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Abstract. The paper describes a method for the identification of selected mechanical fracture param-
eters of fine-grained brittle matrix composites, and its software implementation. The artificial neural
network-based inverse analysis method can be employed to obtain parameters from experimental data
acquired during three-point bending tests on notched prism specimens. This capability is utilized and
extended in order to conduct parameter identification on fine-grained brittle matrix composites. Due
to the potentially wide range of composite mixtures and hence the wide range of experimental re-
sponses of individual specimens, an ensemble of artificial neural networks was created. It allows the
entire range of variants to be covered, and provides resulting parameter values with sufficient preci-
sion. Such a system is also easy to expand if a composite with properties outside the current range
is tested. The proposed identification system has been tested and employed for the determination of
parameters quantifying material resistance against crack initiation and propagation, as well as for the
comparison of newly developed composites based on alkali-activated matrix.

1 INTRODUCTION

A great deal of attention has been devoted
to the development of inverse methods to deter-
mine parameters driving the quasi-brittle frac-
ture behavior of concrete [1]– [3]. The knowl-
edge of mechanical fracture parameters is fun-
damental not only for nonlinear computational
modeling of structures made of quasi-brittle
materials, but also for the evaluation of newly
developed materials. In many cases, attention is
focused on improving the properties associated
with resistance to crack formation and propaga-
tion, rather than on the maximum strength of the
material. One possibility is to obtain mechani-
cal fracture parameters indirectly – based on a

combination of fracture tests and inverse analy-
sis [4]. In this paper a methodology of acquir-
ing mechanical fracture parameters of standard
concrete using experimental data from three-
point bending test and artificial neural network-
based (ANN) inverse analysis method is uti-
lized and extended towards parameter identifi-
cation of fine-grained brittle matrix composites.

The method employed for parameter iden-
tification, which combines nonlinear simula-
tions with the training of an artificial neural
network, is relatively time-consuming, of high
complexity, and requires some knowledge of
soft computing methods [4]. Therefore, the
whole procedure has been implemented in the
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FraMePID-3PB software tool [5] for standard
coarse-grained concrete, whose fracture prop-
erties are typically evaluated from the response
of a notched prismatic specimen with the nom-
inal dimensions 100× 100× 400 mm (Figure 1
left), tested in the three-point bending configu-
ration.

The existing identification system has now
been expanded to allow the identification of pa-
rameters from smaller test specimens with the
nominal dimensions 40× 40× 160 mm (Fig-
ure 1 right), which are typically used for mor-
tars and other fine-grained brittle matrix com-
posites. The aim was to create a robust and ex-
tensible identification system that would be ap-
plicable to a wide range of materials tested in
this configuration. That is why an ensemble of
neural networks was implemented into the sys-
tem, in which the activation of a particular ANN
is controlled by the response of the studied ma-
terial.

2 MATERIAL PARAMETER DETERMI-
NATION

2.1 Fracture tests
Mechanical fracture parameter values are

determined using the results of fracture tests
in suitable configurations (three-point bending,
wedge splitting, etc.). In our case, due to
the relative simplicity and availability of the
testing equipment, three-point bending (3PB)
tests were conducted on prism specimens with
a central notch. The specimens used for fine-
grained composites are typically of the above-
mentioned nominal size 40× 40× 160 mm.
The loading span is 120 mm. In the center of
the prism a notch is cut to a depth of about 1/3
of the specimen depth using a diamond blade
saw.

The testing machine has to be stiff enough
compared to the tested specimen’s stiffness in
order to perform a stable test. This is performed
with an approximately constant controlled dis-
placement rate, which is chosen so that the max-
imum load is reached within a few minutes after
the start of the test, and which is slow enough
to record the post-peak behavior. In the case
of the fine-grained composites described in the
application section 3, the constant increment of
displacement was set to 0.02 mm/min. The de-
flection of the center of the prism and the cor-
responding load are recorded until the prism
is completely separated into two halves. The
outcome of each test is a force–deflection di-
agram (F–d diagram), which is subsequently
used for mechanical fracture parameter deter-
mination. An example of a 3PB fracture test
configuration is shown in Figure 2.

2.2 ANN-based inverse analysis
An artificial intelligence-based inverse pro-

cedure developed by Novák and Lehký [4]
transforms fracture test response data into
the desired mechanical fracture parameters:
R→P. This approach is based on match-
ing laboratory measurements with the results
gained by reproducing the same test numeri-
cally. The ANN is used here as a surrogate
model of an unknown inverse function between
input mechanical fracture parameters and corre-
sponding response parameters:
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Figure 1: Typical specimen size for coarse-grained 
composites (left) and fine-grained composites (right) 
used in a three point bending fracture test.

Figure 2: Fracture test configuration.
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P = f−1
ANN(R). (1)

Conveniently, the ATENA finite element
method (FEM) program (Červenka et al. [6])
was employed for the numerical simulation of
the fracture test. The 3D Non Linear Cementi-
tious 2 material model was selected to govern
the gradual evolution of localized damage. The
tensile behavior is governed by the Rankine-
type criterion with exponential softening ac-
cording to Hordijk [7], while the Menétrey–
Willam yield surface with hardening and soft-
ening phases is used [8] for the behavior in
compression. The fracture model employs the
orthotropic smeared crack formulation and the
rotational crack model with the mesh-adjusted
softening modulus both in tension and compres-
sion. The analysis is performed under plane
stress conditions.

The cornerstone of the inverse method is the
ANN which transfers the input data – a re-
sponse in the form of an F–d diagram obtained
from the fracture test – to the desired mate-
rial parameters. The following three funda-
mental parameters of concrete are subject to
identification: modulus of elasticity Ec,ID, ten-
sile strength ft,ID, and specific fracture energy
GF,ID. Other parameters of the material model,
e.g. compressive strength, were omitted from
identification based on sensitivity analysis.

The set for training the ANN is prepared nu-
merically via the utilization of an FEM model
(Figure 3) which simulates a three-point bend-
ing test with random realizations of material pa-
rameters. These are generated with the help of
the stratified sampling method and by perform-
ing an inverse transformation of the distribution
function in order to reflect the probability distri-
bution of the parameter. Rectangular distribu-
tion was used for the modulus of elasticity and
tensile strength, while descending trapezoidal
distribution (Figure 4) was selected for specific
fracture energy in order to generate more sam-
ples with lower values. This improves the accu-
racy of inverse analysis for composite mixtures
with lower fracture energy values. Its probabil-
ity density and distribution functions are:

fX(x) =
3b− a− 2x

2(b− a)2
, (2)

FX(x) =
(3b− a)(x− a)− x2 + a2

2(b− a)2
, (3)

both for a ≤ x ≤ b where a and b are the lower
and upper limits of the fracture energy, respec-
tively, see Figure 4.

The random responses from the computa-
tional model and the corresponding random re-
alizations of parameters serve as input–output
elements for the ANN training set. After train-
ing, the ANN is ready to solve the main task,
which is to provide the best material param-
eters in order for the numerical simulation to
achieve the best agreement with the experiment.
This is performed by simulating a network us-
ing the previously measured responses as an in-
put. This results in a set of identified material
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Figure 3: FEM model of the three-point bending test 
adopted for numerical simulations, including damage 
distribution at peak load.

        
      

 

        
      

 

Figure 4: Generating random samples of the specific 
fracure energy, which has descending trapezoidal 
probability distribution.
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parameters. The last step is result verification –
the calculation of the computational model us-
ing the identified parameters. Comparison with
the experiment will show the extent to which
the inverse analysis was successful.

2.3 A neural network ensemble
Due to the potentially wide range of fine-

grained brittle matrix composite mixtures and
hence the wide range of experimental responses
of individual specimens, the decision was made
to create an ensemble of artificial neural net-
works that would cover the entire range of
variants and provide resulting parameter values
with sufficient precision.

A three-dimensional space defined by three
mechanical fracture parameters – modulus of
elasticity, tensile strength, and specific fracture
energy – is divided into several subspaces, see
Figure 5. Every subspace contains a single ro-
bust ANN trained for a limited range of parame-
ters. Such a modular system is easy to expand if
a composite with properties outside the current
range is tested. Figure 6 depicts an example of
an identification system with activated ANNs,
shown here in a two-dimensional view for clar-
ity.

The ANNs in the individual subspaces are
of the feed-forward multi-layered type and have
the following structure: 3 inputs, 1 hidden layer
having 6 or 7 neurons with a nonlinear trans-

fer function (hyperbolic tangent), and 1 output
layer having 3 neurons with a linear transfer
function, see Figure 7. Each of the output neu-
rons correspond to one of the identified material
parameters, and each of the inputs corresponds
to one parameter extracted from an F–d dia-
gram. The training set samples were generated
using 50 simulations.

A suitable subspace for the analyzed spec-
imen is automatically selected and the corre-
sponding ANN is activated based on an initial
analysis of the experimental response data. The
set of mechanical fracture parameters is calcu-
lated by simulating the ANN with obtained re-
sponse parameters.

Sometimes, a specimen has material param-
eters which are situated close to the boundaries
of a subspace and thus may belong to several
overlapping subspaces. In this case, the final
set of parameters is obtained via the suitable

4

Figure 5: Neural network ensemble-based identifica-
tion system with examples of active subspaces.

     
      

Figure 6: Neural network ensemble-based identifica- 
tion system with examples of activated ANNs displayed 
in a two-dimensional view.

Figure 7: Diagram of the utilized feed-forward mul-
tilayer network.
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combination of results obtained from all the ac-
tivated ANNs. It can be calculated as a sim-
ple or weighted average. The second method
takes into account the fact that the accuracy of
an ANN decreases with the distance from the
center of its subspace. Figure 8 depicts an ex-
ample involving two overlapping subspaces: on
this occasion it is for the simplified case with
a single parameter p.

The final weighted value of parameter p is
then calculated as:

p =
n∑

i=1

wipi (4)

with n = 2k overlapping subspaces for k pa-
rameters; pi is the value of parameter obtained
from an ANN for the ith subspace (see pl and
pu in Figure 8). The weighting coefficient wi

of the ith subspace is dependent on the relative
distance λi of parameter pi from its mean point.
For the lower subspace l (see Fig. 8):

λi =
pl,max − pi
pl,max − pl,m

, (5)

For the upper subspace u:

λi =
pi − pu,min

pu,m − pu,min
. (6)

where pu,min is the minimum border of the up-
per subspace, pl,max is the maximum border of
the lower subspace, pu,m, and pl,m are the means
of the upper and lower subspace, respectively.
The weighting coefficient is then calculated as:

wi =
λi∑n
i=1 λi

. (7)

3 FINE-GRAINED COMPOSITES WITH
ALKALI-ACTIVATED MATRIX

Recently, developments in the field have
been focused on searching for a material that

could be used to replace ordinary Portland ce-
ment (OPC) in concrete. This is because of
the growing environmental concerns related to
OPC production. Extensive research efforts are
in progress with the aim of developing new
types of binders, environmental-friendly build-
ing materials (including alkali-activated materi-
als (AAMs)) which are a promising alternative
to traditional cement.

The mechanical properties and application
possibilities of AAMs are very similar to those
of materials based on OPC. Their major disad-
vantage is their increased shrinkage during the
hardening period, which eventually results in
volume contraction, microcracking and the de-
terioration of tensile and bending properties [9],
[10]. The addition of different types of fiber
to alkali-activated matrix might lead to a re-
duced cracking tendency and improved tensile
properties for these materials, thus providing
them with equivalent characteristics to OPC-
based materials [11]–[13].

Currently published works on this topic
mainly focus on the determination of the
strength characteristics of AMMs, but unfortu-
nately the information on the fracture proper-
ties of these composites available in the litera-
ture is limited [14]. Therefore, the current re-
search project is aimed at the performance and
evaluation of fracture tests on prism specimens
made of selected fine-grained composites based
on alkali-activated matrix.

The parameters obtained from fracture test
records in the form of F–d diagrams can be
used to quantify structural resistance against
crack initiation and propagation, as well as to
compare studied or developed composites based
on alkali-activated matrix. They can also be
employed for the definition of material mod-
els for the deterministic or stochastic simulation
of the quasi-brittle/ductile response of compos-
ites/members using the Stochastic Finite Ele-
ment Method model with non-linear fracture
mechanics principles. In this case, the recorded
diagrams were used as input data for parameter
identification and mainly for the verification of
the proposed identification system described in
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Figure 8: The calculation of weight factors for spe-
cimens in the overlapping area of two subspaces.
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the previous section.
For this purpose, two groups containing

three sets of specimens were chosen. The first
group of specimens were made with alkali-
activated fly ash, while the second group of
specimens were made with a mix of fly ash
and slag as a binder. The first set in each
group was a reference set, and these two sets
were designated as FA and FAS, respectively.
The remaining four sets contained different vol-
ume percentages of hemp fibers (0.5 and 1.0 %),
designated as FA 0.5, FA 1.0 and FAS 0.5,
FAS 1.0, respectively. The hemp fibers were
used as a sustainable alternative to the steel and
synthetic fibers which are employed to reduce
the cracking tendency in alkali-activated fine-
grained composites.

In the first group, i.e. power plant fly ash, the
sets of specimens were produced from sodium
silicate solution (used as an alkali activator),
river sand with a maximum grain size of 8 mm,
and water and hemp fibers with a length of
10 mm. In the second group, 50 % by weight of
the fly ash was substituted by blast granulated
furnace slag. Three independent measurements
were carried out for each composite mixture.
More details about mortar mix design, speci-
men production and curing conditions can be
found in [15].

The variable composition of the mortar mix-
tures and, in particular, the presence of hemp
fibers led to a relatively wide range of responses
from the tested specimens, as was confirmed
by the recorded F–d diagrams. A total of
six ANNs were activated in order to identify
the mechanical fracture parameters of eighteen
specimens. The set of activated ANNs is de-
picted in Figure 5.

The mean values (obtained from 3 indepen-
dent measurements) and coefficient of varia-
tion (CoV) of selected mechanical fracture pa-
rameters of the FA and FAS specimen sets ob-
tained from the F–d diagrams, i.e. statistics for
the modulus of elasticity Ec,ID, fracture energy
GF,ID and tensile strength ft,ID obtained from
identification using a neural network ensemble,
are summarized in Table 1.

Parameter FA FA 0.5 FA 1.0
Ec,ID (GPa) 19.6 18.5 14.1

(6.5) (5.6) (6.9)
GF,ID (J/m2) 54.8 89.0 244.4

(22.7) (22.9) (9.8)
ft,ID (MPa) 4.7 3.7 2.1

(4.1) (15.1) (12.2)
FAS FAS 0.5 FAS 1.0

Ec,ID (GPa) 23.8 24.1 20.8
(2.4) (3.0) (5.0)

GF,ID (J/m2) 50.2 125.8 120.3
(9.6) (43.1) (13.7)

ft,ID (MPa) 2.6 2.3 2.7
(7.5) (12.4) (8.9)

The identified parameters were verified. The
obtained material parameters were used in the
computational model and numerical FEM anal-
ysis was carried out. The resulting numerical
F–d diagrams are compared with the experi-
mental diagrams for both the FA (Figure 9) and
the FAS (Figure 10) specimen sets.

4 CONCLUSIONS
For the verification of the proposed identifi-

cation system, two groups of specimens made
from fine-grained alkali-activated composites
were chosen. The resulting numerical F–d di-
agrams obtained by FEM analysis with mate-
rial inputs based on identified parameters were
compared with diagrams acquired from exper-
iments conducted on both FA and FAS speci-
men sets. Good agreement was achieved be-
tween the numerically and experimentally ob-
tained F–d diagrams.

The addition of hemp fibers to alkali-
activated matrix should lead to a reduction
in the cracking tendency of these materials
and improve their tensile properties. For both
groups of specimens, the addition of hemp
fibers caused a decrease in modulus of elastic-
ity, especially in the case of a higher dosage of
fibers. In the case of the FA group of specimens,
a significant gradual decrease in tensile strength
was observed with the addition of fibers. In
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chanical fracture parameters of FA and FAS composites.
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the case of FAS, the tensile strength slightly
decreased with the addition of 0.5 % of hemp
fibers, and for a higher amount of fibers it was
similar to that of the reference composite.

In contrast, the addition of hemp fibers had
a positive effect on the post-peak behavior of
both groups of specimens. The fracture energy
increased with the addition of hemp fibers to
the alkali-activated matrix. In the case of the
FA group of specimens, the fracture energy in-
creased more than four times with addition of
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Figure 9: Selected F–d diagrams of FA composite: 
experiment vs. numerical simulation.

Figure 10: Selected F–d diagrams of FAS composite: 
experiment vs. numerical simulation.
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1.0 % of hemp fibers. In the case of FAS, the
fracture energy increased more than two times
regardless of the amount of hemp fibers.

Along with parameter identification using
the ANN-based inverse method, it is also con-
venient to perform the direct evaluation of
mechanical fracture parameters from test re-
sponses using, e.g. the effective crack length
method [16] and the work of fracture method
[17]. These provide more complex information
regarding the fracture behavior of newly devel-
oped composites. Results obtained for the FA
group of specimens with these methods can be
found in [15]. The trend of the change in the
modulus of elasticity and specific fracture en-
ergy with the addition of hemp fibers is in good
agreement with the values obtained by identifi-
cation presented in this paper.

The ability of the proposed neural network
ensemble-based identification system to iden-
tify mechanical fracture parameters of fine-
grained brittle matrix composites with variable
response while maintaining sufficient accuracy
has been confirmed. The collaboration of multi-
ple neural networks for a specimen which occu-
pies a remote region close to the boundaries of
multiple subspaces results in more accurate pa-
rameters compared to the parameters provided
by a single ANN. An important advantage of
the system is that it is easy to expand if a com-
posite with properties outside the current range
is tested.
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[5] Lehký, D., Keršner, Z., and Novák, D.
2014. FraMePID-3PB Software for Mate-
rial Parameters Identification Using Frac-
ture Test and Inverse Analysis. Advances
in Engineering Software 72:147–154.
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