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Abstract: Four point bending tests on reinforced concrete (RC) beam specimens were carried 
out and simultaneously released Acoustic Emissions (AE) were recorded in laboratory. This study 
reports on the AE characteristics of RC beams under monotonically increased loading. By using 
load-displacement curves and the AE signal parameters data, the fracture process of RC beams was 
studied. As the occurrence of AE events is random, a probabilistic approach named Gaussian 
Mixture Model (GMM) is implemented for AE data clustering related to tensile cracking and shear 
cracking considering different AE parameters. A supervised learning model named Support Vector 
Machine (SVM) procedure has been used to separate the two AE clusters belonging to tensile and 
shear cracks by constructing hyperplane to overcome the uncertainty. The yielding of testing 
specimen is compared. Influence of shear reinforcement in RC beam and type of loading was also 
considered in this study. The yielding of test specimen is compared for different types of loading 
pattern. The combination of both GMM of AE and SVM procedure to identify the exact place for 
separation of AE clusters are useful procedures for crack classification in concrete structures. 
  
1 INTRODUCTION 

Reinforced concrete (RC) is an 
indispensable material for construction of the 
most of civil engineering structures. In RC 
structures, steel bars are embedded in cement 
concrete so that the two materials act together 
to resist external forces. This combination is 
made to utilize the compressive strength of 
concrete and tensile strength of steel 
simultaneously. Concrete resists compression 
and steel reinforcement resists tensile forces. 
However, RC structures subjected to an 
external force needs monitoring for its 
integrity and damage condition after few years 
of their construction. Also, reliability and 
security of existing infrastructure (residential 

buildings, public buildings, bridges, stadiums, 
tunnels, etc.) has recently received more 
attention. In general, periodic damage 
assessment of RC structures is required. 
Because, destruction of RC structure warns 
human lives and also leads to financial loss. 
Early assessment of material condition against 
large-scale failure helps to manage the 
structures safely and economically. One of the 
methods used for real time nondestructive 
monitoring is Acoustic Emission (AE) testing. 
Acoustic emission arises due to stress waves 
generated by mechanical deformation of 
material and it is the detection and analysis of 
these stress waves at the surface of the 
structure that gives rise to AE [1-4]. Intensity 
of crack depends on modes of cracking (tensile 
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and shear) in concrete structures. Different 
modes of cracking in concrete structures emit 
different AE signatures [6]. At moderate 
loading level tensile cracks occur and at higher 
loading rate shear cracks occur. Using AE 
parameters namely RA (=rise time/peak 
amplitude) and Average Frequency (AF) 
(=counts/duration])   values one can classify 
cracks (tensile and shear cracks) [6]. But  
occurring of cracks is random event thus 
researchers used probabilistic approach based 
on Gaussian mixture modeling to classify 
crack modes and further used Support Vector 
Machine classifier to draw hyper plane 
between the modes of crack [8].  
2 LITERATURE REVIEW 

Earlier, AE testing has been used to 
concrete structures for detecting the crack 
location [1], quantifying the status of damage 
[2-4] and determining the crack classification 
[5-7]. Quantitative evaluation of damage, 
crack location, shape, size, evolution can be 
performed in real time based on AE testing 
[1]. Several researchers proposed various 
methods that are useful to evaluate integrity 
and damage status of RC structures based on 
AE testing.  Numerous studies on the damage 
assessment of RC structures under different 
loading types have been carried out. Aggelis 
used AE testing to study crack classification in 
concrete [5]. 

Engineers and researchers have been using 
stress wave testing methods namely ultrasonic 
pulse velocity (UPV) testing and AE testing 
past several years. But these test methods are 
used independently and separately. Limited 
studies have been reported on the failure mode 
of RC structural members by the combined 
usage with AE testing and ultrasonic pulse 
velocity methods. Farhidzadeh et al. studied 
classification of cracks due to bending of beam 
by 3 point bending test [10]. However, present 
research work is on classification of cracks 
due to uniaxial compression. Using AE 
parameters like RA and AF values we 
classified cracks (tensile and shear cracks). In 
fact, AE events are random in nature thus we 
used probabilistic approach based on Gaussian 

Mixture Modelling (GMM) to classify crack 
modes and further used Support Vector 
Machine (SVM) classifier to draw hyper plane 
between the modes of crack [8-11].  
 
3. Probabilistic Methods 
3.1. Gaussian mixture modelling of AE 
GMM is a probabilistic model that distributes 
a dataset into different clusters from an overall 
population [8]. It allows the using to distribute 
given data in different clusters automatically 
without knowing the source cluster of any 
particular data point. The algorithm used in 
GMM is called Expectation Maximization 
(EM). EM algorithm for GMM is based on 
soft closuring. If the source points are 
unknown for a random set of data points are 
given from different clusters, from Gaussian 
distribution theorem the probability is 

                       (1) 
 
In Eq. (1),  is the mean and  is the 
variance, x is a random data point. Here the 
input data is a 2-D vector i.e.; RA versus AF.  
 

  
                                                            (2) 
 
and the classes are {1, 2} that represent tensile 
and shear mode respectively. There are two 
clusters and the events are independent. The 
final equation comes as 
 

                                                                (3) 
 

Where Σ is the co-variance. Similarly, for a 
mixture of Gaussians also called as “Linear 
super-position of Gaussian’s”  
 

                   (4) 
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  for tensile                             (5) 
  for shear                               (6) 

 
And the maximum likelihood equation can be 
written as  
 

                                                                 (7) 
3.2. Supervised and Unsupervised learning 
 
Unsupervised learning is used to find groups 
of data points with same behavior. Any 
previous data is not required for this learning. 
One can directly classify into groups 
depending on, how closely the data is in 
variables to each other. In supervised learning 
the labels assigned to data are known before 
computation. They are being used in order to 
'learn' the parameters that are really significant 
for those clusters. A supervised learning 
algorithm analyzes the training data and 
produces an inferred function, which can be 
used for mapping new examples.[10] Hence, 
support vector machine (a supervised method) 
with GMM which is unsupervised are useful to 
study crack classification. The schematic 
representation of crack classification in 
concrete using GMM approach is shown in 
Figure 1. 
 
3.3. Support Vector Machine procedure 
 
Support vector machine (SVM) is a supervised 
machine learning algorithm which is used for 
Classification of data. SVM has been used 
successfully in many problems like text (and 
hypertext) categorization, image classification, 
bioinformatics (protein classification, cancer 
classification) and hand-written character 
recognition. Here, in this study, SVM 
procedure is implemented to classify data 
acquired through AE testing while cracks 
propagation in a RC beam. In this algorithm, 
each data point is plotted in 2D space with the 
value of each feature being the value of each 
coordinate. Then classification of data points 

is done by finding the hyper-plane that 
separates the two classes well (as shown in 
Figure 2. The goal of SVM procedure is to 
find the optimal hyper-plane which maximizes 
margin. In this section mathematics involved 
in SVM is presented with brief description of 
concept. Let the equation of hyper-plane be 
WTX=0, where W is the normal vector to the 
hyper-plane and X is the data set. It is required 
to find the biggest margin for optimal hyper-
plane. Let wTx+b = 0 be the equation of hyper-
plane (H0), which is assumed as optimal 
hyper-plane. Now let’s select two other hyper-
planes H1 and H2 with equations wTx+b = δ 
and wTx+b = -δ such that H0 is equidistant 
from H1 and H2. To simplify our calculations 
we can take δ=1. Now, we should make sure 
that no point lies between H1 and H2. for xi having class 1    WTXi+b≥1             (8) 
for xi having class -1   WTXi+b≤1            (9) 
Combining both constraints we can write, 
yi=(wTxi+b)≥ 1                                     (10) 
Let k be a vector in the direction of              
,with magnitude m, the margin value. Then 

    
                          (11) 

 
Let x0 be a point on H2 and z0 be a point on H1 which implies z0=x0+k; 
 
We can write, wTz0+b=1, wTx0+b= -1 
 

 
 

 
  

                                    (16)           
 
Now we know that to maximize the margin we 
have to minimize ||w|| in other words we have 
to minimize   subjected to the 
constraint    . 
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Such problems can be solved using Lagrange 
multipliers [8]. 

,ݓሺܮ ܾ, ሻߙ = 1
2 ܹܹܶ −  ݅ߙ

ܰ
݅=1 ݅ݕ ሺܹܶ݅ݔ + ܾሻ

+  ݅ߙ
ܰ
݅=1  

subjected to                      (17) 
 
For optimum solution minimize L with respect 
to w and b, and maximize L with respect to α. 
 

                             (18) 
 

                                   (19) 
 
KKT conditions  

       (20) 
 
Hence, it is possible to find the optimum hyper 
plane.  Few limitations of SVM algorithm are 
(a) Choice of kernel function and kernel 
parameters and (b) High algorithmic 
complexity and extensive memory 
requirements.  
 
4. Motivation 
 

Generally, the damage state of RC 
structures is estimated on the basis of periodic 
diagnostic results. In fact, periodic testing of 
RC structures is based on visual inspection, 
which allows identifying the large size surface 
defects and deviations. To detect internal 
defects, the most common NDT method for 
periodic testing is ultrasonic pulse velocity 
(UPV) test. But, periodic testing is limited to 
measuring the strength at individual sections 
or locating the cracks using UPV tests and 
other NDT methods. However, periodic testing 
of a RC structure does not allow detecting of 
sudden changes taken place in the state 
between its new state and condition on 
inspection day. AE testing is a promising NDT 
method to monitor such sudden changes in real 

time [1]. Very Small or microcracks cannot 
influence UPV, but AE testing can be used to 
detect and locating these small microcracks.  

 
Previous studies [8] concluded that the GMM 
algorithm was capable to identify the three 
stages of cracking during cyclic load applied 
on a shear wall (i) a dominance of tensile 
cracks at initial stage of loading (ii) a 
transition stage during intermediate loading 
stage (iii) during occurrence of shear cracks, 
sudden rise in AE (iv) at the final loading 
stage shear cracks.  The validity of such 
conclusions is to be studied for effects of 
specimen geometry, specimen ductility, 
loading rate, type of loading or nature of loads, 
sensor layout and type of material [8]. 
 
5. Aim of the study 
 

The present study focuses on failure mode 
due to flexural loads applied on RC structural 
members subjected to (i) monotonic increasing 
load and (ii) incremental cyclic loads.  By 
using the UPV method and AE testing the aim 
is to correlate between the AE parameters 
recorded during fracture process in RC beams 
and UPV variation which characterizes 
different damage state. Besides the AE testing, 
the change in the UPV was compared with the 
damage evolution. A parameter ‘damage 
index’ based on recorded UPV is proposed to 
quantitatively estimate the damage of RC 
beams at different stress levels.  By combined 
application of these two NDT methods, in 
prospect, will allow the engineer to estimate 
the damage status and also failure mode of 
large RC structural elements more efficiently. 
6. Experimental program 
6.1. Materials and Test specimen 

Ordinary portland cement (53 grade), river 
sand, coarse aggregate (20 mm) and water 
were used. The concrete mixture composition 
was 1:1.47:2.37 by weight per cubic metre and 
water/cement ratio (w/c) was 0.5. The 28-days 
compressive strength of the concrete was 28.2 
MPa. The steel reinforcement details are given 
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in Table 1 and the geometrical details of the 
test specimens. Total five RC beams 
(prismatic) with rectangular cross section were 
tested in the laboratory. All RC beams were 
tested under monotonically increasing loading. 
Steel stirrups as shear reinforcement were 
provided in these three test specimens. Two 
RC beams (SS_SF1 and SS-SF2) which does 
not have shear reinforcement were also tested. 
These two RC beams specimens were tested in 
order to compare the AE characteristics during 
tensile failure and shear failure.  

 
6.2. Test setup 
 

The tests were performed using a servo 
controlled machine (materials test system, 
MTS) of 1200 kN capacity. The four-point 
bend tests were controlled by load control of 
0.06 kN/s.  
 
6.2.1. UPV measurement 

 
The UPV measurements were recorded at 

the beginning and end of the test using 
Portable Ultrasonic Non-destructive Digital 
Indicating Test (PUNDIT) instrument. UPV 
was recorded before testing and after testing of 
the specimen. The instruments used to 
measure UPV consists of pulse generator and 
transmitter and receiver. The used transducers 
have frequency of 54 kHz. Because, AE waves 
and transmitted ultrasonic pulses should not 
intersect each other in a RC beam. 

 
6.2.2. AE monitoring system 
 

The AE signal parameters were recorded 
using a eight channel AE monitoring system 
(PAC, NJ, USA) during the failure of the RC 
beams.  For AE signal detection, two resonant 
type differential AE sensors (57 kHz) with 
preamplifier gain of 40 dB were used. The use 
of two AE sensors (R6D) is usual for 
monitoring the AE parameters in laboratory. 
By using the two sensors AE hit rate and other 
AE parameters were recorded in laboratory 
conditions.  Study on AE event locations (or 
source locations) is not attempted. A threshold 
of 40 dB was set to screen out surrounding 

noise. The experimental setup is shown in 
Figure 3. The AE sensors were mounted on the 
test specimen in 2D planar location. 
7. Results and discussion 
The recorded AE signal from a burst type 
emission have number of basic parameters; 
peak amplitude, rise-time, average frequency, 
ring-down count and energy. Most of these are 
complex functions of the frequency response 
of the sensor and structure, damping 
characteristics of the sensor and propagation 
medium, coupling efficiency, sensor 
sensitivity, amplifier gain and threshold 
voltage. In the past, AE systems were only 
able to record these parameters, known as AE 
feature data, and not whole waveforms 
throughout a test, so analysis techniques were 
limited. The waveform parameters however, 
provide a good indication of the intensity or 
severity of any AE source and this information 
can be used to determine whether the structure 
under test is accumulating damage. 
 
For each load interval shown in Table 3, the 
RA and AF were calculated from each AE 
signal detected. By using these parameters, AE 
hits are classified into tensile cracks and shear 
cracks by implementing GMM analysis as 
shown in Figure 4-Figure 5.  And this 
classification was validated using SVM 
method as shown in Figure 6 – Figure 7. 
Tensile cracks exhibited lower RA and higher 
AF than shear cracks. As x-axis represents RA 
the tensile cluster is the left side which means 
its x-axis values (RA values) are less than 
shear cluster which is on right side. It can be 
observed from these plots obtained from 
GMM as shown in Figure 4 - Figure 5, that 
during initial loading stage shear contour is 
less observed but as it approaches failure zone, 
shear contours are dominant. It proves that as 
the specimen is entering into failure stage. In 
case of specimen failed in flexure, the 
transition state occurred in more time than in 
shear failure. The transition zone in case of 
specimen failed in shear is very small, because 
the specimen failed suddenly. The percentage 
of AE recorded at the instant of yielding is 
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more in case of specimen failed in shear than 
in case of specimen failed in flexure. In other 
words, more AE recorded at yielding, in case 
of shear type of failure than tensile type of 
failure. Figure 8a – Figure 8b shows the shear 
failure pattern in test specimen SF2 specimen. 
Figure 8c shows the number of hits recorded in 
the specimen. Figure 8d shows the UPV 
variation in the specimen and the damage 
index. It is intesting to observe that at the 
major crack appeared the UPV decreased and 
damage index increased to maximum. 
8. CONCLUSIONS 

1. The proposed damage index based on the 
recorded UPV reflect the damage of RC 
flexural member.  

2. More AE hits were recorded at cracking 
locations and the same locations UPV 
decreased. Also at the same locations visible 
cracks had appeared on the surface of RC beam 
specimen. 

3. At the initial cracking stage, AF showed an 
increasing trend due to the mode-I cracking in 
RC beams. At the instance of failure, RA 
exhibited sharp mode-II cracking leading to the 
higher RA value.  

4. Shear stirrups had influenced the release of AE. 
At the early stage of loading, the tensile stress 
in steel reinforcement is less, hence the release 
of AE is less.  

Table 1. Geometric details of the tested specimens 

 
Table 2. AE parameters recorded  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Specimen 
Cross 

sectional 
area of steel 

(Ast) mm2 

Peak 
load 
(KN) 

Deflection at  
Midspan (mm) Load at 

first crack 
appeared 

Test 
duration 

(minutes) Type  
of failure At peak 

load 
At  

collapse 
FF_FF1 307.9 85.13 27.03 26.95 --- 36.25 Flexure 
FF_FF2 307.9 84.16 31.84 40.26 --- 24.27 Flexure 
FF_FF3 307.9 79.63 34.26 15.33 22.69 23.34 Flexure 
FF_SF1 307.9 83.77 29.1 26.68 30.89 23.36 Shear 
FF_SF2 307.9 74.81 13.37 13.37 29.7 20.50 Shear 

Specimen 
AE parameters Test 

duration 
(minutes) 

Type  
of failure Hits 

Absolute 
energy 

(aJ) 
 
ring down counts 

(RDC) 
energy 

(Volt-sec) 
Signal 

strength 
(picovolt-sec) 

FF_FF1 174955 1.6E10 2944349 4559069 2.9E10 36.25 Flexure 
FF_FF2 250101 4.0E10 2962658 5603052 3.5E10 24.27 Flexure 
FF_FF3 82179 6.2E10 851407 11794778 7.3E10 23.34 Flexure 
FF_SF1 177493 1.2E10 2097589 3626770 2.3E10 23.36 Shear 
FF_SF2 156358 4.7E10 1850351 5333274 3.4E10 20.50 Shear 
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Table 3. Time intervals considered for GMM algorithm and the AE record during tensile-type 
cracking and shear cracking. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Specimen   Interval 
Hits recorded   Hits (%) 

Tensile 
cracking 

Shear 
cracking Mixed Tensile 

cracking 
Shear 

cracking Mixed  

FF_FF2 
1(0-20 % of Pmax) 12464 833 107 92.9 6.2 0.8 

2(20-40 % of Pmax) 46104 1911 482 95.1 3.9 0.9 
3(40-60 % of Pmax) 43359 7941 3051 79.7 14.6 5.6 
4(60-80 % of Pmax) 49584 7244 2889 83.1 12.1 4.8 

5(80-100 % of Pmax) 46558 14322 4738 70.9 21.8 7.2 

FF_FF3 
1(0-20 % of Pmax) 1302 121 13 90.6 8.4 0.9 

2(20-40 % of Pmax) 14016 940 549 90.4 6.1 3.5 
3(40-60 % of Pmax) 7548 3746 1791 57.6 28.6 13.6 
4(60-80 % of Pmax) 7865 2829 1114 66.6 23.9 9.4 

5(80-100 % of Pmax) 21860 8974 347 70.1 28.7 1.1 

FF_SF1 
1(0-20 % of Pmax) 4951 339 33 93.1 6.3 0.6 

2(20-40 % of Pmax) 27948 429 105 98.1 1.5 0.3 
3(40-60 % of Pmax) 47191 4407 1848 88.3 8.2 3.4 
4(60-80 % of Pmax) 31979 5074 2209 81.4 12.9 5.6 

5(80-100 % of Pmax) 40546 4224 1970 86.7 9.1 4.2 

FF_SF2 
1(0-20 % of Pmax) 3482 6870 0 33.6 66.3 0 

2(20-40 % of Pmax) 27073 216 19 99.1 0.7 0.0 
3(40-60 % of Pmax) 36589 615 118 98.1 1.6 0.3 
4(60-80% of Pmax) 31358 6647 3033 76.4 16.2 7.3 
5(80-100 % of Pmax) 36507 434 159 98.4 1.2 0.4 
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Figure 1:  Schematic representation of crack classification procedure 
 
 
 
 

 
 

 
 
 
 
Figure 2: SVM hyper plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: A RC beam specimen in the test-rig, Structures Laboratory, Department of Civil 
Engineering, Indian Institute of Science, Bangalore, India.
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Figure 4: GMM Cluster plots for FF2 specimen (T1:0%-20% of Peak stress, T2:20%-40% of Peak stress, T3:40%-60% of Peak stress, T4:60%-1 
80% of Peak stress, T5:80%-failure stress) 2 
 3 

 4 

(a) 
(b) 

(c) (d) 
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Figure 5. GMM Cluster plots for SF2 specimen (T1:0%-20% of Peak stress, T2:20%-40% of Peak stress, T3:40%-60% of Peak stress,  5 
T4:60%-80% of Peak stress, T5:80%-failure stress)6 

(a) (b) 

(c) (d) 
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Figure 7.  SVM hyperplane graphs for FF2 specimen (T1:0%-20% of Peak stress, T2:20%-40% of Peak stress, T3:40%-60% of Peak stress, 
T5:80%-failure from stress vs time graph). 

 
 
 
 
 
 

 
 
 
 

(c) 

(a) (b) 

(d) 
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Figure 7.  SVM hyperplane graphs for SF2 specimen (T1:0%-20% of Peak stress, T2:20%-40% of Peak stress, T3:40%-60% of Peak stress, 
T5:80%-failure from stress vs time graph) 
 

(c) 

(c) 

(d) 

(a) 
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Figure 8. (a) SF2_ specimen after test. (b) 
formation of diagonal crack (c) AE hits 
recorded at each sensor (d) decrease of UPV 
as per crack locations. 
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