) 

Max1mum Depth 明'idth Length Span 
Aggr. Size d b L S 
mm mm  mm  mm  mm  

1・16 100土5 100ま5 840::t 10 800土5

16.1・32 200土5 100土5 1190土10 1130士5

32.1・48 300土5 150土5 1450士官O 1385土5

48.1・64 400 :t 5 200 ::t5 1640土10
， 

TAB日 6.2.Regression Coeffic1e臨ん.Cl.司.Dj
for Kar1haloo and Nalla血ambl・sMe血od.

(i = O. . . ..4: j = O. . • . .5) 

1/j AI CI 同 Dj 

。 3.6460 1.5640 0.4607 1.9560 

l -6.7890 0.3982 -8.3200 0.0484 

2 39.2400 52.9500 -0.0063 -0.0553 

3 -76.8200 -124.9000 -0.0003 0.0027 

4 74.3300 122.9000 -0.0059 0.0202 

5 . 0.0003 -0.0055 

.ー
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s“t児ren噸l
紅 eabout 3 times国 highas in most strength te山 (Hi1lerborg，1985c)・"It wa.s concluded 
on this ba.sis and by examining the changes in G7叫 ues割問atedwith仰 g田 inbeam 
depth that the spurious influence of specimen si田 onmea.sured value目of，G7 is accepta.ble. 
(However， the size effect method discussed later elimina同 thisinfluen団・)
Thus， even though there wωan undesirable size dependency in the test results for G7 
it wωconsidered to be of no greater importance on bh calculated strength d4he structure 

than the similar size dependency in ordinary strength tests. 
R怠叫t8from姐 otherseries of tests (Swartz組 dR出， 1989; Refai and Sw叫 19腿)
show a similar size effect a刈 alsoa variation of 07 with notch depth. 
ln summary， the RILEM work-of-fra.cture method is a. pra.ctical a.pproa.ch， which is suiι 
able for use in laboratories which do not have very elaborate equipment and incorporates 
a. number of ωmpromises in order to simplify testing while still obtaining useful results 
(Hil1erborg， 1985b). The method is based on a theory which has h品dwide'a.cceptance， the 
dctitious craιk model (Hillerborg et a1.， 1976). The fra.cture energy∞ncept also has a very 
simple meaning， without using LEFM. 
There釘 e，however， certain a.spects in which the R1LEM work-of-fra.cture method needs 
to be further improved. This method does not give rωults independent of the size of the 
cracked area for a given beam depth even if precracked b白血sare used， and thus the value 
of 01} must be considered to be only an approximation of the true energy parameter which 
char~cte出esthe surfa田 energyand the energy of pro倒 szone formation. 1t is simpli五edbut 
noもunrea.sonableto consider出issum also to be consta.nt with respect to the crack length. 
This implies that the shape and size of the process zone do not change. Furthermore， 
refinemenもofthe R1LEM method is needed回 aresult of the size effect， which will be 
discussed next. 

6.4 Size Effect in Work-of-Fracture Method 

The size dependence of fracture energy 07 obta.ined a.cco凶時 tothe e泊stingRILEM 
reconunendation on the work of fr乱cturemethod has been investigaもedby Planas姐 dElices 
(1988b) on the basis of日olutionof an integral equa.tion and by Ba.Za.nもandKazemi (1989b) 
on the basis of the size effect law. The premise of the latter ana.lysis wωthaももhela.w 
is applicable to si田 rang回 upto about 1:20 and has the same form (for this size ra.nge) 
fordl specimen geometries(wihh only negligible errors).The analysis utilizes the method 
for calculating the R-curve from size effect and load-deflection curve from the R-curve as 
alreOOy explained (Sec. 5.1). The R叩 rveobtained in this m姐 neris strongly dependent on 

the geometry of the specimen. The bωic relation (Fig. 6.9b，c) 

o~=旦p，m=bfR(帆 Wz = bR(cm)(1-c"，) (6.9) 

where b = specimen thickness， l ::; d -ao = liga.ment length (d = bea.m depth)，組dc"，=
cra.ck length c at peak load.同組dWz represent出eworks of fraεture before and aI'岡山E
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戸ak1000. Note from Fig 6.9b，c th以 Wzdepends strongly on specimen size， because the 
value of c"， depends on the size. 
The res山 ofthis investiga.tion show that G7 is not size-independent，出 onemight 
desire， but depends sもronglyon the specimen size as shown in Fig 6.9a. This dependen田 is
S田nto be even stronger tha.n that of山eR-curve. When the specimen size is extrapolated 
to infinity， G? coincide自exactlywith Ba.Z制'sdefinition of fracture e肘 rgyG / obtained by 
the size effect method. 
This investigation also showed tha.t the pre-peak contribution of the work of the load to 
the fracture enぽgyG I is relatively small (generally under 6%). This conclusion ba.sica.lly 
agr間 with出a.tobtained by Planas叩 dElices (1988b) in a different m油田r.

6.5 Two-Parameter Fracture Model of Jenq and Shah 

Unlike the fictitIous crack model， the two-parameほ modelof Jenq and Shah (1985品，
19邸b)，already explained in Sec. 4.2， does not require a post-pea.k (stra.in softening) con-
stitutive law， yet iもcandescribe the nonlinear slow crack growth prior to peak load. The 
two pa.ra.meters are the critical stress i山悶tyfactor K!c and the critica.l crack tip opening 
displace ment dCMOD relationship shown in Fig. 6.10. This relationship is essentially linear 
onぬeascending portion of the curve from P = 0 up to about the load corresponding to half 
the maximum loa.d Pu・Atthis sta.ge， the crackもipopening displacement is negligible姐 dKl
is less山岨0.5K!c(Fig. 6.lOa). As the loa.d P exceed the value of 0.5凡， inelastic displace-
m阻も佃dslow crack growth occur during the nonlinear range (Fig. 6.10b). At the critical 
pぬも(同.6.10c)， the crack tip opening displa.cement re叫 esa伺 tica1v山 e叫ん=Kfc. 
For standard plain concrete beams tested in threφpoint bending， the critica.l point c組 be
approximated between the point of Pu a.nd the point of 0.95凡 onthe descending branch of 
the P -dCMOD plot. The concept is a1so shown for a beam in bending in Fig. 6.11. 
Depending upon the g回 metryof the specimen， the rate of loading， and the method of 
loading， further crack growth may occur a.t a steOOy-state value of Kfc. Denoting出ecrack 
length a， the load P will have a. va.lue equal to九 whenK1 reaches I<!c if dI<I/dα> O. 
If dI<J/da a.t this loading stage is negative， then beyond the critica1 point the crack will 
propaga.te at a constant value of [(!c and the applied load will increa.se until dKI/da = O. 
1n the majority ofpractical cases， the value of dKl/da is positive， i.e.， I<l is amonotonically-
ln.creasing function of a. Three-and four-point bent， and single-edge notched and double-
edge notched specimens subjected to tensile loading are found to sati~fy this condition (Jenq 
拍 dSha.h， 1985b). For this ca民 thevalues of Kfc拍 ddCTOD C組 beobt乱inedfrom出e
measured pea.k load and from the knowledge of an associated effective cra.ck length a.・
The method has been proposed to R1LEM (Kariha.loo and Nallathambi， 1987~) 出a. stan-
dard test method for determination of ]{先制46cTODin plajn concrete using beam sp民 1-
mens. The following dimensions are suggested if a. maximum aggregate size not exceeding 
on~ inch (25.4mm) is usedj see Fig. 6.1， in which b x d x L = 3in. X 6in. x 28in. (76.2 0lII1 
耳 1~2.4 mm x 711.2 mm); S = 24 in. e609.6 mm)j ao/d = 1/3; S/d = 4. ‘ 

ror la.rger ffiaXimum a.邸regatesizes the dimensions should incre剖 eproportiona.tely. 

A closed-loop testing sy蜘 mwith stra.in control using the dCMOD gage or else乱 stiff
machine (a machine thaもisa.t least 10-times stiffer than the凶 specimen)is re∞mmended 
to achieve stable failure.The rate of loading should be suchshMpeak lo乱dis reached in 
about 5 min. 
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To determine the two fracture parameters Kfc and dCTOD for pl司n∞ncreもe，もhemaxi-
mum 凡 andthe corresponding elastic∞mponenもofthe dCMOD， denoted dbMOD are m品
sur，巴d.These values釘e七henused to estimate the effective elastic c即 klength ae suchもhat
the calculated d'bMOD (bωed on LEFM equations) is equal to the measured value. For a given 
initial notch lengもhao and depending upon the type of test， the two fracture parameters are 
determined as follows (s田 Fig.6.2組 d6.11): 
The modulus of elasticity E is determined using initial compJiance Cj from 

E-6S aoM(α0) -
Cjbal 

0.66 
Yi.(α0) = 0.76 -2.28αo + 3.870'~ -2・040'~ +万て0'0)2

(6.10) 

(6.11) 

and α0+ (ao = ho)/(d + ho)， ho = clip gage holder thickn倒・
The effective crack length is determined from Eq. 6.8 by replacing ao with αhαo with αe 

組 dCi with C" where 的 =(a. + ho)/(W + ho)岨 dCu is the unloading compliance at 0.95 
PU' Thus， 
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(6.12) 

which may be 801ved fairly easily by iteration. 
Then山.ecritical stress in何回ityfactor is 

一 3九SKlc =五'd;.Jii7i'e F (α) (6.13) 

and 
1 1.99α(1-α)(2.15 -3.93α+2.7α2) 

F(α)ーー-.，fi (1 + 2α)(1 -α)3/2 

withα=α./ d. The critical crack-tip opening displa四 mentis 

(6.14) 

=E主主主Yi.(α)[(1 ，8)2 + (ー1.149α+1.081)(，82)]1/2 
bd2E 

(6.15) 

where β=α。/a.・
In using this method for precracked -instead of notched -beams， replace ao by aj. 
In Je問 andShah (1985b) it is shown that this method gives ]([c(= ](!c) results whic~ 
are independent of specimen size when notched beams are used. As shown in Swartz姐 d
R.efai (1989)出esame invariance is obta.ined when precra.cked beams are used and also 
Kr.. is independent of crack length for α./dく 0.65. It is also shown that the modified 
-hliM-method (section 6.1.3)gives virtually th samemult for kIC foE pmMked 

beams as the Jenq-Shah method. for ex制 ple，for d = 12 in.， and a./d三0.65，the乱.verage

K!c = 1206kNm-3/2 (C.V. = 9.2%， N = 11) and the compliance method aV釘 ageKlo :::; 
1l51kNm-3/2 (C.V. = 3.5%， N = 19). 
It is further shown by Jenq叩 dSha.h (1985b) tha.t the results for dCTOD are relatively 
constant with respect to beam size. This result wa.s also obtained for beams tested by Refai 
岨 dSwartz (1987) but a variation with ai w国 found.
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6.6 Effective Crack Model of Karihaloo and Nallathambi 

rhis method (Nallathambi and Karihaloo， 1986a， 1986b) has a180 been proposed to 
RILEM as a standard (Karihaloo and Nallathambi， 1987). ln this approach a simple tech-
，lIque is used whereもhecritical stress intensity factor ]([c(= K10) and critical energy release 
rdte G lc( = G1c) are found for b白血specimensby LEFM methods after the c蹴 kh副 grown
from a. notch ao to a.n effective length ae. 
The formulas which follow later were developed for certain ranges of specimen dimensions. 
rhese ranges， which are to be used for ma.ximum a.ggre gate sizes da ranging from 5 to 25 
mm. with no critical dimension being less than five tim回 da，are: b = 40・80mm(三3da)jd 
= 50 -300 mm (と3da);S = 200 -1800 mm (三3da)iwi仕14壬S/d壬8.Also ao/d = 0.2-0.6 
，0.3 or 0.4 is preferred). 
The loading setup which is idea.lized in Fig. 6.1 is shown in Fig. 6.12 where the dLPD is 
measured by an LVDT. In addition， the dCMOD could be measured by adding a clip gage 
a.cross the noもch.Preferably a dosed-loop testing system should be used with strain control 
fP.edback from either the dLPD of dCMOD ga.ge. Otherwise， a stiff te日tingmachine should be 
nsed. In組 yevent， a continuous re∞rd of P a.nd hPD is made upもopeak load which should 
he reached in 1・10minutes. the softening r田 ponseis noもrequiredwiもhthis method. 
If it is not possible to obtain a continuous load-displa田 mentre∞rd， the method can still 

t)p used but the modulus of elasticity， E， must be determined from uniaxial tests on other 
-peclmens. 
If a∞ntinuous re∞rd of P vs. dLPD is a.va.ilable， determine E from 
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(6.1) 

lhere Pi • di are mea.sured a.も姐yintermediate loca.tion 00 the initial ascending portion of 
:ne curve and w is the se1f-weight of 出ebeam. The term λis a correction factor relating de-
市 tionsof品notchedto an unnotched beam a.nd is obtained from finite element calculations 

入=ηlexp{ゎ(ao/d)2+ TJ3(S/d)2 +仇(ao/d)(S/d)+η5(S/d)3} (6.2) 

A ，d '11 ;:;:: 1.379，市::::::-1必 3，1'/3 =ー0.036，り'4= -0.201， and 1/5 = 0.004 (Karihaloo 
Nallathambi， 1987). Then the effective crack length αe is obta.ined from九組dthe 
. rresponding displacement d"舗

ac/d = 1-r凡S3(1+説2'¥1， 4bd36uEc '" (6.3) 

.us d is “small，" the effect of she乱.rdeformation can be t;onsidered by using 

E=  ~i r~3(1 +義)↓ (1+ν)~L.
6j l4b♂(1ー守)3・ 2x:bd(1ー守)J，. (6.4) 



90 

P 

「
ー
ド
」

span. S 

Fig.6.12 Loading Apparatus a.nd Fixing Arrangement of LVTD 

NORMAL SIZE INFINITE SIZE 

玉ト

1) ELASTIC FIELD 

めASYMPTOTIC
ELASTIC FIELD 

功NONLlNEAR
HARDENING ZONE 

4) FRACTURE 
PROCESS ZONE 
(ニNONLlNEAR
SOFTENING ZONE1 

Fig.6.13 Fracture Process Zon田 inDiffe陀ntSp民 IJDensand Extrap-
olation to Infinite Size 

91 

bere民=shear ωnstant = 10(1 +ν)/(12 + 1111) for a rectangular section and 11 is Pois-
'I'S ratio. This value of E is then substituted iI印刷.6.16ωobtain ae・Karihaloo回 d
aJlathambi (1987) contains regression formulas to determine ae in尚 adof using Eq. 6.16. 
rhe critical stress intensity fador is then given as 

I<Ic =σrtYζF(α) (6.5) 

¥tere F(α) is given by Eq. 6.16，α= a./d姐 dUn = 6M/b♂. The midspan moment M， 
duding self-weight effects is 

M=(凡+ω/2)S/4 (6.6) 

he critical energy release rate is 

Gt = (Kic)2 lC-E一 (6.7)

Improved (but more complicated expressions for KIc{ = J(jc) and G1c( = Gic) are obtained 
v use of fi凶ぬelementmethods which consider the tensile stress normalもothe crack faces， 
・hetensile stress in the plane of the crack and the she紅ingstress. The formulas of J(，c and 
';1r are 

J(IC =σn{α.)1/2Yj (α)日(α，s)

I?icー(舎)ι問
(6.8) 

(6.9) 

[n these equaもionsagain 

α= a./d，s = S/d; 
γ，(α) -Ao+Alα+A2α2+A3α3+A4α〈九(α，s)= Bo+Bls+B2s2+B3β3+B4αβ+Bsαβ2， 

Zl(α) = Co + C1α+C2α2 + C3α3 + C4αぺ
1
 
4
 

』4
 

Z2(α，β) = Do+Dlβ+D2β+D3β3+D4αs+Dsαs2. 

'{崎悶sioncoe日cientsA;， Bj， Ci， Dj(i = 0，1，・・・，4;j = 0， 1， . • . ，5) are given in Table 6.2. 
A very extensive testing program was carried out by Karihaloo and Nallathambi (Nal・
;;thambi and Karihaloo， 1986a; Karih乱.100組 dNallathambi， 1987) using this method戸o
叫uatedata from more th叩 950beams in which maximum aggregate size， beam si回，姐d
'dative notch crack depth were varied. Theもestre自ultswere generally very consistent with 
p calculated values;the coemdent of variabion generally ranged bebween6%and 10%.T田 t
aLa from other investigators were also used，with generally excelleMagreement bdween the 
Jtlits of this method and Jenqmd Shah's meq10d for KIe-For example，the data from 
lefai and Sw釘tz(1987) for d = 304 mm gave I?lc :::: 1074kNm-3 / 2 • K~" :::: 1206kNm-3/2 
mtl and Shah)and IfIc=1151kNm-3/2(compliince method).

， H 

. i Determination of Material Parameters by Size Effect Method 

.7.1 Asymptotic Definition for Infinite Size 
、mcethe size effect is出emost important practical consequen伺 offracture mechanics， it 
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is not illogical to exploit it for determining the material fracture properties， as proposed by 
Ba.Zant. In principle， the size effect provides the only m品 nsfor an una.mbiguou5 definition 
of ma.terial fracture properti伺. The fracture energy as well a.s other nonlinear fra.cture 
pa.ra.meters may be uniquely defined by their va.lues extra.pola.tedもoa. specim田 ofinfinite 
size. The r回 sonis tha.t， in an infinitely la.rge specimen， the fracture procωs zone occupies 
an infinitely sma.ll fraction of the specimen volume (Fig. 6.13). H佃 ce，nea.rly all ofもhe
specimen is in組 elasticstate. Now， from linear elastic fracture mechanics it is known that 
the near-tip a.symptotic field of displa.cements叫抑制es(Fig. 6.13) isもhesame rega.rdless 
of the specimen or凶ructuregeometry (Eq. 2.1). Therefore， the fracture pro畑 szone in 
a.n infinitely la.rge specim田 isexposed on its bounda.ry to the same stress field reg紅 dl蜘
of structure geometry， and 50 it must beha.ve in the自amemanner. In particular， it mus七
dissipa.te the same energy and ha.ve the sa.me lengもhand width. Therefore，剖 proposedby 
Ba.z姐 t(1987a)，組 unambiguousdefinition is a.s follows: 
The fracture energy GJ a.nd the effective fr拭 tureprocess zone leng出 CJare出eenergy 
relea.se rate required for crack growth a.nd the distance from the notch tip to the tip of the 
equiva.lent LEFM cra.ck in a.n infinitely la.rge specimen of a.ny sha.pe. 
With this a.symptotic definition， determinaιion of the fracture properties is reduced to 
the calibration of the size effect la.w. If we knew the size effect law exactly， we would get 
exact results. Unfortuna.tely， the exact size effect law， applica.ble up to infinite size， is not 
known. Therefore， this method， like others， yields in practice only approximate results. 
Nevertheless，出evalidiもyof the size effect law proposed by Ba.i組も (Fig.6.14， Eq. 1.4) is 
rather broad， covering a r姐 geof sizes of perha.ps 1 :20， which is su伍cient for mosもpractical
purposesj see Pla.nas and Elices (1988a). 
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6.7.2 Bas!c Relations 

In Eq. 5.2 we gave the expression for the enぽgyrelease rate in terms of the applied load 
or nominal s紅白s.SetもingP=p，川 wehave G = R = specific energy required for crack 
growth， a.nd by extrapolation to infinite size we ha.ve 
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PJ(α) B2 !trJ. 1!_ d 
G J = Jim R = Jim一一一=一.J_!_ lim-一一一limg(α)

→∞ EfiJd c~E .._-1 + d/ゐ (6.10) 

Taking the limit d→∞， for which in which we have expressed P" according to Eq. 1.2. 
α→ αo = ao/ d， we obta.in the expression 

B2  .</2 J _f _ ¥ g(α。)
GJ=一一!:2dog(α0)=一一ηE'" -VJ  ¥ -'V' A E (6.11) 

proposed by B話相t(1985b) in which A is the slope of a linear regr田sionplot of test dat& 
(Fig. 6.14) obtained byalgebrぬcallyrea.rr姐 gingthe si民 effect}aw (Eq. 1.4) in the form 
Y=AX+C，inwhich 

10 

Fig.6.15 Regression Plot for Size Effect Method 

(6.12) do = C/A B = C-1/2， Y = (en/σ~) ， X=d， 



Lhe proposal has been worked out in de同ilfor山istype of specimen. (8伺 Fig.6.1， which 
Also expla.ins the notations.) 

AU the prescribed details for specimen preparMion，testing and dataevdmuon are giv 
in hrihaloo and Ndlathmbi(1987)and WHI not be repeated here.BNeay，the t白 ting
program uses specimens of at 1助成仏ree-but preferably more・自izescharacterized by beam 
tfepも11sd3，d2，etc.and spans SE，S2，....The smallest depth dImust not be larger than5 
dG and the largest depth dn must not be smaller th佃 15d~ ・ The ratio dn/d

1 
must be at 

least 4. The beam width b s油hot耐 bekepμtc∞o∞ns路s旬加nt酎 should the児.es叩pa叩n/μdept出hh，rriふ一t“ioSめi/dj • A 
iIIinimum of three sample哩pergiven size should be tested. 

One of the adv叩 tag-ofthemethodistl国 anordinary uniaxial testing machine without 
arvo・controlor high stiffness m品，ybe used. The only measured responses n田dedare the 
peak loads乃forall specimens， j = 1，2，... n. The loading rate should be日electedso that 
the maximum load would be reached in one to ten minute~ 
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The second nonlinear fra.cture parameter， namely the effective length cf of the fracture 
pro四sszone， defined for姐 infioitelylarge specimen， is obtained from Eq. 5.6 as follows: 

CI - g(α0) J _ g(α0) C 
f=訳可7ゐ=只石}五

6.7.3 Calculation Procedure of Size Effect Method: 

If the length Lj of specimen j is a1most the same as 8j its spa.n， then compute 

(6.14) 

m which mjg is the weight of the specimen and the specimen is loaded downward.HLJis 
much Jarger th加 Sjthen 

(6.15) 

...d_S: 
P:* = P.・~
J J dj S.問 (6.16) 

where m refers to the mid-size specimen. Next， plot }j (ordi旧民)versus X
j 
(absCIssa) where 

巧=(号r (6.17) 

and ddermine bhe slope of the line A as shown in Fig.6.i15lH l b也heY-i凶nte町'fC偲epμむC.The 
f任ra総叫叫ctぬぺthh1u?;
;斗なよζ::trArmom恥 6.2却6.The 叫 ieof E for h m needs bo be determined fm  C04 i 
r stlEIlased fro-z using established empirical formulas.The expmSion foyg(α0) 

足立24;;:な沼野にで山長rencesfor LEFM formulωThe fo加 i叩.refro 

(6.18) 
F(α)=よ 1.99-α(1ーα)(2均一3.93α+2.7(2) 
、fi (1 + 2α)(1ー α)3/2

Again， we see that cf c姐 bedetermined from the linear regression parameters A and C 
(Baz姐 tand Kazemi， 1988). An important point is that the test data mustωverasu伍ciently
broad range of sizes，自othat the statistical scatter and other influences would noもovershadow
the size effect. 
Eqs. 6.24 and 6.26 form the basis for the determination of the fracture energy組 deffective 
pro倒 szone length from the size effe比 BaZant組 dPfeiffer (1987) verified that v町 different
types of sp回imens(Fig. 5.1)， including three-point bend specimens， edge-notched tension 
specimens 回 deccentric compression specimens， yield approximately the same values of the 
fracture energy for the same concrete. Studies of Ka出a.Iooand Nallathambi (1987)， Swartz 
and Refai (1987) and Plan回初dElices (1988b) further established that this method yields 
approximately the same results for the fracture energy舗 Jenqand Shah's two・parameter
method. On the other hand， the value of fracture energy obtained by these methods is 
generally quite different from that obtained from the Rll乱AMwo位d巾k心-oi-企fra拭叫.cturemethod (i.e. 
Hillerborg's method). Pla.nωand Elices (1988b) and Planas et札 (1989)analyzedぬese
differences exhaustively and concluded that the reason why Hi1Ierborg's. method yields diι 
ierent v乱luesis ma.inly the assumed shape oi the softening stress-displa田mentcurve. By 
modiiying the shape of this curve (前eeperinitial decline， extended tail)， a better agreement 
in the values oi G J could apparently be obtained. 
It must be noted that Eq. 6.26 fails ii g'(α。)approaches O. This ha.ppens， eιfor a certain 
crack length in a center-cracked specimen loaded on the craεk. 1n that c回eaccording to 
Eq. 6.26， C would have to vanish if cJ is constant， and then also do→ O. Due to statistical 
scatter， the ratio C/gJ(α。)in Eq. 6.26 becomes meaniogles8 when 9'(α。)is t∞small. For 
still shorter cracks in this kind oi specimen， one obtains g'(ao) < 0， and in that case again 
Eq. 6.26 cannot be used. However， for typical fracture specimens such situations do not 
an8e. 
In contrast to Eq. 1.4， the size effect law in the form oi Eq. 5.6 involves only m抗erial
parameters， GJ and cJ. Thereiore，もheseparameter8 c姐 beobtained directly by optimum 
fitting of Eq. 5.6 to the measured values of 1'N ior various values of D. Such fitting can be 
accomplished easily by nonlinear regression or any optimiza.tion subroutine. 
The specimen sha附 dooot need to be geometrically similar ii Eq. 5.6 (rather伽 B
Eq. 1.4) is used. However， the parameter山川 ta.kesinto account the specim四 shape，
namely the ratio g'(αo)/g(α0)， is only approximate and involvesωme error. To a.void this 
error， it is preferable to use specimens which are g'ωmetrically similar. 
The size effect method has a180 been proposed by RILEM Committee TC 89 ior a RILEM 
Re∞mmendation. 
As for the specimen shape， in principle any suitable fracture specimen can be used. In 
view oi the popularity and certain practical advantages oi the three-point bend specimens， 
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For S/d = 8: 
F(α) = 1.106 -1.552α+ 7.71α2 -13.53α3 + 14.23α4 

Linear interpolation is acceptable provided 3 ~ S/d壬10.Finally， 

g(句)=fh，αo[1.5F(αoW
‘."も

In Ba.Zant and Pfeiffer (1987) and Karihaloo組 dNalla.thambi (1987) there are discussions 
of calculations needed to verify the result for G J岨 dto obta.in the standard deviation. It 
is also pointed outもha.tscattered results c組 arisefrom other size effect自(Sec.5.3). This 
may be of particular ∞ncern for very large and thick specimens， since hydration heat will 
produce different temperatures in thin and thick specimens and thus lead to叩 additional
81田 effectthat is superimposed on that descrihed by the size effect law. In that c描 ethis 
method∞uld fail. Similarly， it could fail due to difference in moisture content， since thin 
specimens dry faster出組出ickones. These effects，剖wellas the wall effect， are minimized 
by using the same specimen thickness for all the sizes. 

6.7.4 Comparison with Other Methods 

Karihaloo加 dNa.lIatharnbi (1987) list most of the known fracture test results， in which 
Ba.iant's size effect method is also compared with Kariha.loo姐 dNalla.tha.mhi's method. 
For出ispurpose山evalu田 ofGJ were converted to K1c by use of the LEFM rela.tionsbip 
Klc :;;; (GJE)1/2. For the beam results repo凶ed，the K1c va.lues were 0.847-0.892kN;;.3/2 
a.nd the values from the Karihaloo and Na.lla.tharnbi's method were Kic = 0.867 and KIce = 
1.005kN;;.3n. Similar agr.四 menもwasfound from the da.ta. of Ba.Zant姐 dPfeiffer (1987). 
The size effect method was us吋 byBruhwiller (1988)副知umaet a1. (1989) to 
measure the fracture energy of dam concrete. 

6.8 Size Required for Applicability of LEFM 

An early a.ttempt to specify the minimum size ofも回tspecimen such that LEFM ma.y be 
used w回 tha.tof Walsh (1972， 1976). He argued tha.t， by comparing the norninal stress at 
the notch tip for a beam specir悶 (calαl1a.tedby using an LEFM form由 for]([，，) with the 
modulus of rupture of the material， a transition dimension ma.y be found. He stated tha.t the 
characteristic beam dimension should be at lea.st double this in order for LEFM to be valid. 
Ba.sed on his test da.ta. he suggested the notched beam to be tested should ha.ve a. deptb not 
less tha.n 230 mm (9 in.). 
In the light of recent experimental studies on the size eff，民tin fra.cture， the recomrnenda-
tion for the specimen size ana.lyza.ble by LEFM now appears to be grossly underestima.ted. 
According to the size effect law of B話ant，the brittleness number s must be at leasも25if 
the devi抗ionfrom the straight line asymptote for LEFM should be less than 2%. Ba.iωb 
却 dPfeiffer's (1987)七estsof various types of specimens shown in Fig. 5.1 indicate that : (1) 
for eccentric compression fracture specimens do = 1.85dm， (2) for three-point bend specirr削 S
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，ゐ;:5.4dm， and (3) for centric tel凶onspecimens do = 1p.8d". Consequently， the minimum 
"roSs section depths of th悶 specimenswhich are needed for appli叫 ilityof LEFM (wi出
-.heもheoretica.lerror of 2%) a.re a.s follows: 

For eccentric compression specimens: dと46d"

For three-point bend specimens: d三135d"

For concentric tension specimens: dさ420d" (6.21 ) 

Tbese dimensions are impracticably large for labora.tory七ests，a.nd their use would be 
financia.lly wasteful since knowledge o( the size effect can provide adequate information on 
ma.terial fracture para.meters using much smaller specimens. 

6.9 Identification of Nonlocal Characteristic Length 

For bhe mnlocal con?inuum model with locaI叫rain(or nonlocal damage continuum) 
..he fracture en句 yGJ is proportional to the area W. under the∞mplete tensile町制ー
ポraincurve(wishBoftening)times bhe characteristic length，t，and cf is proportional to the 
chuacteristic lengU1.This fact is exploited by a simple mdhod，conceived by Bdant姐 d
Pijau必ぽ-Ca.bot (1988b， 1989). It uses the rela.tion: 

i-=皇位竺!
W. [J/m3] (6.22) 

ZMoreprecisely，tkreisamultiplicauveempiricalcoe缶cienton the righもhandside， which 
18・however，刊ryclose to l(ib slightly depends on bhe type of the nOBlocal model adopもed，
，-.ud for 0田 particularmodel used it was 1.02). So the only problem is how to m倒的出J
a日ergydissipated per unit volume， W.・
To this end，one needs to stabilize She specimen by bonded reinforcing rodsmthat con-

噌 Eeundeform homogeneously and remain in a macroscopically homogeEmus sbabe during 
msoftening behavior，wishout any localization of cracking.This may be accomplished us・
~ the specim佃 shownin Fig.6.16，which also shows a companion fracture specimen used 
n f.determinabi011of GI-The longer sides of the rectangular cross section are restrained bv 
.ung to them， with epoxy， a sy蜘 nof pa叫 elden均 spa.ced仙 steelrods-Thegaps 

?などな;32J32ぷ::::::ニ::22ztL222ぷ::trz
a一n?feetlnconcrete-Byc}loomgt11ecrossmtionsofumodstobemchmdlertharl 
f1mm喝re仲間，ther仙 cannotaffect the nonloca.l beha.vior of the material in 
ansverse direction-The rectangular cross section is elongated，so aE4o minimize the 

:官会11f器Z21525S2515主主主忠誠;i
kn州



The combined cross section of 3011 the steel rods is selected so a.s to出 surethe tangential 
・，unessof the composite specimen ωbe always positive. This guar阻むeesthe specim四
h. ~ sもable，making localization instability impossible. The force in softening c∞on町cr問et怜e，

'げ1:1..1川‘

f山.川.‘.te舵elrod也scalculated from the measured strain is subtra.cted from the m他 s叫ur，陀edもω。叫4同alforce. 
fhe specimen is gripped at the ends， e.g.， by metallic plates glued by epoxy to the surfa.目
，¥r ~ he steel rods. The specimen is subjected to tension in a closed-loop testing ma.chine， a.nd 
Lトサlotof force VB. relative displacement over gauge 1田 gthL in the middle part of the 
;，riImen is re∞rded; see Fig. 6.16c. The indined straight line in出isplot represents the 
慢nessof the rods alone， without回 yconcrete. For very large displacements， the r田ponse
仰r叫 cl悶 thisline asymptotically. Work W~， the desired resul色， is represented by the 
吋川・batchedar品 betweenthe response curve a.nd the rising straight line for the steel rods 

.て.I'~te.

For the pa.rticula.r concrete used by B話回tand Pijaudier-Cabot (a microconcrete with 
11.' '(imum aggregate size 9.5 mm)， substitution of the measured va.lue of W~ into Eq. 6.34 
)'tl.lned the nonlocal cha.racteristic length f = 2.7da • This is rather close to what has been 
けJ!νnedfrom finite element fitting of the size elfect data from fracture tests. 
[t might be noted that evaluation of the present type of test by mea.ns of the fictitious 
rM;k model a.ppears problematic. If one ta.kes care to produce a. nearly perfect restraint， 

fl lI， ~tiple pa.ralIel fictiもiouscracks with arbitra.rily close spacing could be obtained in compu-
I ~い川s， ma.king the results a.mbiguous. As a.lready pointed out， this problem can be avoided 
川 崎richingthe fictitious crack model with a third independent material parameter， the 
1'"IlJIIIUm spa.cing of the line cracks (such spa.cing of ∞urse is equiva.lent to the no∞n叫11oca.ll 
E凶ha:瓜川.:

¥'lIn叫l比teぽre飽s“叫tin暗gpoωm叫もtωonωot旬elおst由ha抗tthe cha釘xa拭ctωe釘叩ns“叫も“i比clength， f.， cannot be identified from 
l'oll'Ia.l t倒 Sof unrestrained specimens of different 1田 gths(e.g. tests of van Mier， 1984， 
IP"b' ur different gage lengths (Sha.h a.nd Sankar， 1987). Such da.ta. c姐 befitted equally 
!I ，I.~ing any value of f.， including f. = 0 (Ba.iant， 1989a.). 

堅'1n Identification of Tensile Post-Peak Softening Stress.Strain 
¥.Ourves 

1・・ irlentify a strain-softening triaxial constitutive relation from test data.， one must in 
伊 11r .，1 lK>lve姐 inverseboundary va.lue problem taking into account strain localization 
(Orl，': !988). This is a ta.sk of fo;midable -complexit子 However，identification of a unia.xial 
'，uail' '.Jftening stress-strain rela.tion is relati;ely si~ple， provided that the characteristic 
k-tl~! 1， I、determinedin advance，卸alreadyexplained.As shown by Ba.i組内(1989a)analysis 
01 ul1I.nia! t凶 data.for specimens of Va.riOU8 lengもhs，loca.liza.tion in uniaxial test specimens 
~ :I，r. ':' !~u.a.t~ly described by the' series coupling m~del， in which a strain-softening loading 
IC4・fI.'ngth l is coupled in附 iesto an unloading zone. If the value of f. is known， the間 ial
h車問・" ~ he strain-softening zone corresponding to uniaxial str田ss may be approxima.tely 
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Figs.16Measurement of EBerg Dissipation Due toCEaCIting PerUnis 
Volume in a Stabilized Specim阻 Accordingto Baiant and Pija.udiex. 

Ca.bot (1988) 
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calculated as (B話回t1989a): 
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(6.23) 

where L ~ 1， f可市刷(伊例σ司)=me叩&胡n&凶x対xia叫1s柑t仕r凶a
m.附ler凶 o肝ve白rthe gage lengぬL，姐 dfu(σ) = axial strain in the unloadi時 partcorresponding 
toσfor an unloading br組 chemanating from出epeak stress point. 

6.11 Material Parameters for Mode II and Planar Mixed Mode 
Fracture 

For two dimensionMstressBbates，in general it may be presumed that crack propagdon 
uld take place underもhecombined action of Mode 1 (opening) and Mode II (sliding) 
deformation.In concrete，however，the efreebof aggregate interlock，wbichl品 dsto volume 
dilation. tends to resist crack propagation in anY mode 0出erth組 opening(Bazant祖 d

G 釧 b ajova -1 9 8 0 } . N e v e r t hel e s s ， t here h as b e e n an e x対te叩ns隠s抑 e 晶釦mo
d白o且邸eo仰ve釘r古仏hドey戸e一…s，組dcontinuing tod品y，in an叫 emptto cause c即 king姐 df間印刷n
crete to occur in mode 11 or at least in mixed mode. 
The Iosipescu specimen geomdry，shown in a rnodigd form in Fig.6.17，has b明 nu詑d
by various iwestigaws(Barr et al.，1987i BahMand Pfeifer，1985h1985b，1986;Swartz 
nd Taha. 1987) and so hωa similar gωmetry with only one notch (Arrea叩 dIngra:ffea， 
1981-SW4巾， LuTMlE Mid Refai，1988)・Beamsin three-point bending with off-center 
otcheshave--usedby Je叫 andShah (1987a， 1987b) and Swartz， Lu and Tang (1988) 
(see Fig.6.laL Biaxial testing systems have been developed in which combinations of di-
rect tension and compmSion are used (binhardt e44，1989)or direct tension and shear 
(Has叩 lzadehet al.， 1987) 
Numerical modeling of the Io均escuspecimen wωdone by Arrea乱ndIngraffea (1981)， 
Ingraffea叩 dPanthaki (1985)， Ingraffea.組dGerstle (1985)， Bazant and Pfei鉦'er(1985b)， 
Rots and de Borst (1987)，組dSwen則 (1986)・Ratherinter偲 tingwas the finding by 
Ba.Z姐tMld Pfeifrer that if the shear zone in the beam is very narrow，the crack propaga46 
.the crosssedion plane ratherShan inan inclined diredion-This provided a challenge 

ica.l modeling. Acceptable fits of te叫 resultswere obta.ined (B話相も andPfei:ffer， 
1985b)笛 suminga Mode II s附 atthe crack t恥 modell山 aband山伽dMod 
a拭cks目. Others obta.ined a叫.cc白epμta功ble自臥tωsassuming も出】hecrack p戸ro叩pa喝ga“叫tiぬonto occ 

nly Mode 1 deformation at the c叫 tipalthough Mode II-type deformation (∞m凶ザ
with Mode Il exists immediately behind the crack front.The application of SweElgon s 

-del to be-s tested by Swutz et alin threepoiMbending (Fig.618)md foumiM 
beoding (Sw紅同 Lu，Ta.ng and R.efai， 1988) (si出l~r to Fig. 6.U，'btrl with'ooly one notch) 
shows clearly that propagation in their typeoftest occurs in M04e l However，al刷 la.tive
explanasionsof the fracture pattern observed by BdMlt and Pfahr(1985b，1986)，which 
require only Mode I typecracking，have been ofered by Inudea姐 dPanthaki (1985)， and 
Swartz et al・(Swartz回 dTaha.， 1987)， while Roも5and -de Borst (1987) considered the crack 
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opening to initiate in Mode 1 and subsequently to respond possibly in Mode II also. Ingra.ffea 
組 dPanもhakihave argued that the observed fracture originaもedfrom tensile splitting 8tresses 
in the region between the notch tiP8 (Fig. 6.17). The e対stenceof these 錦町ssesw槌叫句
shown analytically by Rots組 dde Bor8t. Similar experiments by Swartz et al. (Swartz and 
Taha， 1987) showed the principal fracture origina.ting in this region a.nd not at the notch 
tips. The finite element analysis of Baza:叫 andPfeiffer (1985b) confirmed the existence of 
significant tensile stresses between the crack tips but showed the inclined principal tensile 
stres御成thecrack tips to be even higher. R民 enttests at Northwestern University (K回 e凶
組 dBai姐 t，1988) indicated tha.t if the s戸cimenin Fig 6.17 is loa.ded symmetrically by P/2 
at each side of each crackmouth ra.ther出叩 antisymmetrically，then it splits at a. 1000 not 
much higher than the maximum loa.d for the antisymmetric loading自hown.This suggests 
that the splitting tensile sもressmight be importa.nt. 
From size effect t由民 Baiantand Pfeiffer (1986) found the Mode II台actureenergyめ
bem加 ytimes higher than for Mode 1 (Baiant組 dPfeiffer， 1985a， 1985b). 
Clearly， aggregate inter10ck and shear friction play a major role in providing energy 
to resist crack propagation even though the driving energy 8.t the tip is due to Mode 1 
deformation. Whether this can ind伺 dbe modeled properly by appropriate use of a crack 
band with inclined microcracks or friction elements is not clea.r at present. At the same time， 
there晶reno good microscopic observations available to indicate the presence， shape and size 
of a process zone although eviden田 ofthis is clear from Mode I bending and tension tests. 
With rega.rd to Mode n or mixed mode craεk propagation， there is thus a. generallack of 
information and understanding. There is no general agr田ment副知 thesuitabili句 oftest 
methods， data evalua.tion or failure th切 ryto predict mixed-mode crack propaga.tion and 
fracture in concrete. 

6.12 Material Parameters for Mode III Fracture 

In the Iosipescu type mixed-mode specimens alrea.dy discussed， a per{.舵 tantisynunetry 
is not achieved. The specimen fails with a planar craεk in the cross section plane， although 
the principal normal stresses were ioclined with rega.rd to the cross section pl姐 e.However， 
a perfect a.ntisymmetry， required for Mode III fracture， can be achieved in a cylindrical 
specimeo with a. circumferential notch in the middle， subjected to torsion. Such a specimen 
was introduced by Baiant and Prat (1988a)，組dBaiant， Prat and Tabbara (1989); Fig. 6.19. 
Testing geometrically simila.r specimens of different sizes， t出he句yfound a pronounced s釘izeeff.“ω t 
姐 du国se吋di比tt句odete釘rn紅凶I
fおorc印e，ぬeyfound it to be about three-times larger than that for Mode 1. However， they 
observed that despite perfectly satisfying the antisymmetry of g回 metricconditions姐d
loading arrangement required for乱ModeIII situation， a Mode III field might not have been 
achieved Iocally due to volume expansion of the fracture process zone. They also observed 
that the Mode III fracture energy is appareotly very sensitive to the normal stress across 

the iracture proc邸szone. It appears that Mode III fr乱ctureenergy cannot be a ma'もerial
constantj but it could be a material function， depending 00 the transverse normal stress aod 
possibly other va.ria.bles. 
R怠田川ly，simila.r tests of Xu and Reinhardt (1989) indicated only a negligible sIze effea 
in torsional Mode III specim佃 s.The r.モasonfor this difference is not c1ear. 
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7.1 Effect of Loading Rate and Creep 

In no material can fracture happen instantly. Cracks take a finite time to form and to 
propagate over a. finite dist佃 ce.The reason is that the pro印S8of bond ruptures proc田ds
at a. c位tainfinite ra.te. The ba.sic physical thωry describing the process is the rate process 
th切 ry，in which the rate of bond ruptur白 isdetermined by the activation en町'gy，U. The 
proba.bility (or frequency) of bond rupture depends on the microstress level a.t the cra.ck tip， 
which in turn is determined by either the stress intensity factor， K]， or by the enぽgyreleωe 
rate， G. Based on these physical observations， the fol1owing approxima.te relation ensues 
(Ev叫 1974):

a = IIc(Kr/Klc)"e-U/RT 

in which a = velocity of crack tip propagation， T = absolute tempera~ure， R = universal gas 
constant， and IIc， n = empirical constants. Rοughly， n ~ 30， while 110 can have very different 
values. According to Eq. 7.1， the relationship between log a姐 dlog K] should be linear. 
But this is true only approximately. Experiments indicate a mildly nonlinear relationship 
between logKI and the loading rate， but no clear information exists with regardωι 
There exist other useful relation8 relating七heremote stress to the remote stress ra.te or 
remote strain rate， or unloading rate (e.g. Reinhard七， 1984).They are however valid only for 
certain particular situations and are not generally interpreta.ble. (“Remote" a削 heloca.tioDS 
50 far from the cra.ck 80 that the sもressis not significantlyaffected by the crack). 
John and Shah (1985，1986，1987， 1989aj also John， Sha.h組 dJenq， 1987) applied the twφ 
parameter fracture model七oMode 1 and Mixed Mode fracture tests conducted a.t different 
5train rates. They cοncluded七hatKlo is rate-independent but that 8CTOD，踊 wellωthe 
effective cra.ck length at peak load， decrease田 theloading rate increases. 
It should also be ohserved that the effects of crack growth rate and loading rate are， in 
their physical mech組 ism，related to the stress corrosion effect in fracture. 
In analyzing the fracture behavior of specim田 sor structures under various loading rates， 
the phenomena of fra.cture姐 dcr田pare inseparahle. The results are influenced by the short-
term linear viscoelasticity of∞ncrete， which is quite pronounced， and in the high stress 
regions near the fracture front， by the additional nonlinea.r cr田 pof ∞ncrete. Furthermore， 
the strain-softening beha.vior in the fracture process zone is likely to be even more time-
dependent th組 thenonlinear cr田pin the hardening high stress range. Recent studies of 
the size effect a.t various rates of loading (Baiant飢 dGettu， 1989) indicate a very strong 
cr，田por stress rel日以ionin the strain-softening range which prevails in the fra.cture process 

zone. This phenomenon seems to reduce the size of the fr配 tureprocess zone出 theloa.ding 
rate diminishes (i.e. the time to failure increa.ses)， with the ∞nsequ回目 tha.tlong-七irne
response might be closer to linear ela.stic fracture mechanics than short-time response. This 
is illustrated with re田ntda.ta of Baza瓜叩dGettu (1989) in Fig.・7.1in which the results 

number， P =d/do 
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for different times to failure， plotted asσN vs.もhebrittleness number of Bazant (Sec. 5.1 
and 5.2)， can be seen to sruft to the right as the time increases. 
Simila.r findings， indicating that the process zone size姐 dfracture energy deαease おもhe
time to failure increases， ha.ve b田 nrecently rep側 edby Wittma.nn et al. (1987)， although 
this study did not deal with size-independent fracture cha.racteristics. 
Lest it be perceived tha.t the aforemenもionedfindings of Ba.zant a.nd Gettu contradict 
もhoseof John a.nd Shah， one should realize that John and Shah 's method determir悶 ba-
sically the rea.ch of the fracture process zone where there is signific姐 tdisplacement due 
to microcracking. But a.t the locations where the microcracks are opened most widely， the 
stress may ha.ve a.lrea.dy relaxed to zero. This portion of the microcracking zone would not 
be ma.nifested in the process zone size obtained by the size effect method， which eventually 
gives the length of the zone over which significant bridging stresses are tr回 smitもed.It is 
quite conceivable that， due to stress relaxation， this length represents only a sma.ll p紅 tof the 
leng出 ofthe microcracking zone，回 obtainedby John and Shah's method. More rigoroU8 
studies are n伺 ded，however. 
The experimental techniques for measuring fracture properties at high loading rates a.re 
discussed by John and Shah (1985)， Reinhardt (1984)， Mindess (1984)， and others. 

7.2 Effect of Temperature and Humidity on Fracture Energy 

This effect is likely to have at leasもpartlythe same physical mechanism as the effect of 
crack velocity on loading rate. The rate of bond ruptures depends not only on the sもress1肝 el
but a.lso on temperature， according toもheactivation energy theory. Using Eq. 7.1 as the 
point of departure， Bazant a.nd Pra.t (1988b) ha.ve shown that， according to the activa.tion 
energy theory， the fracture energy of concrete should depend on the absolute temperaもure
as follows: 

Gf = ~exp(ヱーユ)， ~~nT To" 
U
一R
2
一n一
一吋， (7.2) 

in which九=reference temperature， G~ = fracture energy a.t reference tempera.ture， and 
γ= consta.nt. Eq. 7.2 agr田swell with t田も resultsof the size effect method obtained for 
various tempera.tures from r∞m up to 2000Cj s田 Fig.7.2. Some results ha.ve also be畑
obtained for temperatures in the fr田zingrange， indicating the trend in Fig. 7.2 to continue 
down to about -20oC，叩dthen reversing (Matura.na. et a.l.， 1988). 
A simila.r dependence of G， on T was experimenta.lly determined by Brameshuber (1988， 
1989) who， however， used different formula.sもodescribe the observed trend. 
The aforementioned size e鉦'ecttests were conducted a.t various temperatures on sa.tu・
rated (wet)∞ncrete鎚 wellas on∞ncrete which was dried before the test. The difference 
in humidity ∞nditions appea.red insignificant at room tempera.ture， however， at high旬m-
peratures the wet concrete ha.d a much lower fracture energy thanもhedry concrete (Fig. 7.2 
after BaZ必ねar叫 and Pr悶a抗Aム， 1ω98邸8b吋).Assuming linear dependence Os the specific water content， 
parameter "1 wa.s expressed as 

γ=γ0+ ("I1ーγ0)と
W1 

(7.3) 
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in which ω=  specific water content， Wl its value at saturation， and γ0，γ1 = value of γ 
in dry and wet conditions (forもhe∞ncrete同 ted，it w硝 foundthat "10 ~ 6000 [(  ，組d
11 ~ 19000 [(). 
The effect of temperature is quite pronounced in polymer concretes， in wruch viscoelastic-
ity of the polymer binder is no doubt a.n importa.nt factor (Vipul姐a.ndanand Dha.rmarajan， 
1987， 1988， 1989a丸c).

7.3 Effect of Cyclic Loading 

Rβpeated loading tendsもogra.dua.lly increase the crack length even if the maximum 
stress intensity factor of the cycles is well below its critical va.lue for static loading. The 
ra.te of inαease of the crack length， a， with the number of cyd四， N， has been shown for 
many materia.ls to be a.pproximately described by the Paris law (Paris a.nd Erdogan， 1963): 
da/dN = C(!:J.Kd [(Ic)rヘinwhich C and m are empirica.l constants. Although Eq. 7.4 is 
essentially empirical and does not have a. fundamental physica.l basis such as Eq. 7.1， it is 
neverもheless組 equationof rather general applica.bility. For concrete， however， it w剖 found
(Ba.Z叩t組 dXu， 1989) that deviations from Paris law arise due to the size effect. They c姐
be d脱出edby the following generali叫 ion(Ba.Z姐t叩 dXu， 1989): 

表=c(25)m， ith [(1m =ι(出r/2 (7.4) 

where (10 is a. constant having a similar meaning to do in the size effect la.w (Eq. 1.4)， [(1m is the 
appa.rent (size-dependent) fracture toughness ca.lculated from the peak load ~f the specim佃
組 dLEFM rel叫ions，叩dd is山esize of the specimen. Test showed that do ~ 10do when 
the 1000 is cycled betwe回 O阻 d80% of出emaximum load for monotonic loading. Eq. 7.4， 
shown in Fig. 7.3 by the three sもra抱htlines， is seen to agree quite well with the da.ta. for 
threeトpoint-bendnotched beams of sizes 1:2:4. Pa.ris law， by contrast， yields in Fig. 7.3 a. 
single straight line a.nd cannot describe the observed siz氾 effect.
An interesting point a.bout Paris law is出atthe rate of craιk extension does noもdepend
onぬ.eupper a.nd lower limiting values of the stress intensity factor， but a.pproxima.tely only 
OD their differ四回，!:J.J(1・Thismighもbeexpla.ined by a. 80rt of a. shakedown in the fracture 
process zone， with development of residual stresses after a number of cycles. Various other 
interesting r回 ultson cyclic fracture 'of concrete， wruch pertain to particular t回 tconditions， 
ha.ve been obtained， for exa.mple， by Swartz， Hu相 dJOl悶 (1978)，Swartz， Hu組 ga.nd Hu 
(1982)， Swartz and Go (1984)~ PercUkaris組 dCalomino (1987)， and others. 
The interpretation of the 企Krvaluewhich 8hould be substituted in Eq. 7.4 is subject to 

ぬ~equestion with regard to the size effect on the value of Klc. The value of !:J.Kl should be 
calculated for the elastica.lly equivalent effective crack length a = ao + c， which means !:J.[(l 
should be modified with respecもtothe length of crack extension froIn the notch (Fig. 4.2)・
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Chapter 8. EFFECT OF REINFORCE乱1:ENT

ち.1Effect of Reinforcing Steel Bars 

When coocrete is reinfor伺 dby a regular grid of reinforcing bars， it is often appropria.te 
ιconsider concrete with the ba.r gridωone heterogenous composite ma.teria.l which is 
辻Cfcrhomog回目USon a larger scale. Obviously， in such a composite， the bars inhibit the 
rmation回 dpropagation of cracks. If there were no bond slip， then the opposite faces of 
，:rack would not be ableもoopen apart， and so there would be no fracture until the bar 
fP.aks. This simple consideration immediately clarifies tha.t bond slip must take place and 
凶 tbe taken into account. The property which m抗tersis the stiffness of the connection 
uvided by the st関1ba.rs between the opposite faces of the crack or cra.ck band. 
Assuming the ultimate bond stresses Ub to be approximately constant， the bar stress， 
.'1ich is equal to山叫 thecrack crossing， decreωes linearly over the distance of bond slip， 
，_ on each side of the cra.ck. From this stress distribution， one can estimate the relative 
placement of the ba.r against concrete over length 2L.. Furthermore， in a. ma.cros∞pically 
'lIform or quasi-uniform field， the force carried by the ba.r at the crack crossing must 
uilibrate七heforce per bar ca.rried jointly by concrete組 dsteel at loca.tions beyond the 
，nd slip 1田 gth.From these conditions it follows that (Baz姐 tand Cedolin， 1980; BaZant 
;:lic): 

L. = 1:6 1-P 一一 一a-U1-p+YEP S (8.1) 

""hich p = steel ratio， n士 steel-to-concreteratio of the elastic moduli， and A6 = bar cross 
'oion. For the purpose of finiもeelement analysis， one may further imagine an equivalent 
which is叩 choredto concrete at the nodes of the finite element mesh and has no bond 

"'"，~es but a shorter equivalent free-slip length. Another simple formula for this length h剖
.四devisedby BaZant and Cedolin (1980). 

¥ deta.iled description of cracking in reinforced concrete requir田 amore sophisticated 
.':，y; S白 e.g.Pijaudi位ーCabotand Ma.zars (1989)， and Breysse and Mazars (1988). These 
lies used damage theory for concrete combined with an elasto-pl回 ticmodel for steel bars. 
results were interesting， giving information on the evolution of damage zon回a.round

C '，8. development of cracks and the global response of the structure. Bond stresses姐 d
民dto be also included in a detailed analysis; this has been done by Pijaudier-Cabot 
il989) in terms of a nonlocal damage model which also yields the size effect. 

~ Fracture in Fiber-Reinforced Concrete 

~ ~，nd ~lip o! the fibers is a phenomenon similar to the slip of reinforcing bars， and aga.in 
major effect on fracture， along with the phenomenon of fiber pull-~ut due to short 

，.ntially useful improvements in the mechanical behavior ofもension-weak concrete 
" can be effected by the incorporation of fibers. Similar to七hebehavior of plain 
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concrete，∞mposite f，品.ilureunder most types of loading is initiated by the tensile cracking of 
the ma.trix aJong pla.nes where the normaJ tensile stra.ins exceed the corresponding permissible 
values. This may be folIowed by multiple cracking of the m抗rixprior to composite fra.cture. 
if the volume fraction of fibers a同副館cientlyhigh (or if the fibers are∞ntinuous) (A vestOD 
et aJ.， 1971). However， when short fibers are used (st田1，polypropylene， gl剖 5，etc.)， on句
the matrIx ha.s cracked， one of the following types of fa.ilure will occur: 

， 

(a) The composite fractures immediately after matrix cra.cking. This results from in叫
quate fiber content at the critica.l section or insufficient fiber lengths to tr姐 sfi釘 8t陶鞠

across仙ematrix crack. 

。
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(b) Although the maximum 1000 onもhe∞mposi匂 isnot significantly different from that of 
the matrix aJone， the composite ∞ntinuesto c紅rydecr田8ingloads after the peak. The 
post-cracking resistance is primarily att伽 tedto gra.duaJ (rather伽.nBudd佃)fiber 
pull-out a.ssocia.ted with craεk bridging. While no significant increa.se in compωite 
strength is observed， the composite fracture energy and toughness a.re considerably 
enhanced (Fig. 8.2) (GopaJaratna.m and Sha.h， 1987a). 
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Fig. 8.2 Typica.l R怠sultaof Stress-Displacement Curves Obtaioed From 
Direct Tensioo Tests 00 Plain Morta.r Matrix a.nd S同 1Fiber Reio-
forced Concrete 
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(c) Even a.!ter matrix cracking， the composite continuesもoca.rry increasing 10005. The 
peak load-ca.rrying ca.pacity of the composite and the corresponding deforma.tion are 
significantly greater than that of the unreinforced matrix. During the pre-peak io-
elastic regime of the composite response， progr飽sivedebonding 6f the interface組d
distributed microcracks in the matrix m乱ybe responsible for the energy dissipatioD 
proc側 (Mobasher，Castro-Montero and Shah， 1989). It is clear that出ismode of 
∞mposite failure results in the efficient use of both the constituents (Moba.sher叩d
Shah， 1989; Stang， Mobasher and Shah， 1989; Mobasher， Stang and Shah， 1989). 

AnaJytical models used for the prediction of出emechanical behavior of fibrous compω-
ites ma.y be suitable for one or more of the above types of fa.ilure mechanisms. Base<i io 
pa.rt on the fundamentaJ approach in their formulation， analytica.l models c姐 be日匂伊
出 ed(Gopalaratn制副 Shah，1987a)剖:models based on the th悶 yof multiple fra.c~ 
ture， composite models， strain-relief models， fraιture mechanicB models， interfa.ce mech回 ics
models， a.nd micromechanics models. Fa.irlyexhausもivereviews ofthese models are ava.ila.ble 
elsewhere (Gopala.ratnam and Shah， 1987a.; Mindess， 1983). Brief reviews of the fra.cture 
m配 h組問 ba.sedmodels and the interface mechanics models are given here出 thωea.re
typically the mωt suitable for modelingもheinela.stic proces5田 inshort-fiber∞mposites. 
Two broad categories of models can be identified from among the fracture mecha.nics 
ba.sed models. The more fundamenta.l class of models use the con田ptsof LEFM to solve 
the problem of crack initia.tion， growth， arresもandsta.bility in the presen伺 offibers througb 
appropriate changes in the stress intensity factor (RomuaJdi and Batson， 1963; Rom叫di
and Mandel， 1964). Typically th偲 emodels a.ssume perfect bond between the fiber組 dthe 
matrix， and are one-parameter fracture models. Unlike the classica.l LEFM models，自omeo!
the later models implicitly account for the inelastic interface response during crack growtb 
thro唱ha. nonlinear伽 ess-displacement relationship for the fiber-bridging zone (proces， 
zone). This approach， which has∞me to be known舗もhefictitious crack model (Hillerb叫
1980)， is∞nceptually similar toもhatdescribed in Sec. 3.1 for the fracture of unreinforcell 
conCl'叫e.The major differenc届 inthe fictitious crack models (Hillerborg， 1980; Peters似 ~ig. 9.1 Arrest of Paralle1 Crack Due to Instability and Change of 

Spa.cing for Leading Cra.cks 
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1980; Wecharatana and Shah， 1983bj Visalvanich and Naaman， 1982) are the si碍ulariT.
assumptions 前 thec即 k-tip，the criteria used for crack initiation and growもh，組dth~ 
stability of the crack growth. More recently， Jenq and Shah (1986) have proposed a fractulf， 
mechanics model to predict the crack propagation resistance of fiber reinforced concrete thar 
is somewhat different from either of theseもwoappro配 hes.Fracture resistance in fibro思
oomposites according七othis model is separated into four regimes which include: lineal 
elastic behavior of the compositej subcritical crack growth In the matrix組 dもhebeginning 
of the五berbridging effectj post-critical crack growth in the matrix such that the net 8t!馳
intensity factor due to the乱ppliedload叩 dthe fiber bridging stresses remain constanl 
(steady state crack growth); and the final sta酔 wherethe resistance to craιk sepa.ration is 
provided exdusively by the fibers. The mode1 uses two parameters to describe the matrix 
fracture properties (KIc' modified critica1 stress intensity factor based on LEFM and the 
effective crack length， and dCTOD， the critical crack tip opening disp1acement，掛 described
earlier for unreinforced concrete)， and a fiber pull-out stre砕 crack-wid七hre1ations1中 ωthe
ba品icinput information 
Mobasher， Ouyang叩 dShah (1989) recently developed an R-curve approach for fracture 
of cement-based fiber composites. The parameters of the R-curve can be uniquely deter. 
mined according to material properties， such as KIc and OCTOD defined by Jenq and Shah 
(1986). Toughening of the matrix by the伍bersis in∞rpor叫edinto the R-curve by fiber-
bridging pressure_ By incorporating the clo日ingpressure in the equilibrium conditions during 
the stable crack propagation，もheonset of insもabilityof matrix is shown to be dependent on 
the fibers. 

All of the fictitious crack models rely on the stress-crack-width relations obtained exper. 
imentally. There have been some attempts at predicting the macroscopic stress-crack-width 
relations of the composite from a study of the mechanics of the五ber-matrixinterface. They 
C叩 begrouped剖 modelsbased on the shea.r-1ag山田ryor modifications t1悶 ωf(仏Law刑re凹E町悶rαs
1972止;Laws et al.， 1972j Gopa1aratnam and Shah， 1987b; Gopalaratn如 1and Cheng， 1988)， 
fracture mechanics based interface models (Stang and Shah， 1986; Morrison et al吋 1988)
and numerical models (Morrison et al.， 1988; Sahudin， 1987). Many of these models have 
been successful to varying degrees in predicting the peak pull-out loads and the load-slip 
response of idea1ized aligned sing1e fiber pull-out. These models have be叩もremendous1y
useful in understanding the basic mechanics of stress transfer aももheinterface and showing 
that interfacial debonding plays an imporもantro1e in the fracture of such composites. Signif. 
icant research efforts will， how巴ver，be needed to modify these models to predict出epull-out 
characteristics of inclined fibers that are randomly oriented at a matrix crack (randomne'ls 
in both the angular orientation as well as the 巴mbe町吋袖d也lme

Stね加a釘I時乱姐ndShah (1989) proposed a damage model for the study of di批 ibutedmicroc-
racking. The comp1iance of the ∞mposite subjecもedもouniaxial tension w出 initiallyderived 
according to the shear lag theory. A damage variab1e， which is a function of crack spac-
ing and fiber debonding length at山ecrack section， was introduced. After specifying the 
damage evolution law by a damage surface， the stress and strain response of fiber reinforced 
composites subjected to uniaxial tension can be calcu1ated. 
FractUI吋 asalso been studied for glass-fiber polymer (polyester) concrete. Such materiιls 
show considerab1e non1inearity and stable crack growth prior to pea.k 1oad，組dもheR-curves 
that have been measured reflect this behavior (Vipulanandan組 dDharmarajan， 1987， 1988. 
1989aムc).

113 

!hapter 9. CRACK SYSTE恥1S

ln contrasももometallic structures，∞ncrete structures oontain numerous larg己cracks
hich釘eclose enough to inもeract.Therefore， understanding of crack interaction is more 
1:;lpO巾 ntthan it is for metallic structures. 

{'.l Response of Structures with Interacting Growing Cracks 

Consider a 抗ructurewi出 cracksof lengths αj(i = 1，2... n) loaded by a system of forces 
!" bound紅 ydisplacements， shrinkage orもhermaldilation proportional to pa.rameter A. The 
目ergy(under Isothermal conditions， more p~ecÎs~ly _th_e Hel~oltz. fr~e e~ergy) of the山 uc-
Ilra.l system is the sum of出estrain energy U， which depends on the load parameter舗 well
、thecrack lengths， and the energy needed to produce the cracks， i.e.， 

F = U(al，川)+午14iR(αDぬ; (9.1) 

I.L which R = speci五cenergy (per unit crack length) required for crack growth and α~ are the 
rack length values between 0 andαt・Inthe c掛 eof linear elastic fracture mechanics， R = G / . 

• Che equilibrium condition of the system is oF = E(U，i +R(ai))oai = 0 for組 yvariation oaj， 
hich implies出at-U刊 =R(ai)' This is the well-known condition of crack propagation 
Iready stated a七thebeginning. The stabi1ity of the structure with the cracks requires that 
he second va.riation o2 F be positive for any admissible oaj (Ba量姐tand Ohtsubo， 1977， 
fl78; lJoUIlUlt and Wahab， 1979). From Eq. 9.1， we have 

(9.2) 
oR(ai)2 

o2F = E E ;;_U，ijOaiOαj+ ~一一一 (6d = H-AJMαjr r 2 ~ "J --， --J • '1 oai 
11:. which Aij form a square matrix， 

Aij = U，jj +2R，i dijH(oai) (9.3) 

I j，"fe the subscripts following a∞mma represent partial derivatives with respecもtoai ， 
=lifi=j叩 d0 if i =F j; and H(oai) = 1 if oajと0，and 0 otherwise. Note that 
，r '，j = Kl / E' where Ki = stress intensi勿 factorof crack ai (any mode)，組d-E'UiJ = 
.日/(i，j= 2 Kj Kj，i' 
.¥sもhe10ading pa.rameter A incre回邸， the cracks grow. At a民rtaincrack length it can 
i・岬 enthat もhereare more than one solution for the crack increments， i.e.， the path of 
':. ~ystem plotted in the spa田 withcoordinates ai bifurcates. It can be shown that the 
Llrcation condition is 

detAij = 0 

1¥ i "r bifurcation， the pa出 whichis followed is that for which (Ba.Za叫

For displacement oontro1: 

For load control: 

o2F = min 

o2F = max 

(9.4) 

(9.5) 
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This condition is derived from the fact that the path which occurs must be that with出e
ma.ximum internal entropy increment. 
More re田ntly，Bazant (1989b)組 dBaz叩 tand Tabbara. (1989) have shownもhatthe 
tangential叫iffnessrnatrix c∞taining N interacting cra.cks of lengths aj(i == 1，... N) is 

~ ~ _ d2F θ2F 

以=kfa-25Y呪瓦否a，，8q. (9.6) 

where 
ゃ=displ配 ements{r = 1，・.. Nd， Nd == number of displ抑 ments)j

J(:. =伊FJδqrdq.= secant stiffness ma.trix of cracked structurej 

11 = number of cracks七hatpropagate during loading (cr&cks a川，...αN remaining sta-
tiona.ry，ν壬N);

雷同=inverse of the matrixφkm， in which 
φkm =伊F/θak偽情+dkmd凡n/dαmiand 
九‘(am)= given R-curve of the m-th crack (in LEFM，凡n= G" dR"./dam = 0). 
Eq. 9.6 is valid only if 6am = -EkWkmE.6q.伊FJ dakdq" ;::: 0 for a11 m 壬 vand 
Eu82UJdamdqk ;::: 0 for all m >ν. If not， the set of propagating cracks is different th姐
assumed. Obviously， various sets of propagating cracks must be tried until the foregoing 
conditions are met for all m. Based on Eq. 9ム262F = ErE.K;a6qr6qn which needs to be 
used to deもerminethe stable path of evolution of the cr拭 ksystem. For further details， see 
the textbook by Bazant and Cedolin (1990). 

9.2 Interacting Parallel Cracks 

The preceding formulation has姐 illterestingapplication to systems of parallel cracks 
caused， e.g.， by drying shrinkage or cooling str回ses，or by bending. In the idealized c出 eof 
amω8ive wall treated as a half-space， the shrinkage cracks 8tart at some close spacing s and 
'，hen， as the drying front advances into the wall， they continue to grow inward. Calculations 
on the basis of Eq. 9.2 have shown that the sysもembe，ωmes unstable when the crack length 
reaches the value approximately 向=1.78， at which point the drying front is approximately 
at the depth 2.68 (Ba.Zant and Ohtsubo， 1977; B話回t，Ohtsubo組 dAoh， 1979; BaZant姐 d
~ahab， 1979). AUhis point there is a bifurca:tion of the equilibrium path in the space of aj. 
Every other ~rack stop~ growing and closes， keeping the i~ngth a2， ~hile the intermediate 
.:r&cks of length αj continue to grow， their spacing doubled to 2s. The arrest of the growth 
Imd. closing of every other of the leading cr&cks -is again repeated later， andωon. This 
')roduces the cr&ck systems shown in Fig. 9.1. 

. The spacing of the cracks， 8， is impo~tant for determining their width. As is well known， 
t is desirable to k田 pthe crack width less than about O.lmm to O.4mrn， mainly because 
narrow cracks are not really continuous and do 110もserveas good conduits for moisture or 
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oorrosive agents. Ifもheaverage shrink品，gestrain or∞oling strain is fO.姐 dthe body is 
restrained， then the opening of出ecra.cks is 

ι竺 SfO (9.7) 

The drying cra.cks that have stopped growing will gradually close (Fig. 9.1). Th民 one
must substitute in Eq. 9.6 the spacing of the leading cracks， which evolves as s = so， 280， 
4so， 8so，.... The spacing of the lea.ding cra.cks generally remains between s = aJ/1.7姐d
2ad1.7， i.e.， on the average s ~ 0.9a1・Thus，in view of Eq. 9.6， the opening width of the 
shrinka.ge cra.cks is， on the average， 

dc ~ O.9a1fo (9.8) 

The behavior is ra出.ersimilar for paraUel cra.cks caused by cooling， as well回 parallel
cracks in beams caused by bending or axial force. In reinforced concrete structures， the 
gradual opening of the shrinkage cra.cks with the progress of drying or the bending cracks 
with出eprogress of loading， is prevented by reinforcement. In fact， it is possible toωIcula.te 
(provided the bond slip length is known) the minimum reinforcement which is required to 
keep the cra.cks propagating with equal lengths 抗 theirsmall initial spa.cing. Such a. re-
inforcement prevents the opening width of the cracks from exceeding a certain value. The 
ne臼 ssaryreinforcement has been ca.lculated from the stab出tyconrution based on Eq. 9.2 
in B話回t姐 dWahab (1980)， and it turned out that， for a typical situation， the minimum 
reinforcement was about 0.2% of the cross-sectional area. of concrete. Thus we see thaももhe
empirica.l rules for minimum reinforcement are in fact explicable by means of fra.cture me-
chanics. An interesting point， though， is tha.t the precise value of the minimum reinforcement 
needed to prevent progressively wider opening of the cracks is not a oonstant but depends 
on the reinforcemenもoutlay，the structural geometry， the distribution and history of pore 
humidity or temperature， etc. 
The phenomenon just described may also be regarded as晶 kindof localization of the 
cracking strain into some preferred cracks. 

9.3 Crack Spacing and可Vidthin Beams 

Although the current code provisions regula.ting the width of cracks are empirical，品
d配perunderstanding伺 nbe gained through fracture mechanics. One musもdistinguishbe-
tw悶 : (1) crack initiation， which corresponds to the peak point of t山he児es蜘tres悶s悶s-st回凶raind必1a噌.gr副
組刷d叩山 t恥he伽蜘rt川ofd伽e肝V刊叫elωlop阿me則n叫t0ぱfm削icrocαr畠拭叫cks只， 姐叫d(ρ2)μc日ck∞mpletion， which cor-
re自pondsto a reduction of the tensile stress to zero and coalescence of microcracks into 
conもinuouscracks. 
The crack initiation is governed by the strength criterion， while crack completion is 
governed by出efracture mechanics energy criterion. For approximate ana.lysis， one need 
not write the energy balance condition for infinitely small crack length increments， but one 
伺.nwrite it for the entire change from the uncracked to a. fully cracked state: 

I:1U = I:1Wf+ I:1Wb (9.9) 
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in which d.U = total release of strain energy， I:1Wf = GfAc = energy needed to produce 
fr品cture(Ac = are乱 ofall the cracks)， and I:1Wb :;:; energy dissipated by bond slip which 
occurs simultaneously wi出 cra.cking.
Consider now concrete that is restrained by steel bars which are su伍cientlystrong旬
Drevent the previou日lydiscussed instabilities of crack sysもem自inwhich some cracks close 
血dぬespacing of the open cra.cks multiplies. For the sake of simple illustration，∞nsider 
a round concrete rod in tension， with a single 批 elbar in the middle (Fig. 9.2). This also 
approximately simulat.伺 thebehavior ofもhe∞ncretezone surrounding one of the bars in a 
beam， in which the cross section乱reais subdivided into non-overlapping zones of concrete， 
蹴 hin凶も旬加e創era
and Oh， 1983b， 1984). 
Case 1a. Strength Limit and No Bond Slip. In this case， the stra品 atwhich 
cracking begins is: 

f. '2: fU E (9.10) 

Case lb. Strength Limit and Bond Slip. -By force equivalence condition， the force 
aαoss the crack plane， Ac刀， must be equal to the bond force 叫ん accumulatedover the 
bond slip 1四ゅん(巧=ultimate bond抑制).Sinαs '2: L6 a.nd Ac :;:;付2/4(b = ruameter 
ぱthe ∞ncrete cross section， and the cross section of the bar is neglected)， the cracks can 
begin to form in this mιnner if 

s三(π刀/4U{，)b2 (9.11) 

Case 2a. Energy Limit and No Bond Slip. -As an approximation one c叩 ima.gine
thatもhefull formation of a crack relieves the stress from the triangular are制 cross占atched
in Fig. 9.2a. The volume of the region obta.ined by rota.ting this area a.bout凶ebar axis is 
町=宵lr/12k.Therefore， d.U = vi.σ?/2E (σ1 = Ef.). AIso 叫ん=Acf:. Neglecting d.Wし
we bave 企U'2: s W， So we find the condition for compJete crack formation: 

らさ (6kG，I E)1/2b-1/2 (9.12) 

Case 2b. Energy Limit and Bond Slip. -In this case， instead of 町 =EE. we ha.ve， 
rom IIIでconrutionof equilibrium with the bond山 essesover length s，町宵b2/4=【J{.s，all 
the other equa.tions being the same as in case 2a. It follows that ~mplete cr~cks c回 form
while there is bond slip if 

s '2: (3π2k E G，/8Ut，)1/2b3/2 (9.13) 

The foregoingω!ωa.tions (B話antand Oh， 1983b， 1984) are 凶吋 onthe assumption 
that the sもressrelease zones of adjacent cracks do not overlap，ωshown in Fig. 9.2a. If they 
do. a slightly different calculation is required. 

A somewhat more sophisticated calculaもion(BaZant and Oh， 1983b， 1984) yields c∞ー
山内srela.tions between spacing s and strain fc叩宙entinga transition from microcr配 k
~?ítíatjon to complete crack fo~ation. These calc~lations h~ve been shown to agr偲 with
the t句tr~s.ults of Clark (1956)， Chi and Kirstein (1958)， Mathey and Watstein (1960)， 
Hognestad (1962)，姐dkaarand，Mattock (1963).' 
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As anoth釘 illustrationof the fracture approach to the formation of complete cra.cks‘ 
consider the cr品ckingof the concreteωver associated wi出 strainf. in the concre句 b紅
shrinka伊 andtemperature effects disregarded; Fig. 9.2b. For the sake of sir叩licity，consider 
two-dimensional action only. Formation of晶comple句 crackrelieves the initial sもraineneuv 
density Ef~/2 from volume同:=k h2 where yi. is the cross・hatchedarea shown in Fig. 9.2b， 
姐 dk=回 meconstant. Neglecting d Wb， we must have dU主dW，or G，bh 三 (Ef~/2)Yt.
Here we may Bubstitute E. = dc/ s. Furthermore， assuming the bar to be su缶cientlystrong， 
we know from the previous a.nalysis of stability of a parallel crack system that the spa.cing 
of the open cracks will be s := k1 h where k1 is some con日tant.Thus we obtain: 

ιさん(2G，b/ kE)1/2 h1/2 (9.14) 

Eqs. 9.9 9.13 are interesting in that出eyr抗ionalize出einfluence of the thickness b 
of concrete around the bar (or bar spacing) and the influence of the thickn邸 ofconcrete 
cover. With rega.rd to Eq. 9.13， one may recall the empirical formula established byextensive 
statistical a.naly由 oftestdata by Gergely and Lutz (1968， see also Meier岨 dGergely， 1981)， 
according to which the crack width Oc is roughly proportional to A~/3. Since Ac is roughly 
proportional to h， this is only slightly differ四 tfrom Eq. 9.13. Under Bome more sophisticated 
assumptions， the proportionality of dc to A~/3 C組 beobtained by fracture 田町gy姐 alysis
(Ba-zant and Oh， 1983b，1984). 
The foregoing discussion mak田 itclea.r that various existing provisions regarding mini-
mum reinfor田 mentand crack width could be at least partially justified叩 dprobably also 
improved by the use of fr乱cturemechanics. 

9.4 Interacting Microcracks 

Modeling of the microcrack system in the fracture process zone helps in developing 陪
tional stress-displa.cemenもorstress-strain relations for the fracture process zone. In such 
models， it is imporlantもota.ke into account the interaction of individual microcracks. This 
interaction may lead to instabilities and localization of cracking. 

Consider for example the idealized situation in Fig. 9.3. In山eもerminalphase of microc-
racking， two adjacent crack tips coal目白出theligament between them is getting torn. This 
∞ales田n臼 maybe roughly modeled as the terminal propagation of a circumferential crack 
in a round bar (Fig. 9.3) while the radius of the circular ligament approaches zero. Based 
on the known solutions of the stress intensity factor for this problem， one c姐 calculatethe 
diagram of the applied remote stress vs. the displ乱εementdue to cra.cking; Fig. 9.3b. An 
interesting property of this diagram is that it pos偲ssesa maximum displacement after which 
there is a snapback instability. 

IもC組 beproven more generally tha.t a maximum displaεement with sna.pback instability 
musもocωrfor every type of cra.ck liga.ment tearing， provided the ligament tr組 smitsa force. 
On the other h日 d，if only a moment but no force is transmitted across the ligam叩 t，then no 
snapback occurs (Ba.Z副， 1987b). Sin回 thelatterωe is unlikely to prevail in伽 fracture
proc倒 zone，it follows from this analysis that the町側ー displ紅白nent(or stress-st叩n)
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relations for the fracture proce8S zone in nonline紅白niteelement analysis should exhibit a 
maximum displacement (or stra.in) at which the stress suddenly drops to z釘 o.However， iもIS
notωrtain whe山erthis condusion is also valid in the pr，伺en田 offriction a.nd other inelastic 

phenomena. 
A ra.ther powerful approxima.te technique for ∞nsidering inter民 tionsbetween randomly 
located cracks in a large body h却肥田ntlybeen developed by Kachanov (1985， 1987); s回
also B笹川口iste，Dvorak， Zarzour and Wung (1988). 

CONCLUDING RE乱1ARKS

The present exposition of the sta.teトof-the-artin concrete fracture concepts and determi-
nation of material properties reflects a tremendous surge in re目earchactiviもyin re偲 ntye釘 S
and documen t8 a large degr田 ofprogress which has been achieved over a relatively short 
span of time. While only about ten years ago the appli日 bilityof fr乱cturemech組 icsto 
concrete structures Was doubted， m組 yexperts now agr偲 thatfracture mechanics can h晶ve
a considerable impa.ct， improving the safety叩 de∞nomyof∞ncrete structures and ma.king 
new designs possible. 
Inもhr回 follow-upreports， ACI Committ田 446on Fracture ~ech組ics will attemptもo
review the 8ta.te-Oιthe-art in applications of fracture mechanics to structural behavior， with 
a. view toward potential code improvements， the state-of.・the-artin finite element企acture
analysis of ∞ncrete structures， and the state-of-the-a.rt in modeling of the rate effects and 
dynamic fracture of concrete. 
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Appendix 1.圃 Derivationsof Some Formulas 

Derivation of Eq. 1.4: The size effect law in Eq. 4.1 can be derived most generally b¥ 
dimensional姐 alysisand sim.ilitude arguments (Ba.Zant， 1984a) on the basis of the followin~ 
hypotheses: (I.) The energy release of the山 uctureis a function ofboth: (a) the length 
of fracture， a，叩 d(b) the characteristic fracture pro慣 szone， Cj・(11.)The length a， at 
maximum load is not negligible姐 dis proportional to structure si配 d，whi1e cJ is a structuraJ 
property independent of d. 
The total amount of energy released from the structure into the fracture must be ex. 
pressible in出eform 

Part II 

Conference Papers 

W =....!τσtbd2F(川)，。 =E82=22E'U N".... .1.' ¥"1. "2)> V1 = d' "2 = d (A.1) 

where σN = P/bdj (Jt，82 are independent nondimensional parameters (もheirnumber foUoWs 
from Buckingham込山田remof dimensional組 alysis)，and F is a certain function which ma.y 
be expected to be smooth. From the crack propagation condition 8W/δα= G fb， one gets 

σL=竿問ヲ~rl (A.2) 

We now choose the state (J2 = 0 (which corresponds to d→∞)ωthe referen四 state，組d
exp組 d8F/δ81 into Taylor series about this state i.e.， aF /δ01 =凡+F')，8')， +九時+九時+
…where Fl，凡 -一areconstants if geometrica11y sim.ilar shapes (s叩 le(1) are considered. 
Substitution into Eq. (A.2)姐 dtruncation of the series after the linear term yields: 
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This yi帥 Eq.4.1 if one denotes B = ..j(2E'GJ )/(九叫)佃ddo=凡C，/ F1， and note告側
B and do are constants. 
From the si田 effectlaw (Eq. 1.4)， we have p2 = (σNbd/c.，.)2 = (B!ubd/c.，.)2doJ(d + do). 
Substituting for p2 in Eq. 5.2 and noting Eq. 6.24 for G， we get 

(α) 
G(α) = G/一一一一一

J g(α。)d+do (A.4) 

The critical state occurs if fracture propagation is possible also for the next adjacent 
日tate，i.e. ifθ(G -R)J8d = O. Because θR(c)/8d = 0， we must have θG/θd = O. Since 
α= aJd = (ao + c)/d， we find 8α/δd= -cJ♂=(αoーα)/d，組 d80 substitution of Eq. A.4 
into θGJθd= [oG(α)Jθα]θα/δd+θGJδd = 0 provides 

d + do = dog(α)J!9'(α)(α 一 αo~ (~司

Substituti碍 thisfor (d + do) in Eq. Aムwefurther obtain G(α) = G，旬'(α)Jg(α'o)]cfdo・
FinaUy， noting that do = c，g(α。)/g'(α0)(from Eq. 5.6)， we obtain Eq. 4.1 (Bai組主回d
Kaze凶， 1988). Furthermore， substituting Eq. 4.1 into Eq. A.4 in which (R = G)回d
elim.inating d with the help of Eq. A.5， Eq. 4.2 ensues. 


