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Abstract: The present article describes a model, based on concepts of Fracture Mechanics, to 

evaluate the behavior of fiber reinforced concrete (FRC) sections. It is developed by an analytical 

method that represents tension in concrete by means of the linear softening law (σ-w) included in 

the Model Code 2010. The method also uses a compatibility equation for the cracked zone based on 

the planar crack hypothesis, i.e. the assumption that the crack surfaces remain plane throughout the 

fracture process, in conjunction with the Navier’s hypothesis applied only to the non-cracked zone. 

The model reproduces the experimental size-effect on the rupture-modulus for concrete and FRC 

sections and points at Hillerborg’s brittleness number as a common characterization parameter for 

concrete and FRC sections behavior. The study concludes that planar crack assumption can be 

considered as an alternative to Navier’s hypothesis, since it gives a more physical approximation to 

the FRC fracture behavior. 

 

1 INTRODUCTION 

Fiber Reinforced Concrete (FRC) behavior, 

when it is considering post-cracking softening, 

is generally modelled by a stress-strain law (σ-

ε) related to a stress-crack opening law (σ-w). 

This stress-crack opening law represents 

tension uniaxial fiber reinforced concrete 

behavior. To connect continuous mechanics, 

governed by a stress-strain constitutive 

relationship, and fracture mechanics, governed 

by a stress-crack, a parameter namely the 

structural characteristic length (lcs) of the 

structural element is defined [1, 2]. The 

evaluation of this parameter is not clear in the 

bibliography and introduces the idea that 

concrete is a continuous material, when in fact 

the main consequence of concrete softening is 

the crack localization, which introduces a 

discontinuity in the material. 

 

On the other hand, when dealing with finite 

element models (FEMs), it is necessary to 

introduce a specific internal length (Li), which 

depends on the cracking model implemented 

in the program. Hence, the afore mentioned 

mailto:jacinto.ruiz@upm.es
mailto:juan.rey@upm.es
grassl
Typewritten Text
https://doi.org/10.21012/FC10.233086

https://doi.org/10.21012/FC10.233086


Jacinto R. Carmona, Juan Rey-Rey, Gonzalo Ruiz and Juan M. Rodriguez Madueño 

 2 

internal length is not a structural material 

property but it represents a “numerical 

parameter” for bridging in another easy way, 

the continuous mechanics to the fracture one. 

In order to properly perform this connection 

and to prevent mesh dependency, several 

methods have related the internal length to 

physical parameters, such as maximum 

aggregate size for non-local approaches [3-5], 

or to element size for local approaches [6, 

7].In addition, several numerical discontinuous 

crack models have been developed. Among 

them, it can be cited that discontinuous 

numerical modeling of fracture using 

embedded discontinuities [8], discrete strong 

discontinuity approach [9], dynamic 

fragmentation [10] and the sequentially linear 

analysis method [11]. 

 

 In the case of analytical models to describe 

flexural behavior of FRC sections, the use of a 

continuous stress-strain constitutive law, is 

always linked together with the use of 

Navier’s hypothesis, as compatibility equation 

(planar section remains planar after 

deformation) [12]. This methodology doesn`t 

represent the concrete behavior properly as 

concrete is considered as a continuous material 

and the physical phenomenon of cracking is 

not properly described [13]. 

 

In order to avoid the use of length 

parameters as lcs to represent fiber reinforced 

behavior, in this work is presented a model, 

based on concepts of Fracture Mechanics, to 

evaluate the flexural  behavior of fiber 

reinforced concrete sections. It is developed by 

an analytical method that represents tension in 

concrete by means of the linear stress-crack 

opening law (σ-w) included in Model Code 

2010 [2]. The method also uses a compatibility 

equation based on the planar crack hypothesis, 

i.e. the assumption that the crack surfaces 

remain plane throughout the fracture process, 

which has been recently proven true by means 

of digital image correlation [14]. The 

compressive behavior of FRC is modeled 

through a linear elastic law (σ-ε) in 

conjunction with the Navier’s hypothesis, 

applied only to the ligament. Crack opening is 

evaluated from the applied moment and the 

crack depth, in the same way that it was 

proposed in references [15-16], using an 

expression proposed by Tada et al. [17]. 
 

The paper is structured as follows. The 

subsequent section describes the material 

constitutive assumptions made. Section 3 

describes the crack propagation theoretical 

model developed. A discussion on the model 

response and size effect is included in Section 

4. Finally, Section 5 summarizes the results of 

the paper and draws several conclusions. 

 

2 MATERIAL HYPOTHESIS   

Fiber Reinforced Concrete (FRC) behavior 

is divided in two different cases depending on 

the development of the fracture process. It is 

considered one hypothesis for the non-cracked 

zone and other for the cracked zone. 

2.1 Non-cracked zone 

In the non-cracked area, concrete behavior 

is considered as an elastic material, which is 

represented by its elastic modulus. Navier´s 

hypothesis is used as compatibility equation in 

the non-cracked area, see Fig. 1. 

 
  

Figure 1: Material hypothesis. Cracked area is 
modelled according to the crack planar hypothesis 

and non-cracked area according to Navier's 
hypothesis. 

2.2 Cracked zone 

Based on the cohesive model, a stress-crack 

opening law in uniaxial tension is defined as 

constitutive law for representing the post-

cracking behaviour of FRC, as is defined in 
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Model Code 2010 [2].A softening linear post-

cracking behaviour is used in the model as 

shown schematically Fig.2. The model showed 

in this paper is only valid for the case of post-

cracking softening, case where a discrete crack 

is localized in the Fibre  Reinforced Concrete 

section. Post cracking hardening has to be 

modelled through plasticity models as no crack 

localizations will take place.  

 
Figure 2: Simplified post-cracking constitutive law: 

stress-crackopening (softening post-cracking 
behaviour) [2]. 

 

In Fig. 2,fFts represents the serviceability 

residual strength, defined as the post-cracking 

strength for serviceability crack openings, and 

fFtu represents the ultimate residual strength. 

 
Figure 3: Applied force (F) versus Crack Mouth 

Opening displacement (CMOD) [2]. 

 

fFts and fFtu have to be calculated through the 

residual values of flexural strength by using 

the following equations: 

 

𝑓𝐹𝑡𝑠 = 0.45𝑓𝑅1    (1) 
 

𝑓𝐹𝑡𝑢 = 𝑓𝐹𝑡𝑠 −
𝑤𝑢

𝐶𝑀𝑂𝐷3
(𝑓𝐹𝑡𝑠 − 0.5𝑓𝑅3 + 0.2𝑓𝑅1)

      (2) 

 

Where fR1is the residual flexural tensile 

strength corresponding to CMOD = CMOD1 = 

0.5mm andfR3is the residual flexural tensile 

strength corresponding to CMOD = CMOD3 = 

wu. These parameters are determined by 

performing a 3-point bending test, on a 

notched beam, according to EN 14651, see 

Fig. 3.wu usually adopts the value of 2.5mm. 

 

The ultimate tensile strength fFtu in this 

linear model depends on the required ductility 

that is related to the allowed crack width. The 

ultimatecrack width, in any case, may not 

exceed 2.5 mm.The crack opening, w, in 

postcracking constitutive lawcan be expressed 

as: 

 

𝑤 =
𝑓𝐹𝑡𝑠−𝜎

𝑓𝐹𝑡𝑠−𝑓𝐹𝑡𝑢
𝑤𝑢    (3) 

 

The area under the softening function 

represents the Fracture Energy, GF,FRC. 

 

𝐺𝐹,𝐹𝑅𝐶 =
𝑓𝐹𝑡𝑠+𝑓𝐹𝑡𝑢

2
𝑤𝑢 ⇒  𝑤𝑢 =

2𝐺𝐹,𝐹𝑅𝐶

𝑓𝐹𝑡𝑠+𝑓𝐹𝑡𝑢

      (4) 

Planar crack assumption is used as 

compatibility equation in the non-cracked area. 

Based on this assumption a linear softening 

can be considered on the cohesive ligament, 

see Fig 4. 

3 MODELLING OF CRACK 

PROPAGATION 

A rectangular concrete section is 

considered. The different geometric variables 

relevant to the problem are displayed in Fig. 

4.The section has a depth h, and a width equal 

to b. The crack depth is represented as z and 

the neutral axis depth as yn. All these 

dimensions can be expressed in a non-

dimensional way by dividing themby the depth 

h. In this manner, we define ξ = z/h as the 

crack depth expressed in a non-dimensional 

form and γn= y/h the depth of the neutral axis 

in a non-dimensional form; these parameters 

have a value between 0 and 1. Crack opening 

is expressed in non dimensional form by 

dividing it by the ultimate crack width, 

w*=w/wu. 

 

Crack modelling is divided in two cases 

depending on the crack opening at the bottom 

part of the section. Section is considered to be 
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in case 1, when the crack openings is less than 

the ultimate crack width, wb<wu, and it is in 

case 2 when wb>wu, See Fig. 4. 

 

 
Figure 4: Crack propagation modelling cases. 

In case 2, the crack depth for the critical 

opening is represented as z0, in non 

dimensional form is defined as ξ0 = z0/h. 

 

Stress at the bottom part is represented as σb 

and stress at the top as σt. Non dimensional 

stresses are defined dividing the stress by the 

serviceability residual strength, fFts. So, we 

define σb
* = σb /fFtsandσt

* = σt /fFts. 

 

3.1 case 1, wb<wu 

The section equilibrium forces can be 

expressed as: 

 

∑ F = 0 ⟹
𝜎𝑇

2
(ℎ − 𝑦𝑛)𝑏 −

𝑓𝐹𝑡𝑠

2
(𝑦𝑛 − 𝑧)𝑏 + (

𝑓𝐹𝑡𝑠+𝜎𝑏

2
) ∗ 𝑧𝑏 (5) 

 

Expressing Eq. (5) in a non-dimensional 

form the following is obtained: 

 

𝜎𝑡
∗ =  

𝛾𝑛+𝜎𝑏
∗𝜉

1−𝛾𝑛
    (6) 

 

Compatibility condition in non-cracked 

zone is represented based on Navier´s 

hypothesis: 

 
𝜀𝑇

ℎ−𝑦𝑛
=

𝜀𝑐𝑡

𝑦𝑛−𝑧
⇒

𝜎𝑇

ℎ−𝑦𝑛
=

𝑓𝐹𝑡𝑠

𝑦𝑛−𝑧
 (7) 

 

Expressing Eq. (3) in a non-dimensional 

form the following equation is obtained: 

 

𝛾𝑛 =
1+𝜎𝑇

∗ 𝜉

1+ 𝜎𝑇
∗     (8) 

 

In the cracked zone, constitutive law is 

formulated as: 

 

𝑤𝑏(𝑀, 𝑧) =  𝑤𝑏(𝜎𝑏)   (9) 

 

Crack opening, wb(M,z)can be evaluated by 

the expression given by Tada et al [17]. 

𝑤𝑏(𝜎𝑏)is defined considering the softening 

law, Eq. (3). Thus, Eq. (9)can be expressed as: 

 
24𝑀

𝑏ℎ2𝐸𝑐
𝑧𝑓(𝜉) =

𝑓𝐹𝑡𝑠−𝜎𝑏

𝑓𝐹𝑡𝑠−𝑓𝐹𝑡𝑢
  (10) 

 

Where f(ξ) is a shape function: 

 

𝑓(𝜉) = 0.76 − 2.28𝜉 + 3.87𝜉2 −

2.04𝜉3 +
0.66

(1−𝜉)2
   (11) 

 

If we define a characteristic length as: 

 

𝑙𝑐ℎ,𝐹𝑅 =
𝐸𝑐𝐺𝐹,𝐹𝑅

f𝐹𝑡𝑠
2 −f𝐹𝑡𝑢

2   (12) 

 

A brittleness numbercan be defined as: 

 

𝛽𝐻,𝐹𝑅 =
ℎ

𝑙𝑐ℎ,𝐹𝑅
   (13) 

 

This brittleness number can be considered a 

generalization of the Hillerborg’s brittleness 

number [12] for the case of linear softening 

shown in Fig. 2. Thus,Eq. (10) in non-

dimensional form is expressed as: 

 

𝜎𝑏
∗ = 1 − 12𝑀∗𝛽𝐻,𝐹𝑅𝜉𝑓(𝜉)          (10) 

 

Where M*is the bending moment in the 
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section expressed in non-dimensional form 

𝑀∗ =
𝑀

𝑏ℎ2𝑓𝐹𝑡𝑠
            (11) 

 

Bending moment in the section is equal to:  

 

𝑀 =
1

3
𝜎𝑡(ℎ − 𝑦𝑛)2𝑏+. 𝑓𝐹𝑇𝑠 (𝑦𝑛 −

𝑧)2𝑏 + (
𝑓𝐹𝑇𝑠+𝜎𝑏

2
) 𝑧(𝑦𝑛 − 𝑧(

1

3
𝑓𝐹𝑇𝑠 +

1

6
𝜎𝑏

1

2
(𝑓𝐹𝑇𝑠 +𝜎𝑏

)𝑏

       (12) 

 

Writing Eq. (12) in a non-dimensional form 

itis obtained that: 

 

𝑀∗ =
1

3
𝜎𝑡

∗(1 − 𝛾𝑛)2 +
1

3
(1 − 𝜉)2 +

(
1+𝜎𝑏

∗

2
) 𝜉(𝛾𝑛 − 𝜉(

2+𝜎𝑏
∗

3(1+𝜎𝑏
∗)           (13)

  

In order to evaluate the section stress 

profile,crack opening and bending moment for 

a given crack depth, ξ,a system of four 

equations, Eqs. (6), (8), (10) and (13), has to 

be solved analytically. The results of the 

equation system are σ*
T, σ

*
T, γnand M*, the only 

input data is𝛽𝐻,𝐹𝑅 . Crack depth,ξ, is used as 

control parameter during de crack process. For 

each crack depth, only one equilibrium 

solution exists. 

 

Crack opening at bottom part of the 

sectionis evaluated as: 

 

𝑤𝑏
∗ =  12𝑀∗𝛽𝐻,𝐹𝑅𝐶𝜉𝑓(𝜉)(

1

1−𝛼
) (14) 

 

Where α is defined as the ratio between fFtu 

and fFts 

3.2 case 2, wb>wu,  

We proceed in the same way that in the 

previous case. The section equilibrium forces 

can be expressed as: 

 

∑ F = 0 ⟹
𝜎𝑇

2
(ℎ − 𝑦𝑛)𝑏 −

𝑓𝐹𝑡𝑠

2
(𝑦𝑛 − 𝑧)𝑏 + (

𝑓𝐹𝑡𝑠+𝑓𝐹𝑡𝑢

2
) ∗ (𝑧 −

𝑧0)𝑏     (15) 

 

Expressing Eq. (5) in a non-dimensional 

form: 

𝜎𝑡
∗ =  

𝛾𝑛+𝛼𝜉+𝜉0(1+𝛼)

1−𝛾𝑛
 (16) 

In case 2, the equation to represent the 

compatibility condition in non-cracked zone is 

the same as for case 1, Eq (7) and (8). 

 

As crack surface is considered that it has a 

linear variation from 0 to wb, crack opening for 

any depth is evaluated multiplying the crack at 

the bottom, wb by the term 1-z/z0. So,the 

compatibility condition at the cracked zone 

can be formulated as: 

 

𝑤𝑏(𝑀, 𝑧)(1 −
𝑧

𝑧0
) =  𝑤𝑢 (17) 

 

By substituting 𝑤𝑏(𝑀, 𝑧) for its value, Eq. 

(16)can be rewritten as: 

 
24𝑀

𝑏ℎ2𝐸𝑐
𝑧𝑓(𝜉)(1 −

𝑧

𝑧0
) =  𝑤𝑢          (18)

   

Eq. (17) in non-dimensional form is 

expressed as: 

 

𝜉0 = 𝜉 −
1−𝛼

12𝑀∗𝛽𝐻,𝐹𝑅𝑓(𝜉)
 (19) 

 

Finally,bending moment in case 2 in the 

section is equal to:  

 

𝑀 =
1

3
𝜎𝑡(ℎ − 𝑦𝑛)2𝑏 +

1

3
𝑓𝐹𝑇𝑠 (𝑦𝑛 −

𝑧)2𝑏 + 𝑓𝐹𝑇𝑢(𝑧 − 𝑧0) (𝑦𝑛 − 𝑧 +
𝑧−𝑧0

2
) 𝑏 +

1

2
 ( 𝑓𝐹𝑇𝑠−𝑓𝐹𝑇𝑢)(𝑧 −

𝑧0) (
1

3
(𝑧 − 𝑧0) +  𝑦𝑛 − 𝑧 ))𝑏         (20) 

 

Expressing Eq. (19) in a non-dimensional 

form: 

𝑀∗ =
1

3
𝜎𝑡

∗(1 − 𝛾𝑛)2 +
1

3
(1 − 𝜉)2 +

 𝛼(𝜉 − 𝜉0)(𝛾𝑛 −
1

2
(

𝜉+𝜉0

2
) +

1

2
 (1 −

𝛼)(𝜉 − 𝜉0)( 𝛾𝑛 −
1

3
(2𝜉 + 𝜉0)  (21) 
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To evaluate the section stress profile crack 

in case 2, depth for critical crack opening and 

bending moment for a given crack depth, ξ, a 

system of three equations, Eqs. (16), (8), (19) 

and (21), can be solved analytically. From the 

system are evaluated σ*
T, ξ0, γn and M*, the 

input data are𝛽𝐻,𝐹𝑅 .and α.Crack opening is 

evaluated through the following expression: 

 

𝑤𝑏
∗ =  

𝜉

𝜉−𝜉0
    (22) 

 

4. RESULTS AND DISCUSSION  

4.1 Model response 

In this section it will be shown how the 

value of the βH,FRC affects the behavior of the 

section. In Fig. 4a the x-axis represents the 

non-dimensional crack opening, w*, and the y-

axis the non dimensional bending moment 

during crack growth, M*. 

 

The ratio between fFts and fFtu, α, has a value 

of 0.8.Cracking moment, if we consider an 

elastic material, has a non dimensional value 

of 0.167, and all curves has this value as initial 

point. As the brittleness number decreases, 

peak load increases. When it reaches a value 

of the non imensional crack opening of 1, a 

decreasing in the bending moment occurs. 

This decreasing is bigger for sections whose 

value of βH,FRC its smaller. 

 

In Fig. 4b the x-axis represents the non-

dimensional crack depth, ξ, and the y-axis the 

non dimensional bending moment during 

crack growth, M*. It shows the same results 

that in Fig. 4a. In this case, it is observed that 

peak load is reached for a bigger value of the 

crack depth as the value ofβH,FRC is smaller. 

Thus for smaller values of βH,FRC the softening 

length development in the fiber reinforced 

concrete section is bigger, and that is the main 

reason for the peak load increases. 

 

Figure 4: influence of βH,FRC: a) M*-w* curves; b) M*-ξ 
curves.  

Fig. 5a shows the influence of the ratio 

between fFts andf Ftu, α, in the fibre reinforced 

concrete behaviour.As in the previous case, the 

x-axis represents the non-dimensional crack 

opening, w*, and the y-axis represents the non 

dimensional bending moment duringcrack 

growth, M*.βH,FRC, has a constant value of 

0.01 in the results showed. 

 

As the value of the ratio α increases the 

bending moment, for a given crack opening, 

increases. Peak load is not influenced by this 

parameter as clearly it is showed in Fig. 5b, 

where a detail of Fig 5a is zoomed. In all cases 

we concluded that peak load occurs when the 

crack opening is less or equal to the value of 

wu.  
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Figure 5: Influence of α: a) M*-w* curves; b) M*-w*  

detail. 

4.2 Comparison between model response 

and experimental results  

To validate the response of the model, we 

have compared theresults obtained with those 

obtained by a recent experimental program 

performed by Carpinteri at al. [18]. A total of 

nine geometricallysimilar beams reinforced 

with 3 different fiber volume ratios were 

tested, 10 , 20 and 40 fiber kg/m3 of concrete 

(3 beams for each ratio). In this experimental 

program, all concrete properties were 

determined from independent tests.  

Table 1: Beams characteristics [18]. 

 

 
Figure 6: Displacement evaluation 

In order to compare test results with the 

model, some hypothesis have been done.If we 

consider that the vertical displacement is 

provoked by the crack opening, see Fig.. 6, 

and elastic deformation is neglected, the 

vertical displacement can be evaluated through 

the crack  depth and crack opening. 

 

Section rotation is equal to: 

 

𝜃 ≅  
𝑤

2⁄

𝑧
=

𝑤∗

2⁄

𝜉

𝑤𝑢

ℎ
   (22) 

 

Thus, beam deflection at midpoint can be 

evaluated as: 

 

𝛿 = 𝜃
𝐿

2
=

𝑤∗

2⁄

𝜉

𝑤𝑢

ℎ

𝐿

2
  (23) 

 

Load applied is evaluated from the bending 

moment of crack propagation by the relation: 

 

𝑃 =
4𝑀

𝐿
 𝑤ℎ𝑒𝑟𝑒  𝑀 = 𝑀∗𝑏ℎ2𝑓𝐹𝑡𝑠  (24) 

 

Fig. 7 shows a comparison between 

experimental and model results. The x-axis 

represents vertical displacement under the 

point load, δ, and the y-axis represents the 

applied load, P. 

 

Fiber  
(kg/m) 

h 

(mm) 

B 

(mm) 

L 

(mm) 

fFts(M

Pa) 
fFtu(M

Pa) 

10 200 100 1200 2.36 0.42 

   20 200 100 1200 1.39 0.16 

40 200 100 1200 3.21 1.42 
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Figure 7: Experimental - model results comparison. 

For the lowest fiber ratio, model response 

does not fit correctly the tests results. As fiber 

quantityincreases, the curves given by the 

model fit the experimental results better. 

 

The model follows the experimental trends 

in FRC sections, although it shows some 

limitations stemming from the use of the linear 

softening law in Model Code 2010.  This 

softening law represents correctly the residual 

behaviour as is shown in comparison for 20 

and 40 kg of steel fibre per m3 of concrete. For 

low fibre quantities peak load is controlled by 

tension concrete strength, as is shown in Fig.8 

and linear softening law in Model Code 2010 

does not represent correctly the initial 

curveshape. 

 

 

Figure 8: Scheme of contribution of concrete and 
fibres to FRC response [19]. 

4.3 Size effect on the modulus of rupture for 

FRC  

The modulus of rupture provides a measure 

of the strength of plain and fibre reinforced 

concrete. The modulus of rupture is defined as: 

 

𝑓𝑟 =
6𝑀𝑝𝑒𝑎𝑘

𝑏ℎ2
  (25)  

 

Where Mpeakis the maximum bending 

moment in the curve M-w. The modulus of 

rupture was originally assumed as a material 

property coinciding with the tensile strength 

but results from cohesive models showed that 

rupture modulus was size-dependent and also 

dependent on the softening curve [13].  

 

In the proposedmodel, linear concrete 

softening can be represented when α=0. Thus 

the expressions derived at section 3 are valid 

for plain concrete and FRC. On the other hand, 

the peak load occurs always during case 1. The 

input data from the model is only the 

brittleness number βH,FRC,  which can be 

considered as an intrinsic size on the FRC 

M* 

0.167 
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element. The dependency of size effectof a 

brittleness number is proved in references [20-

22]. 

 

In Fig. 9a the x-axis represents the 

brittleness number,βH,FRC, and the y-axis 

represents the non dimensional rupture 

modulus, σ*R, which  is defined as the ratio 

between the peak load,fr, and fFts(initial 

concrete or FRC tension strength in the linear 

softening curve). 

 

Figure 9: Size effect (a) dependent of rupture 
modulus on βH,FRC. (b)asymptotic behavior. 

The figures show the size effect 

dependency of the rupture modulus evaluated 

by the expressions given by Rokugo at al. [21] 

and Planas at al. [22]. The results obtained by 

the model proposed in this paper are also 

drawn.  

 

Theproposed model is approximately valid 

for the entire range of sizes, satisfying the 

condition that σ*R →3 for βH,FRC = 0 (plastic 

limit solution for cohesive cracks) and σ*R 

→1for βH,FRC = ∞, as is showed in Fig 9b 

(elastic solution). 

 

Although the proposed model fits the trend 

on the size effect, some improvement in the 

shape function f(ξ)can be done to fit better the 

results proposed in references [21-22]. 

 

Finally, Fig. 9b shows the curve zones 

located mostly on structural members designed 

by plain concrete or FRC. It is observed that 

influence of size effect is stronger for FRC 

elements than for plain concrete elements. In 

all cases the model identifies the plain 

concrete and FRC in the same theoretical 

frame which can help to understand better 

behavior of FRC elements. 

 

5 CONCLUSIONS 

A model based on Concrete Fracture 

Mechanicsis presented. The model reproduces 

the experimental size-effect on the rupture-

modulus for concrete and FRC sections. It also 

points a brittleness number based on 

Hillerborg’s brittleness number as a common 

characterization parameter for concrete and 

FRC sections behaviour. The model follows 

the experimental trends in FRC sections, 

although it shows some limitations stemming 

from the use of the linear softening law in 

Model Code 2010. Based on the results, a 

design method is proposed which uses 

diagrams that represent bending moment 

capacity against crack opening (M-w curves). 

 

The study concludes that planar crack 

assumption can be considered as an alternative 

to Navier’s hypothesis, since it gives a more 

physical approximation to the FRC fracture 

behavior. It is also concluded that linear 

softening law in Model Code 2010 represents 

FRC residual behavior for medium and high 

fiber contentsbut does not represent correctly 

FRC behavior for low fiber contents. Finally, 

it is showed that influence of size effect is 

stronger for FRC elements than for plain 

concrete elements. 
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