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Abstract. The object of this work is to provide a more general formulation of the cohesive size
effect curve to include structural configurations with blunt and sharp notches. An extensive cam-
paign of accurate numerical simulations, based on the cohesive crack model, is performed to compute
the Generalized Cohesive Size Effect Curves (GCSEC) for typical test configurations featuring both
sharp and blunt notches. The results are analyzed with reference to the classical Bažant’s Size Ef-
fect Law (SEL) to investigate the relationship between GCSEC and SEL. This analysis shows that as
specimen size tends to infinity, the SEL represents the asymptote of the GCSEC in the case of sharp
notches, and that the SEL parameter known as the effective fracture process zone length is a material
property, which can be expressed as a function of the Cohesive Crack Law (CCL) parameters. For
blunt notches, however, the nominal strength of infinite size samples tends to a horizontal asymptote
corresponding to the elastic limit. It is shown that the two results are not in contradiction because the
effective fracture process zone length tends to zero as the radius of curvature tends to zero.

1 INTRODUCTION
The size effect is a typically phenomenon

displaced by quasi-brittle materials, which
present the structural strength, σN , depending
on the structural size D. The structural strength
is defined as a normalized measure of the load
carrying capacity (peak load) respect to the
structural size, see [4]. Let us consider only
structures with positive geometries, i.e. with di-
mensionless energy release rate that increases
as the normalized crack length increases. Us-
ing the cohesive crack model, the size effect for
mode I fracture can be expressed using the fol-
lowing equation [3, 4, 7]:(

f ′t
σN

)2

= Φ(D/lch) (1)

where lch = EGF/f
′
t
2 is Hillerborg’s charac-

teristic length [2], f ′t = tensile strength, E =
Young’s modulus, and GF = fracture energy.
The size effect relationship represented symbol-
ically by Eq. 1 is refereed as Cohesive Size Ef-
fect Curve (CSEC) and some authors [1,3] pro-
posed analytical expressions of the function Φ
by fitting the results of numerical simulations
of cohesive crack propagation in geometrically
similar samples of increasing size considering
only the case of sharp notches.

In [1] considering five different structural
configurations of sharp-notched specimens,
they verified that (1) for small sizes the CSEC
tends to the plastic limit; (2) the CSEC curves
feature a straight line asymptotes which is inde-
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pendent of structural geometry, boundary con-
ditions, and loading configurations when nor-
malized by the Linear Elastic Fracture Mechan-
ics (LEFM) dimensionless energy release pa-
rameters, g0 and g′0 [4] for each particular case.
They showed also that such asymptote coin-
cides with Bažant’s Size Effect Law (SEL) [5],
which can be expressed as:

1

g′0

(
f ′t
σN

)2

=
g0D

g′0lch
+
cF
lch

(2)

where cF is the so called Effective Fracture Pro-
cess Zone Length (EFPZL)and for cF = 0 the
SEL coincides with the size effect provided by
LEFM. In [1] it was also shown that (1) the
cF/lch ratio is independent of geometrical and
loading configurations and it is equal to 0.44
for a linear CCL demonstrating that the EFPZL
is a material property as it is assumed in typ-
ical SEL derivations; (2) the Fracture Process
Zone (FPZ) length, i.e. the length of the liga-
ment portion with cohesive stresses, and notch
tip cohesive stress converge for increasing size
to the constant values of 0.71lch (for linear soft-
ening) and zero, respectively, regardless of the
structural configuration.

The objective of this study, which is pre-
sented in more details in [8], is to provide a
more general formulation of the cohesive size
effect curve to include structural configurations
with blunt notches. Such formulation, entitled
Generalized Cohesive Size Effect Curve (GC-
SEC) is derived by fitting accurate numerical
simulations of size effect.

2 NUMERICAL SIMULATIONS WITH
COHESIVE CRACK LAW

Two different structural configurations are
considered: the direct tension on center crack
panel (CCP) and the three-point bending (TPB)
with a span/depth ratio S/D = 3. The struc-
tural strength of these configurations are σN =
Pu/Dt for CCP and σN = 1.5(S/D)Pu/Dt, for
TPB, where Pu = peak load, D = panel depth,
t = panel thickness, and S = beam span [4].

The numerical simulations were performed
by using standard Finite Element Method

(FEM) techniques. The bulk of the discretiza-
tion (Fig. 1b) was modeled with eight-node,
elastic, iso-parametric elements [9], and the
crack line was modeled with cohesive interface
elements [10] governed by a linear CCL.
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Figure 1: Structural configuration: (a) Typical semi-
elliptical notch geometries used in the simulations. (b)
Example of the FE mesh of the simulated specimens in-
cluding zoom-in of the notch tip to show the mesh refine-
ment required to capture correctly the stress concentra-
tion.

Numerical problems can arise when a stress
singularity exists, for example, at the tip of a
sharp notch. However, different situation arises
when the notch is not perfectly sharp and fea-
tures a small curvature radius. In this case, the
stress is not infinite anymore, the stress singu-
larity disappears and a finite stress concentra-
tion takes place. A stress concentration gives
similar numerical challenges as stress singular-
ities but the convergence is guaranteed provided
that the mesh is sufficiently refined. The level of
refinement depends on the radius of curvature of
the notch: the smaller it is, the more refined the
mesh must be.

Theoretically, to overcome the problems in-
herent in cohesive crack simulations with sharp
notches one could simulate the peak load be-
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havior as the limit of elliptical notches as the
elliptical aspect ratio a/b (ratio of the longer-
to-shorter dimensions), tends to infinity (Fig.
1a). While theoretically correct, this approach
incurs also in numerical difficulties for high
values a/b. Numerically, the best numerical
response in presence of sharp notches can be
obtained by modeling notches of small finite
width, b, and a semi-circular tip (Fig. 1a, bot-
tom right). The notch width, b, has to be kept
constant and not to be scaled with specimen
size. Although this violates the geometrical
similarity of the specimens, it was shown [1]
to provide an excellent approximation of sharp
notch cohesive behavior if b/lch � 1.

To examine the change in size effect be-
havior with the presence of geometrical similar
specimens, structural geometries with elliptic
notches have been considered. The notch geom-
etry is characterized by an semi-elliptical curve
with the two semi-axis which represent the the
half-notch opening, b, and the notch depth, a,
see Fig. 1a. The perfect geometrical similar-
ity is obtained by considering the structural re-
sponse of geometries, in which the notch open-
ing, b, of the elliptical notch is also scaled with
the size. In particular, for the two different con-
sidered geometries constant and different value
of the ratio a/b were chosen (see Fig. 1a). In
this case the notch has generally a blunt shape
and the sharp notch is only obtained has limit
case when the notch opening tends to zero.

For the reasons discussed above the resolu-
tion of finite element meshes utilized to sim-
ulate the crack propagation with the cohesive
crack model must be very fine especially in the
region close to the notch tip as shown in Fig.
1b. In all the simulations, the size of the in-
terface elements ahead of the notch tip and for
the entire length of the Fracture Process Zone
(FPZ), was not scaled with the specimen size
and it was kept within the relatively small range
of 0.5-1.0 mm (Fig. 1b).
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Figure 2: CCP Configuration: (a) size effect curves for
elliptically notched geometries, (b) slope of size effect
curves versus normalized width of elliptical notch.

The peak load was determined for sixteen
sizes from D = 5 mm, doubling 15 times up
to D = 163, 840 mm for different aspect ra-
tio. In all the geometries the ratio between the
notch depth a, and the panel depth D, was kept
constant: α = a/D = 0.125. The numerical
analyses were performed with a linear CCL and
the following material properties: E = 24, 000
N/mm2, GF = 0.05 N/mm, f ′t = 2.8 N/mm2,
corresponding to lch = 153 mm. It is worth
observing that the size effect curve does not de-

3



Giovanni Di Luzio and Gianluca Cusatis

pend on the specific material properties used in
the calculations.

D=lch

0.01 0.1 1 10 102 103 104

<
N
=
f

0 t

0.01

0.025

0.05

0.1

0.25

0.5

1.0
1.5

2.75

a=b=0
a=b=0.5
a=b=1
a=b=5
a=b=8
a=b=15
a=b=SN

a)
Plastic limit

Elastic limits

LEFM limit

2b=lch

0 10 20

Sl
op

e 
of

 c
ur

ve
 s

eg
m

en
ts

-0.5

-0.4

-0.3

-0.2

-0.1

0

a=b=0.5
a=b=1
a=b=5
a=b=8
a=b=15

b)

Figure 3: TPB Configuration: (a) size effect curves for
elliptically notched geometries, (b) slope of size effect
curves versus normalized width of elliptical notch.

The calculated size effect curves are shown
in a log-log plot in Fig. 2a and Fig. 3a for
the CCP and TPB configurations, respectively.
In addition to the size effect curves, the plas-
tic limit, the LEFM limit, and the elastic lim-
its for each notch aspect ratio, are shown in the
plots. The elastic limit is defined as a stress state
where the normal stress at the tip of the notch

first reaches the tensile strength, f ′t , and it cor-
responds to the cohesive crack initiation. The
nominal stress associated with the elastic limit
can be calculated using the stress concentration
factors at the notch tip: σtip

xx = kσN . Since at
the elastic limit σtip

xx = f ′t , the elastic nominal
stress is σNe = f ′t/k and its normalized value is
σNe/f

′
t = 1/k.

For the tip of an elliptical hole in a CCP ge-
ometry, the stress concentration factor k in a
finite-width plate and for 0.5 ≤ a/b ≤ 10.0 can
be calculated approximately with the following
equations [11]:

C1 = +1.00 + 2.00(a/b); (3)

C2 = −0.351 + 0.21
√
a/b− 2.483(a/b); (4)

C3 = +3.621− 5.183
√
a/b+ 4.494(a/b); (5)

C4 = −2.27 + 5.204
√
a/b− 4.011(a/b). (6)

For the a/b equal to 0.5, 1.0, 2.0, 5.0, 8.0, and
15 k equals 2.094, 3.071, 5.038, 10.976, 16.933
and 30.862, respectively, and the corresponding
normalized elastic limit, 1/k, is 0.4775, 0.3257,
0.1985, 0.0911, 0.0591 and 0.0324. For the un-
notched case, a/b = 0, k = 1. It is worth
reminding that in the CCP geometry with in-
finite plate the stress concentration factor k is
k = 1.0 + 2.0(a/b). These analytical values
were found to match very well the ones com-
puted numerically.

For the TPB configuration the normalized
nominal stress at the elastic limit were ob-
tained numerically as 0.5568, 0.3736, 0.0964,
and 0.0625 for notch aspect ratios of 0.5, 1.0,
5.0, and 8.0, respectively. The modulus of rup-
ture, for geometry with aspect ratio equals to
0, is expected be to be larger than the ten-
sile strength because the stress distribution [13].
According to [12] the peak stress is given by
σela
tip = σN/β with β = (1 − 0.1773D/S)−1.

For the geometry considered in this study one
has β = [1 − 0.1773(1 − α)/3]−1 = 1.054.
At the elastic limit, σela

tip = f ′t , one obtains
σNe = β(1−α)2f ′t = 0.807f ′t . As expected, the
elastic limits are size-independent (they only
depend on α and a/b) and they are plotted as
horizontal straight lines in Fig. 2a and 3a, for
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the TPB and CCP configurations, respectively.
Similar results were obtained in [6] using a dif-
ferent approach.

The same plots (2a and 3a) show the plas-
tic limits as horizontal lines. Since the plastic
limit is independent on the notch aspect ratio
one single horizontal straight line is common
to all notch aspect ratios. The plastic limit is
defined as a stress state where the entire cross-
section ahead of, and collinear with, the original
notch is subject to a uniform stress state equal to
the tensile strength, f ′t . For the CCP configura-
tion, the nominal stress associated with the plas-
tic limit can be calculated by considering the
free-body diagram of one half of the panel with
a uniform distribution of stress along the central
line and by equating the forces acting at each
end: σN tD = f ′t(1−α)tD. Substituting σNp for
σN and rearranging leads to σNp = f ′t(1 − α),
and so the normalized nominal stress associated
with the plastic limit is (1 − α) = 0.875. The
plastic limit behavior for the TPB configuration
is less intuitive to calculate [4, 14]. In the limit
of D → 0 the central cross section with the
cohesive crack law consists of two parts: one
of finite depth under tension with a perfectly
plastic uniform distribution of stress and a con-
centrated force in the compressed zone which
shrinks to a point. For TPB specimen, at the
zero size limit, one has σ = f ′t = uniform distri-
bution through the entire ligament except a con-
centrated compression force Fc = tD(1− α)f ′t
acting on the compression side. In this situa-
tion, the bending moment in the notched cross
section is M = 0.5tD2(1 − α)2f ′t , the applied
load is Pmax = 4M/S, and the plastic limit re-
sults in σNu = 3(1 − α)2f ′t . Consequently, the
normalized nominal stress at the plastic limit is
3(1− α)2 = 2.2969.

Figs. 2a and 3a report also the LEFM size ef-
fect limit as a straight line with a slope of −1/2
in the log-log scale.

In Fig. 2a, all of the calculated size effect
curves for the CCP configuration tend to the
plastic limit for D → 0. As the sample size in-
creases, they deviate from the plastic limit with
slopes that become increasingly negative. In ad-

dition, each curve has an inflection point where
the slope begins to become less negative and
tends back towards zero. The inflection points
of the Fig. 2a curves correspond to the min-
imum slope values in the Fig. 2b plots. Up
to their individual inflection points, all curves
in Fig. 2a are essentially coincident, and this
“common” curve tends, for large enough a/b
values, to the LEFM limit. Past their inflec-
tion points, each curve departs from this com-
mon curve, and as D → ∞, the size effect be-
havior tends to the corresponding elastic limit.
The slopes of the Fig. 2a curve segments were
plotted as a function of the normalized ellipti-
cal notch width, 2b/lch, and this is shown in
Fig. 2b. In this figure, one can see that the
minimum value of slope, which corresponds to
the inflection point in the associated size effect
curve, occurs at 2b/lch ≈ 2. Based on these ob-
servations it is clear that the size effect behavior
for arbitrary a/b begins an asymptotic approach
towards the LEFM limit, on a size effect path
common to all a/b. However, as the elliptical
notch width, 2b, reaches an approximate value
of 2lch, the size effect behavior inflects away
from the LEFM limit. As a/b tends to infinity
(i.e. a sharp-notched geometry), b ≈ 0 for all
D, and so the size effect behavior never deflects
from the common curve. This is also consistent
with the fact that for a sharp notch the stress is
singular and the elastic limit is zero, making the
horizontal asymptote in the log-log plot to be
located at∞.

Similarly to the CCP geometry also the TBP
geometry displays the same behavior for blunt
notches, i.e. for a/b =constant. Fig. 3a shows
all of the calculated size effect curves which
tend to the plastic limit for D → 0 and to the
corresponding elastic limit for D → ∞. Only
the size effect curve for sharp-notched spec-
imens approaches asymptotically towards the
LEFM limit, see Figs. 3b. As it can be seen in
Fig. 2b the minimum value of slope, which cor-
responds to the inflection point in the associated
size effect curve, occurs again at 2b/lch ≈ 2.

The specimens with blunt notch with dif-
ferent value of a/b have a completely differ-
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ent asymptotic behavior for D → ∞. This is
also confirmed by the length of the FPZ and
the stress at the notch tip at peak load. As a
matter of fact, the size of the FPZ at peak load
shrinks and, for very large sizes, becomes al-
most a point. In addition, the stress at the notch
tip tends to the tensile strength, f ′t . As a con-
sequence, for specimens with blunt notch the
size of the FPZ at peak load is no more a ma-
terial property not even for large sizes in con-
trast to the case for sharp notches. According to
the literature, the size of the FPZ at peak load,
for very large sizes, should be a material prop-
erty [4]. However, the obtained results seem to
contradict that principle: the curves for different
values of a/b appear to be approaching different
asymptotes. On the other hand, the specimens
with a sharp notch clearly have an asymptote of
the size of the FPZ at peak load for D → ∞
and the notch tip stress is closest to the fully-
softened condition.

3 GCSEC FOR A LINEAR COHESIVE
CRACK LAW

An approximated analytical CSEC formula
for TPB geometries with sharp notch was pro-
posed in [1], inspired by the pioneering work
of Planas [4], by interpolation of numerical re-
sults obtained with a linear cohesive law. That
analytical expression was designed to match
both the small-size (plastic limit) and large-size
(asymptotic) behaviors and has the following
expression

f ′2t
g′0σ

2
Nu

=
g0D

g′0lch
+

(
1 + 11

√
g0D

g′0lch

)
(
β0 + 25

√
g0D

g′0lch

)−1
(7)

where β0 = 9(1−α)4g′0 and the associated SEL
is given in the Eq. 2.

We here propose a generalization of the ex-
pression in Eq. 7 to include the size effect of
structures with both sharp and blunt notches.
The new analytical formula, entitled General-
ized Cohesive Size Effect Curve (GCSEC) is

obtained by the interpolation of numerical re-
sults obtained with the adoption of a linear co-
hesive law. Keeping in mind, as showed in the
previous section, that for large size (D → ∞)
the GCSEC formula must tends to the Bažant’s
SEL for sharp notches and to a horizontal
asymptote, the elastic limit, for blunt notches.
In addition, this analytical expression is formu-
lated in a such way to match the plastic limit for
small sizes.

The GCSEC can be expressed by the follow-
ing formula

σNu = f ′t

g0 D
lch

+ g′0

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n
−1/2

g0β2
e

D

lch
+

1(
1 + g0β2

e
D
lch

)m
1/2

(8)

Alternatively, the GCSEC can be expressed
similarly to CSEC in Eq. 7 as

f ′2t
g′0σ

2
Nu

=

 g0D

g′0lch
+

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n


g0β2
e

D

lch
+

1(
1 + g0β2

e
D
lch

)m
−1 (9)

In both Eq. 8 and Eq. 9, βef ′t and βpf
′
t are

the elastic limit and the plastic limit nominal
stresses, respectively; the parameters n and m
depend on the geometry.

The GCSEC function is plotted in Fig. 4 for
CCP geometry and in Fig. 5 for TPB geometry.
The best fitting of the numerical data sets was
obtained with n = 0.45 m = 0.7 and n = 2,
m = 0.9 for CCP and TPB configuration, re-
spectively. Fig. 4a for CCP geometry and in
Fig. 5a for TPB geometry show clearly that the
size effect curves merge in a single curve for
different notch shape ratios a/b and for D/lch
smaller than 1. In Fig. 4b and in Fig. 5b the
GCSEC and numerical data are plotted in the
parametric space given by X = g0D/(g

′
0lch)

and Y = f ′2t /(g
′
0σ

2
N) showing again a good fit.
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In the small size range (Fig. 4 for CCP geome-
try and in Fig. 5 for TPB geometry), the behav-
ior is shown to be different for the two structural
configurations. However, the GCSEC formula
is capable of capturing the two different asymp-
totic behavior and value, which differ from the
Bažant’s SEL.
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Figure 4: CCP Configuration: a) size effect curves for
elliptically notched geometries; b) slope of size effect
curves versus normalized size; c) slope of size effect
curves versus normalized width of elliptical notch; d) size
effect curve for constant-width notch geometry.

In the case of sharp notch, i.e. a/b → ∞,
the LEFM gives an elastic limit σNe = 0, and

so βe = 0, therefore the GCSEC function in Eq.
8 has the following expression

σNu = f ′t

(
g0
D

lch
+

g′0

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n
)−1/2

(10)

For D → ∞, the previous expression, Eq.
10, tends to the SEL, Eq. 2. This means
that the GCSEC formula for sharp notches has
a large-size (asymptotic) behavior coinciding
with Bažant’s SEL. At the same time, for D →
0, the nominal strength, σN , in Eq. 10, tends to
the plastic limit, i.e. f ′tβp.

In the case of blunt notch, for increasing size
D and arbitrary a/b, σN begins an asymptotic
approach towards the LEFM limit with a com-
mon path common to all a/b. However, as the
elliptical notch width, b, reaches an approxi-
mate value of lch, the size effect behavior in-
flects away from the LEFM limit with a devia-
tion of the GCSEC formula from the SEL to an
horizontal asymptote (βe 6= 0) which depends
on the actual values of a/b and α. For D →∞
the the asymptotic value of Eq. 8 is

lim
D→∞

σNu = f ′t

(
g0
D

lch
+

11

25
g′0

)−1/2
(
g0β

2
e

D

lch

)1/2

= f ′t
(
β2
e

)1/2
= f ′tβe (11)

We should remark that the normalized energy
release rate, g0, and its derivative, g′0, required
for the blunt notch case are the LEFM refer-
ence values and they are calculated for the sharp
notch case with the same α, as for the GCSEC
plotted in 4 for CCP geometry and in Fig. 5 for
TPB geometry.

The case of failure that occurs at crack ini-
tiation from a smooth surface, i.e. no notch,
is also considered in the GCSEC formula as a
limit case when a/b → 0. This case is taken
into account in the Eq. 8 with the appropriate
value of the elastic limit βe. The asymptotic be-
havior for D → ∞ of the GCSEC is the same
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of Eq. 11. For D → 0, the nominal strength,
σN , in Eq. 8, tends to the plastic limit, i.e. f ′tβp,
like in the case of sharp notch.
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Figure 5: TPB Configuration: a) size effect curves for
elliptically notched geometries; b) slope of size effect
curves versus normalized size; c) slope of size effect
curves versus normalized width of elliptical notch; d) size
effect curve for constant-width notch geometry.

It is worth noting that both the size effect of
type I and II due to the cohesive crack law tends,
for D → 0, to the same value, i.e. same plastic
(or strength) limit. As it can be seen from Figs
4 and 5 for α = 0.125 the size effect behavior
is always the same for D/lch < 1. However,

when α → 0 or a/b → 0 the normalized en-
ergy release rate g0 is equal to zero. As for the
blunt notch, also in this case the normalized en-
ergy release rate, g0, and its derivative, g′0, in
Eq. 8 are obtained for the sharp notch case with
the given α and for a/b → 0. In any case the
GCSEC in Eq. 8 gives the correct asymptotic
behavior also for no notch structure. In fact for
g0 → 0 one gets

σNu = f ′t

(
g0
D

lch
+

1

β2
p

)−1/2
(
g0β

2
e

D

lch
+ 1

)1/2

(12)

which for D → 0 and for D → ∞ gives
σN = f ′tβ

2
p and σN = f ′tβe, respectively, i.e.

the plastic and elastic limit.

4 CONCLUSIONS
The size dependence of structural strength

has been studied using a linear cohesive crack
law and considering the effect of different types
of notch: blunt and sharp. This work signifi-
cantly extends the results of a previous study [1]
because it studies the size effect behavior of the
three-point bending with span/depth ratio equal
to 3 and of the center crack panel with an el-
liptical blunt notch with constant aspect ratio to
preserve geometric similarity.

The following main conclusions can be
drawn

1. For specimens with blunt notches, the co-
hesive size effect curves are characterized
by a continuous transition from the plas-
tic behavior for small sizes to the purely
brittle behavior with failure at crack ini-
tiation for large sizes. Hence, these size
effect curves tend asymptotically to the
elastic limit.

2. For specimens with blunt notches, in a
double logarithmic plot, the cohesive size
effect curves feature a point of inflec-
tion where the curve curvatures transition
from negative to positive. At this inflec-
tion point the curve slope approaches the

8
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LEFM slope of -1/2 for increasing stress
concentration at the notch tip. The point
of inflection occurs when the notch width
is approximately equal to twice the mate-
rial characteristic length, 2lch.

3. In the case of sharp notches, for which
the elastic limit is zero, the elastic asymp-
tote is located, theoretically, at −∞ in a
double logarithmic plot. In this condition
the size effect curve does not have an in-
flection point and it approaches asymptot-
ically the LEFM limit.

4. For sharp notches, the crack stress pro-
files at the peak load for different sizes re-
veal that the FPZ length converges to con-
stant a value of 0.71lch (for linear soften-
ing) and the and notch tip cohesive stress
converges to zero as the structural size in-
creases. For blunt notches, however, the
behavior is completely different. In fact,
at the peak load the length of the FPZ
first increases and then it shrinks for in-
creasing structural size. Asymptotically,
it becomes a mathematical point and the
stress at the notch tip tends to the tensile
strength, f ′t . As a consequence, for spec-
imens with blunt notch and contrarily to
the case of sharp notches, the size of the
FPZ at peak load is not a material prop-
erty.

5. The numerical results on structural
strength can be approximated accurately
with an analytical equation, entitled Gen-
eralized Cohesive Size Effect Curve (GC-
SEC), which is valid for different struc-
tural configurations with both blunt or
sharp notch. The GCSEC is able to de-
scribe both the type I and type II size ef-
fect.

6. The GCSEC depends on the cohesive
crack parameters such as the tensile
strength, f ′t , the fracture energy, Gf ,
and, as a consequence, the characteris-
tic length, lch. The GCSEC takes into

account the effect of different structural
configurations through the LEFM nondi-
mensional energy release rate and its
derivative.
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