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Abstract. The paper delivers an analytical model for prediction of peak force in concrete specimens
loaded in bending (both notched and unnotched). The model is capable of predicting the statistics
of the peak force of beams by computing the extreme values of sliding averages of random strength
field. Local strength of the specimen is modelled by a stationary isotropic random field with Gaussian
distribution and squared-exponential autocorrelation function. The averaging operation represents the
progressive loss in material integrity and the associated stress redistribution that takes place prior to
reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting
random field of averaged strength is assumed to represent a series of representative volume elements
(RVEs) and the global strength is found by solving for the minimum of such an effective strength
field. All these operations can be written analytically and there are only four free parameters: the
three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain.

The model is verified using detailed numerical computations of notched and unnotched concrete
beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic
distributions of model parameters. The numerical model represents material randomness both by
random locations of the largest aggregates and by random fluctuations of material parameters via
a homogeneous random field.

1 INTRODUCTION

Concrete fracture behavior is largely influ-
enced by the internal structure consisting of ma-
trix, mineral aggregates and pores. The material
heterogeneity leads to complicated inelastic be-
havior and it must be reflected in the models ei-
ther by representing the mesostructure directly
(mesoscale models, e.g. [14]) or by introduc-
tion of internal length parameter in some way
(e.g. the crack band model, gradient or nonlo-
cal models). The effective width of the frac-
ture process zone (FPZ), sometimes called the
characteristic length, is estimated in [2, 3] as
ld = (2.7 ∼ 3)da, where da is the maximum

aggregate size of concrete.

The present paper employs a mesoscale dis-
crete model with direct representation of the
aggregate size distribution. The main advan-
tages of this class of models are the discrete and
oriented character of cracks, capability to rep-
resent transition from distributed to localized
fracture or occurrence of transversal stresses.
The characteristic length emerges from con-
tribution of two sources, the constitutive rela-
tionship between discrete units and geometrical
properties of them. We utilize here a simplified
version of the lattice discrete particle model de-
veloped in [4–6,12]. The numerical model used
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here is the same as the one presented in [9].
Therefore, only very limited space is devoted
to description of the model.

The mesoscale models are incomplete un-
less they include also spatial variability in ma-
terial properties that arise during the produc-
tion process (mixing, drying, etc.) and service
life. These spatial fluctuations are often mod-
eled via random fields [9, 10, 13, 16, 17]. Even
though there are several possible sources of ran-
dom fluctuations, it is considered here that all of
them can be approximately described by a sin-
gle homogeneous random field. As argued in
[16], such a random field introduces its own
characteristic length scale provided in a form of
its correlation length denoted lρ.

The model is employed to simulate three-
point bending of concrete beams with and with-
out a notch. The applied random fields are gen-
erated with various correlation lengths spanning
from lρ → 0 (independently sampled random
variables) up to the infinitely long correlation
length lρ → ∞ for which the realizations are
random constants over the domain and there-
fore the whole structure shares the same value
in a single realization.

The main part of this contribution is descrip-
tion of analytical model capable of reproducing
the strength statistics obtained from the prob-
abilistic random discrete particle model. The
classical approach to statistical strength of ma-
terials is the classical Weibull theory. The de-
viation of the present theory from the classical
Weibull theory is twofold: (i) we allow for lo-
cal stress redistribution which introduces a “de-
terministic length scale” similar to the nonlo-
cal averaging operator and, (ii) we also consider
spatial dependence of local strengths by intro-
ducing a “statistical length scale” in the form
of autocorrelation length. Our model consid-
ers the definition of random field describing the
spatial fluctuation of local random strengths and
by performing the averaging operation and the
subsequent computation of extremes of the av-
eraged field, the statistics of the random flexural
strength is accurately predicted.

2 DISCRETE MODEL
The model is a simplified version of [5];

the full formulation accounts also for confine-
ment and involves more free material param-
eters. Our model is static, the solution pro-
ceeds in loading steps by iterations until static
equilibrium is found. The location and size of
the grains are randomly generated in computer
based on a user-supplied sieve curve and on
the total aggregate volume fraction. The dis-
crete units are obtained by tessellation respect-
ing the layout of grains and they are ideally
rigid. Constitutive relationship is defined on
contacts between them (facets) in terms of one
normal and two mutually orthogonal tangential
displacement jumps. The four governing pa-
rameters of the constitutive law are: (i) the elas-
tic modulus, E0, (ii) tangential/normal stiffness
ratio α, (both controlling the elastic behavior),
and (iii) meso-level tensile strength, ft, and (iv)
meso-level fracture energy in tension,GF, (both
controlling the inelastic behavior). Details re-
garding the simplified constitutive formulation
are published in [8].

The basic version of the model itself pro-
vides a random response due to its random
mesostructure: there is randomness in the po-
sitions and sizes of the discrete bodies (and
thus in the dimensions and orientation of the
facets). However, we will refer the model with-
out random fluctuations of material parameters
to as the deterministic model hereinafter, and
the mean value and the standard deviation of the
peak load provided by deterministic model will
be denoted µd and δd.

The second fundamental component is
an additional random spatial fluctuation of ma-
terial parameters. The deterministic model
combined with the randomization will be called
the probabilistic model, and the corresponding
mean and standard deviation of the peak load
will be denoted µp and δp, respectively.

In the probabilistic model, the two material
parameters governing fracture behavior (ft and
GF) are considered to vary randomly in space
according to single homogeneous random field
h(x). The probabilistic distribution function
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F (h) of the random field is assumed Gaussian
with a left Weibullian tail [1]. The mean value
is one, µh = 1, and a the standard deviation,
δh, is obtained from comparison with experi-
mental data [11]. The correlation structure of
the field is given by squared exponential (cor-
relation) function. A detailed description of the
probabilistic model and an efficient method for
generation of the samples can be found in [9].

In order to keep Irwin’s characteristic length
constant, we chose the following relation be-
tween random variable h and material param-
eters [17]

ft(x) = f̄th(x), GF(x) = ḠF [h(x)]2 (1)

resulting in constant lch(x) in all facets

lch(x) =
EGF(x)

[ft(x)]2
=
EḠF

f̄ 2
t

= l̄ch (2)

This scaling of parameters leads to linear de-
pendence of the structural strength on h. The
sequence of events (such as damage evolution
etc.) in the model is exactly the same for any
positive value of h. Therefore, the interpreta-
tion of the results obtained with the probabilis-
tic model is easier than with other relationships
between random local ft and GF.

Identification of model parameters is based
on experimental campaign described in [11]
with the maximum grain diameter 10 mm. The
identified parameters used in this contribution
are: E0 = 27 GPa, α = 0.24, ḠF = 0.25 J/m2,
f̄t = 2 MPa and, the random field is set via
two parameters: δh ≈ 0.14 and lρ ≈ 100 mm.
The Weibull modulus is assumed to be 24 and
the grafting probability is chosen Pgr = 10−3

(meaning that the values of h that are Weibull-
distributed occupy only the far left tail up to
probability 10−3).

2.1 Simulated beams and load capacity
The interplay between mechanical and prob-

abilistic components of the model was stud-
ied by performing simulations of beam loaded
in three-point-bending with various realizations
of the random fields. To estimate the mean

value and standard deviation of the peak load,
Nsim = 100 realizations of every model variant
is performed. The realizations differ by random
mesolevel arrangements and additionally by the
random field realizations (if used). The refer-
ence solution is the one with the “determinis-
tic” model. This reference solution is compared
with simulations obtained with various correla-
tion lengths lρ. Since the deterministic model
already has a portion of variance in the results
(crack paths, peak load) due to random arrange-
ments of numerical aggregates, we keep the sets
of generated mesostructures unchanged when
extending the model with random parameters of
the constitutive law.

Several values of lρ ranging from lρ → 0
(mutually independent random field values) to
lρ → ∞ (random values identical in the whole
volume for each sample) are considered. When
in between, a sample of random field with cor-
responding correlation length is generated and
applied.

The second probabilistic parameter sub-
jected to change is the standard deviation, δh,
(since µh = 1, δh is equal to the coefficient of
variation) of the random field h(x). It changes
the intensity with which the randomness is ap-
plied. The basic value approximately identi-
fied on experimental data is δh = 0.14 and
three more additional values are considered in
the study so that the complete list of values
read: δh = {0, 0.035, 0.07, 0.14, 0.28}. The
Nsim = 100 different samples (realizations) of
random fields for each level of variability (δh)
are similar such that they are simply re-scaled
by keeping the same unit mean value.

The simulated beams with or without a cen-
tral notch are loaded in three-point bending.
The dimensions of the specimen are: depth
D = 150 mm, length L = 720 mm, span
S = 600 mm and thickness b = 40 mm. The
notched variant have a central notch of length
a0 = 75 mm, across half of its depth. Only the
central part of the beam of size is represented
by the discrete model (450×120 mm2 in the un-
notched and 150×85 mm2 in the notched case),
the surrounding material is modeled by linear
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Figure 1: Beams geometry and coordinate system - a) unnotched and b) notched beams loaded in three-point-bending.
The rectangular cubes of dimensions T1, T2 and T3 are three length parameters of the analytical model.
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Figure 2: The mean value and standard deviation of the maximum load computed on unnotched (left) and notched (right)
beams loaded in three-point-bending using the probabilistic discrete model, denoted by empty circles and errorbars. The
curves show results obtained with the analytical model based on extremes of averaged random fields. The dotted lines on
the left represent the mean value and standard deviation of peak loads obtained with the deterministic discrete model and
on the right the theoretical mean and standard deviation for lρ →∞ according to Eq. (4), denoted as µp,∞ and δδhp,∞.

elastic finite elements. The beam geometry is shown in Fig. 1ab. The maximum loads cal-
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culated using both the deterministic and prob-
abilistic model with all the selected correlation
lengths and variances are presented in Fig. 2 left
for the unnotched beams and Fig. 2 right for the
notched beams.

The dependence of the mean peak load on
the correlation length, lρ, is different for the un-
notched and notched beams, compare Figs. 2
left and right. The mean peak load is almost
insensitive to lρ in the case of notched beams
while in unnotched beams, there is a clear value
of correlation length for which the peak load
attains its minimum. We first present simple
ideas about what governs the peak load. The
sequence of cracks for an increasing deflection
depends on the positions and orientations of the
facets and on their material parameters. The pa-
rameters include also the multipliers – random
variables that represent the discretized random
field h(x). The loading process involves redis-
tribution of local forces among the surrounding
contacts. Not one, but several contacts/facets
within the FPZ need to be at least partially dam-
aged before a crack may propagate. All the con-
tacts within the current FPZ are therefore in-
volved in certain averaging of their random ca-
pacities. The volume of averaging is the volume
of the FPZ with size denoted here as the deter-
ministic length, ld. Therefore, some weighted
average over the volume related to determinis-
tic length is the governing variable determining
the structural strength.

When lρ → ∞, the effect of the addi-
tional variability in probabilistic models is very
easy to predict. The average strengths of the
deterministic models is equal to the average
strengths of the probabilistic models. The vari-
ance, though, increases when using the random
field. This can be analytically predicted due to
the selected way of simultaneous randomization
of local ft and GF, see Eq. (1). The application
of the flat multiplier h produces loading forces
that are just multiplied by a random factor h
(only when constant over the whole structure:
lρ =∞). The sequence of damage evolution of
individual contacts and therefore also the final
crack patterns of the probabilistic models are

strictly identical to the those obtained with the
deterministic models (for the same grain lay-
outs). The forces at which these events occur
are, however, linearly dependent on the value of
random variable h(x) = h. There are therefore
two independent sources of response variance
in the probabilistic model: the variance inher-
ent to the deterministic model and the variance
due to random multiplier h. Due to the indepen-
dence, one can simply calculate the mean and
the standard deviation of the peak load of the
probabilistic model (µp,∞ and δp,∞) as a prod-
uct of two independent random variables: the
random peak load in the deterministic model
and h. The mean and standard deviation of the
peak load for lρ →∞ therefore read

µp,∞ = µd µh = µd (3)

δp,∞ =
√
δ2

dδ
2
h + µ2

dδ
2
h + δ2

dµ
2
h (4)

where we consider the unit mean value µh = 1.
These analytically predicted values are shown
in Fig. 2 on the right hand side of each graph.
The horizontal lines agree with the numeri-
cally computed values. We conclude that when
FPZ size is much lower compared to correla-
tion length (ld � lρ), there is no effect of the
additional randomness on the evolution of the
fracture process, only the forces are scaled with
the random multiplier, h.

On the other extreme when the correlation
length lρ → 0, the probabilistic models de-
liver the mean value and standard deviation
of the peak load almost identical to those ob-
tained with the deterministic models. This is
true for both, notched and unnotched bending.
The unit-mean random field with basically sym-
metrical distribution seems to randomly modify
the properties of the contacts which are vari-
able anyway – due to random orientations of the
facets. This additional randomness averages out
within the FPZ. We conclude that in the case of
the extremely short correlation length with re-
spect to the deterministic characteristic length
(lρ � ld), randomness has theoretically no ef-
fect on the average strength or its variance. The
probabilistic model behavior tends to the behav-
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Figure 3: Illustration of the transformation of the 3D discrete model into a 1D model of a chain of random RVEs.

ior of the deterministic model and therefore

µp,0 = µd, δp,0 = δd (5)

In our calculations, the finite size of discretiza-
tion implies that the number of averaged inde-
pendent variables is finite and not very high.
Consequently, the averaging process does not
remove randomness completely and a weak ef-
fect of the weakest-link type exists: to some ex-
tent a weaker spot may be found that leads to
slight decrease in the mean value of the peak
load compared to the deterministic model, see
Fig. 2 left. This effect is largely restricted in
notched beams, where strong stress concentra-
tor limits possible sampling of FPZ locations.

The paper continues with the proposed an-
alytical model capable of reproducing the de-
pendencies of peak loads on the two parameters
varied: the variance and the correlation length
of the random field.

3 ANALYTICAL RANDOM FIELD-
BASED MODEL FOR FRACTURE

In this section we present an analytical
model capable of reproducing the results ob-
tained with the randomized mesoscale discrete
model described above. The model can replace
the computationally intensive simulations and
provides an insight into the elementary mecha-
nisms; especially the role of random field in be-
havior of the model. We elucidate the role of the
autocorrelation length and variance of the field
and interaction with the inherent randomness
coming from the disordered internal mesostruc-
ture.

The sketch in Fig. 3 illustrates the ideal-
ization used in the analytical model. The un-
notched beam (on the left) is transformed into
a weakest-link model, i.e. it is assumed that the
strength of the beam is dictated by the weakest
element of (generally dependent) sub-volumes.
These sub-volumes are coupled in series. They
are refereed to as the representative volume ele-
ments (RVEs) here and they represent potential
macrocracks the failure of which leads to failure
of the whole beam. The weakest RVE thus cor-
responds to the flexural strength (peak load) of
the beam. Each of such RVEs is assumed to be
a rectangular cube. These cubes are assumed to
have identical dimensions: the length T1 mea-
sured along the beam span, depth T2 measured
along the vertical axis and the width T3, see the
illustration of one such RVE in Fig. 1. Since
the crack front has to pass through the whole
width of the beam, T3 equals the beam width.
The lengths T1 and T2 are two length param-
eters that must be obtained either by fitting of
the model or, better, directly from a nonlinear
analysis. They represent the width and length
of the macrocrack that forms at the peak load,
see Fig. 4. Numerous analyses with the dis-
crete model suggest that these lengths are not
much dependent on the parameters of the ran-
dom field; they are dependent on the determin-
istic model and on the stress field. Values of
the four model parameters identified are sum-
marized in Table 1. The width T1 is mostly con-
trolled by the maximum aggregate size, da =
10 mm. We expect also the influence of frac-
ture energy of facets and the stress field. In the
case of unnotched beams, we have found that
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the crack “planes” are somewhat tortuous and
the therefore the RVE thickness T1 is wider than
in the case of notched beams that are resisting
to strongly localized stress fields. The depths T2

of RVEs are similar in unnotched and notched
beams.

Table 1: Four length parameters of the analytical model

Length [mm] Unnotched Notched
T1 (averaging length) 10 2
T2 (averaging depth) 50 40
T3 (averaging width) 40 (= beam width)
L1 (effective length) 30 δḢT

1δḢT

It is assumed that each RVE contains many
facets (microbonds contributing to the mechan-
ical integrity of material) whose strengths and
orientations are random. Upon increasing the
load on the RVE, the microbonds start to break
or soften and the stress redistributes to the
neighborhood. The results of this redistribution
process up to the peak load is here represented
simply as stress averaging over the RVE vol-
ume. The important information gained from
the analyses performed with the probabilistic
meso-scale model is that the volume within
which the massive redistribution right at the
peak load takes place, is almost independent of
the parameters of the random field.

To reach the maximum force of each RVE,
we assume that the strengths of the local mi-
crobonds are simply averaged. Therefore, we
define the strengths of each RVE as the aver-
age over the volume T1 × T2 × T3. As shown
below, when considering the strengths of indi-
vidual bonds being described by a random field,
the parameters of random strength of each RVE
(an averaging window) can be predicted analyt-
ically, together with spatial correlation of these
averaged strengths. It is assumed that, effectiv-
elly, the stress is constant over one RVE. There-
fore, the three-dimensional problem is trans-
formed to one-dimensional problem (a chain)
with effective strength variable along the beam
span, see Fig. 3.

Comparing the idealizations for the un-
notched and notched beams in Fig. 3, one can
notice the difference in the length of the “chain”
of RVEs. This effective length, L1. is the
last parameter of the model. It is the extent of
the zone within which cracks can appear in the
beam. This length is dependent on the stress
field, on the parameters of the strength random
field and also on the RVE dimensions. The
dependence on the stress field is obvious: un-
notched beams have, at the peak load, very long
zone of almost constant stress. This mild func-
tions develops thanks to the redistribution ca-
pacity of the material. In the case of notched
beams, the length L1 is much shorter due to lo-
calized tensile stress field.

In both types of beams, though, the lengthL1

is influenced by the random field of the effective
(averaged) strength. It is because both, the auto-
correlation length and the variance influence the
random gradient of the wavy function describ-
ing the RVE strengths along the beam. There-
fore, we take the effective length L1 as pro-
portional to the standard deviation of the first
derivative of the effective random strength pro-
cess, see the last row in Tab. 1. The length L1

is therefore a function of the variance of the
random field (δ2

h), the autocorrelation length of
the local random field lρ, and finally the averag-
ing volume of RVE. Fig. 5 shows the computed
chain lengths L1.

Since the random fields of local strengths are
almost entirely Gaussian, the effective strength
of individual potential RVEs is Gaussian, too.
This is due to the averaging operation that sup-
presses the tails and, by the virtue of the Central
limit theorem, the Gaussian core spreads even
wider. Therefore, it suffices to focus on aver-
aging and extremes of Gaussian random fields.
So, to describe a strength of such a structure
with redistribution, one can study the purely
mathematical problem of distribution of a min-
imum of a moving average along a line. The
moving average represents effective strength of
the parent 3D random field of local strength.
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Figure 4: Distribution of energy dissipation within single computational step at inter-particle contacts of one realization
of the probabilistic model (lρ = 25mm) at the peak load, one step after the peak load and at termination of unnotched and
notched beam. Two variants of δh are shown in two rows, the top row was computed with δh = 0.035 while the bottom
row with δh = 0.28.
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3.1 Local strength as a random field
Consider a Gaussian random field h(x)

where the spatial coordinate x is defined in
three dimension (the beam volume). It is a ran-
dom function depending on the spatial coordi-
nate, x. We consider h to be a stationary ran-
dom field in the strong sense. Thus we deal
with a random field fully defined by the constant
mean value µh = 1, standard deviation δh and
autocorrelation function ρ(τ ; lρ), where τ is the
lag (distance between two spatial points). This
function is considered to be separable isotropic
Gaussian (squared-exponential) autocorrelation
function

ρ(τ ; lρ) = exp

[
−
(
τ

lρ

)2
]
, |τ | ≥ 0 (6)

The separability means that the correlation be-
tween two different random variables h(x1) and
h(x2) is a product of autocorrelations that de-
pend solely on distances (projections) along in-
dividual dimension of x.

3.2 Moving average of a random process
Assume now a one-dimensional random

field, a random process h(x). Let us also con-
sider another random field,HT (x), a moving av-
erage of the random process h(x), defined as

HT (x) =
1

T

∫ x+T/2

x−T/2
h(u)du (7)

where T denotes the averaging length. The rela-
tionship between the original random field h(x)
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and the averaged HT (x) is illustrated in Fig. 6
left using a single realization.

T

h(x) ... local strenth

H  (x)T
averaged strength

stress

Figure 6: Effect of moving average on tensile strength.

We now analyze the properties of the aver-
aged random field. The mean value is not af-
fected by the averaging operation: µT = µh.
The covariance function is affected such that the
point variance is reduced

Var[HT ] ≡ δ2
T = γ(T ) δ2

h (8)

where γ(T ) is a non-negative variance function
of h(x), i.e. a function that measures the point
variance reduction. It is related to the autocor-
relation function ρ(τ) as [15]

γ(T ) =
1

T 2

∫ T

0

∫ T

0

ρ(x− y) dx dy

=
2

T

∫ T

0

(
1− τ

T

)
ρ(τ)dτ

(9)

Substituting the selected autocorrelation func-
tion (Eq. 6) into Eq. (9) yields a closed-form
expression for the variance reduction function

γ(lρ, T ) =

(
lρ
T

)2{√
π
T

lρ
Erf

(
T

lρ

)
+ exp

[
−
(
T

lρ

)2
]
− 1

}
, lch ≥ 0

(10)

where Erf is the Error function. This variance
function is a smooth transition between a con-
stant for no averaging (γ(lρ, 0) = 1) and tends
to zero as T → ∞ (ergodicity in the mean).
For very large values of averaging length T , the
variance reduction function becomes approxi-
mately inversely proportional to T : γ(lρ, T →
∞) → √

πlρ/T . The crossover averaging

length at which the transition from a constant
asymptote towards this asymptotic inverse pro-
portionality takes place is defined as the posi-
tion of the intersection of the two asymptotes

T ? =
√
πlρ (11)

The averaging operation decreases the local
variance. This reduction is compensated by
an increase in the scale of fluctuation is such
a way as to keep their product invariant. The
scale of fluctuation is important when determin-
ing the “equivalent number of independent ob-
servations”, L/`ρ,eff , contained in a sampling
interval L. Indeed, `ρ,eff plays the role of an ef-
fective autocorrelation length of the averaged
random field. The scale of fluctuation of HT

reads

θch(lρ, T ) = `ρ,eff =
lρ

γ(lρ, T )
(12)

3.3 3D averaged random field
We now extend the concept into three dimen-

sions. The local strength is a stationary Gaus-
sian random field h(x) with a constant mean
value µh, standard deviation δh and separable
isotropic autocorrelation function

ρ(τ1, τ2, τ3) = Π3
i=1ρ(τi) (13)

where τi is the projection of the distance of two
points onto axis xi.

Consider now the 3D-averaged random field

H1,1,1(x) =
1

T1 · T2 · T3∫ x1+T1/2

x1−T1/2

∫ x2+T2/2

x2−T2/2

∫ x3+T3/2

x3−T3/2
h(t)dt

(14)

where the averaging window is the RVE box
T1 × T2 × T3 discussed above. The resulting
random field H1,1,1(x) is Gaussian with the (in-
tact) unit mean value, and its (point) standard
deviation is reduced to

δ1,1,1 =
√
γ1,1,1(T1, T2, T3) δh (15)

where the variance function is a product of indi-
vidual variance functions obtained by averaging

9
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over individual dimensions (recall the separa-
bility property of autocorrelation in Eq. (13)

γ1,1,1(T1, T2, T3) = γ(T1) · γ(T2) · γ(T3) (16)

The autocorrelation length of H1,1,1(x) along
x1 can be calculated using T = T1 in Eq. (12).

One might be interested in analyzing the
derivative of the averaged random process
H1,1,1(x) along the first axis, x1, denoted as
ḢT (x). Since H1,1,1(x) is stationary, any ran-
dom variables H1,1,1(x0) and ḢT (x0) are un-
correlated. The mean value E[ḢT ()] = 0. The
variance of the derivative is a constant function
along axis x1 and its value reads

δ2
ḢT

=
2δ2

1,1,1

T 2
1 γ(lρ, T1)

[1− ρ(T1; lρ)] (17)

Finally, the standard deviation of the derivative
of the averaged process is simply

δḢT
=
√
δ2
ḢT

(18)

The averaged random field that serves as the ef-
fective strength multiplier of each RVE is now
fully characterized.

3.4 Minimimum of a stationary Gaussian
random process over a finite interval

Consider a Gaussian one-dimensional ran-
dom field H1,1,1(x) (a random process defined
over a continuous time/distance x) that is sta-
tionary in the strict sense, with nonzero mean,
µ1,1,1, and standard deviation, δ1,1,1. We are in-
terested in the distribution of extremes of re-
alizations for a closed interval of x1 ≡ x. In
this work, we build our model on an elegant ap-
proach expressed via Theorem 2 in [7].The dis-
tribution function of the minimum is the prob-
ability that the sample function remains below
a given threshold k over the interval of length
L1

G(k, L1) =1− [1− Φ (u)]

exp

(
− ϕ(u)

1− Φ(u)
λL1

)
(19)

where Φ(k) =
∫ k
−∞ ϕ(t)dt is the stan-

dard Gaussian cumulative distribution, ϕ(t) =

exp[−(t2/2)]/
√

2π is the standard Gaussian
density and u = (k − µ1,1,1) /δ1,1,1. The cor-
responding probability density function g reads

g(k, L1) =
1

σ

[
ϕ(u) (1− λL1u)

+ λL1
ϕ2(u)

1− Φ(u)

]
exp

(
− ϕ(u)

1− Φ(u)
λL1

) (20)

Parameter λ has the dimension of inverse dis-
tance and depends on the second derivative of
the autocorrelation function of the random field
at zero lag

λ =

√
−ρ′′(0)

2π
=

1

lρ
√
π

(21)

According to our extensive numerical simula-
tions, the above approximation to the minimum
provides highly accurate results even for short
intervals, L1, and thresholds u close to the mean
value of the stationary process H1,1,1(x).

Finally, given the density function g(k, L1),
the mean value and standard deviation, µmin and
σmin of the random minimum can be evaluated
simply using their definitions

µmin =

∫ ∞
−∞

k g (k, L1) dk (22)

σ2
min =

∫ ∞
−∞

k2 g (k, L1) dk − µ2
min (23)

3.5 Application to the random discrete
model

The above analysis assumed that the local
strength variability is dictated just by the ran-
dom field, i.e. that the “deterministic” model
has no variance. If this is true, the above-
described model of averaged random field can
readily be applied and µmin and σmin are the
mean value and standard deviation of beam
strength.

In this paper, however, we used the unit-
mean random field h(x) only as multiplier of
local bond strengths. Therefore, the two mo-
ments in Eqs. (22) and (23) are multipliers of

10
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strengths obtained using the deterministic dis-
crete model. Both independent models deliver
random strengths and so the final strength must
be treated as a product of two independent ran-
dom variables. Therefore, the resulting mean
value and standard deviation of flexural strength
is computed using

µp,ρ = µd µmin (24)

δp,ρ =
√
δ2

dσ
2
min + µ2

dσ
2
min + δ2

dµ
2
min (25)

It is easy to check that this result has Eqs. (3,
4 and 5) as the asymptotic solutions for both,
the zero autocorrelation length (independent
strengths) and infinite autocorrelation length
(sample paths are random constants). Fig. 2
presents comparisons of these analytical predic-
tions with the results obtained with the proba-
bilistic discrete models. Both the mean values
and standard deviations are matched very well.

In notched simulations, the average peak
load is found to be almost insensitive to the spa-
tial variability in material parameters. The rea-
son is that the stress concentration is so severe
that the crack is forced to propagate from one
specific location (the notch tip) and the spatial
variability in material parameters is not suffi-
cient to change the location of dissipative pro-
cesses. However, the standard deviation of the
peak load decreases with the decrease in the au-
tocorrelation length due to averaging of the fluc-
tuations within the active zone. The size and
shape of the active zone is independent of the
applied autocorrelation length.

In unnotched beams, the average values of
the peak load in probabilistic models with both
short and long autocorrelation lengths are ap-
proximately equal to the one obtained with de-
terministic model. However, the peak load ex-
hibits a clear downtrend when the autocorrela-
tion length approximately equals the size of the
FPZ (or the active zone). The drop in the aver-
age strength depends on the standard deviation
of the random field. The minimum of the mean
strength occurs when the autocorrelation length
is close to the internal material length. Such
an autocorrelation length enables the structure

to sample the position of fracture process zone
inside the weakest spot but averaging within the
fracture process zone is not yet so severe to fil-
ter the randomness out. The standard deviation
follows the same trend as in the notched case.

4 CONCLUSIONS

The paper delivers an analytical probabilistic
model in which the local strength of material
is modelled by a stationary isotropic random
field with Gaussian distribution and squared-
exponential autocorrelation function. The mean
value is kept one and there were two parameters
of the random field we have varied: the variance
of the field and the autocorrelation length.

The proposed model takes into account pro-
gressive loss in material integrity and the asso-
ciated stress redistribution that takes place prior
to reaching the peak load. This stress redis-
tribution is influenced by both the material pa-
rameters and the specimen geometry and load-
ing that dictate the stress field. These nonlin-
ear processes are considered in the analytical
model by simply averaging the local strength
within a volume representing the decisive re-
gion. The mechanics is thus reduced to merely
averaging the local random strengths within all
possible RVEs by performing a moving average
operation. Once the (linear) averaging process
is performed analytically, the resulting random
field of local strength is assumed to represent
a series of RVEs (the weakest-link model) and
the global strength is found by solving for the
minimum of such an effective random field. All
these operations can be written analytically and
there are only four model parameters: the three
dimensions of the averaging volume (RVE, one
parameter is the beam width) and the length of
the final weakest-link chain.
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