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Abstract: Adding short fibres to cementitious materials improves their resistance to cracking. 

The fibres introduce crack-bridging mechanisms that reduce cracking, improve post-fracture 

mechanical behaviour and increase toughness. The accurate and efficient prediction of cracking in 

quasi-brittle materials with numerical models is a long-standing challenge. 

A constitutive model for fibre reinforced cementitious composites based on continuum 

micromechanics solutions is presented. The model assumes a two-phase elastic composite, derived 

from an Eshelby solution and the Mori-Tanaka scheme [1], which comprises a matrix phase 

representing the mortar and spherical inclusions representing the coarse aggregate particles. 

Additionally, circular microcracks with various orientations are distributed within the matrix phase. 

An exterior point Eshelby based criterion is employed to model crack-initiation in the matrix-

inclusion interface. Microcrack surfaces are assumed to be rough and able to regain contact under 

both normal and shear displacements. Once cracks start to develop, the crack-bridging action of 

fibres is simulated using a local constitutive equation that accounts for the debonding and pull-out 

of fibres with different orientations [2]. It is shown that the combination of the rough microcrack 

and fibre-bridging sub-models allows microcracking behaviour deriving from both tensile and 

compressive loads to be modelled in a unified manner.  

Numerical results obtained with the proposed micromechanical constitutive model are compared 

with experimental data. Good correlation between numerical and experimental responses 

demonstrates the potential of the model to capture key characteristics of the mechanical behaviour 

of fibre reinforced cementitious composites. Furthermore, the performance of the model when 

implemented in a finite element code is assessed. Finite element predictions are compared against 

experimental results from a series of flexural tests on fibre reinforced concrete beams in which the 

development and evolution of cracks was tracked on the surface of the specimens using Digital 

Image Correlation (DIC) equipment. 

 

1 INTRODUCTION 

Randomly distributed short fibres have 

been added to cementitious materials since 

ancient times but their use has expanded 

greatly over past half century [3]. They endow 

brittle cement-bound materials with enhanced 

tensile strength, and their inclusion in 

cementitious matrices can delay the onset of 

macro-cracking and enhance both ductility and 

durability [3]. 

The behaviour of cementitious composites 

reinforced with randomly distributed and 
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oriented discontinuous fibres is largely 

governed by fibre pull-out. When a crack is 

initiated and opens, the fibres crossing the 

crack plane start to debond and are 

subsequently pulled out. In this process, they 

apply closure tractions to the crack faces and 

stabilise the crack growth. Through these 

crack-bridging mechanisms, the fibres 

continue to transfer stresses between the two 

crack faces until their complete pull-out. 

The paper presents an experimental and 

numerical study into the cracking of fibre 

reinforced concrete. 

The progression of surface cracks in 

reinforced concrete (RC) beams which 

contained different amounts of steel fibres was 

studied in a series of flexural tests monitored 

with a DIC system (Section 2). 

Section 3 presents a constitutive model that 

builds on a series of micromechanics based 

models for plain concrete [4-6] which are in 

turn extended to simulate the mechanical 

behaviour of fibre reinforced concrete [2]. 

Results from single-point and finite element 

simulations employing the proposed 

constitutive model for FRC and compared 

against experimental data, are presented in 

Section 4.  

2 EXPERIMENTAL STUDY OF FRC/RC 

BEAMS SUBJECTED TO FLEXURE 

Concrete beams (120 x 150 x 2000 mm) 

containing conventional reinforcement and 

varying amounts of randomly distributed short 

fibres were tested using the experimental setup 

shown in Figure 2 in which all dimensions are 

in mm. Varying volume fractions of Dramix 

steel fibres (Lf = 60mm and df = 0.71mm) 

were used in manufacturing the specimens as 

presented in Table 1. All beams were provided 

with 1ϕ10mm rebar flexural reinforcement and 

ϕ6mm shear links 50mm c/c. After curing for 

14 days the beams were subjected to 4-point 

bending under mid-point displacement control. 

A DIC system was used to monitor the 

progression of surface cracks throughout the 

tests. 

 

 
Figure 1. Experimental setup 

 
Table 1. Experimental test specimens 

Batch code Vf (by volume) 

Control 0% 
SFRC1 1% 
SFRC2 2% 

 

 

The load – mid-point displacement 

responses for the different specimens are 

presented in Figure 2. The results show an 

increase in load carrying capacity and in 

ductility with the addition of fibres. The crack 

patterns obtained with the DIC system are 

shown in Figure 3 for control and SFRC2 

beams respectively, for a mid-point 

displacement of 15 mm. It can be observed 

that with the addition of fibres cracking 

becomes more distributed; SFRC2 beams 

present with a larger number of cracks and 

smaller crack spacing than the control beams. 

 

 
Figure 2. Experimental force-displacement response 
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Figure 3. DIC crack patterns for control and SFRC2 

specimens respectively 
 

3 MICROMECHANICS BASED 

CONSTITUTIVE MODEL FOR FRC 

3.1 Model concepts 

A summary of the constitutive model for 

FRC with key equations is presented in this 

sections, but full details are available in Mihai 

& Jefferson [2]. The general concepts of the 

model are presented in Figure 4. The concrete 

matrix of the fibre reinforced material is 

modelled as a two-phase solid material that 

comprises series of penny-shaped microcracks 

which can have various orientations, defined 

by ψ and θ (Figure 4b). It is assumed that the 

effect of each series of cracks with the same 

orientation is equivalent to that of a thin band 

of material containing these cumulated 

microcracks (Figure 4c) and, as damage 

progresses, they can coalesce and form macro-

cracks. The mid-plane of the thin band is 

referred to as a ‘crack-plane’. Moreover, in 

each direction, the corresponding crack-plane 

is crossed by randomly distributed and 

oriented short fibres. The model also assumes 

that cracks have rough surfaces that can regain 

contact. 

 

 

Figure 4. a) Model concepts. b) Local coordinate 

system.  c) Schematic representation of the crack-plane 

3.2 Two-phase composite 

The elastic constitutive relationship for the 

two-phase composite is obtained by making 

use of the micromechanics Eshelby matrix-

inclusion solution and the Mori-Tanaka 

homogenisation scheme [1] for a non-dilute 

SFRC2 beams 

Control beams 

DIC crack patterns 
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distribution of inclusions: 

mΩ :σ D ε         (1) 

where σ  and ε  are the average far-field stress 

and strain respectively. DmΩ is the elasticity 

tensor of the composite given by: 

   
1

4s
mΩ m m mf f f f



        D D D T I T  (2) 

in which Dβ represents the elasticity tensor and 

fβ the volume fraction of β-phase (β = m or Ω), 

fm + fΩ = 1. I4s is the fourth order identity 

tensor and: 

   
14

Ω Ω Ω m Ω m m Ω
s 

         T I S D D S D D D (3) 

SΩ is the Eshelby tensor for spherical 
inclusions [1]. 

3.3 Directional microcracking  

A solution based on the work of Budiansky 

& O’Connell [7] is employed to address 

microcracking by evaluating the added strain 

εa from series of penny-shaped microcracks of 

various orientations distributed according to a 

crack density function ) f( , . The added 

strains resulting from the microcracks are 

superimposed on the composite such that the 

constitutive Equation 1 becomes: 

mΩ a: ( ) σ D ε ε      (4) 

And the added strain are as follows [7]: 

a

2π π/2

1
: :  ( , ) sin( )d d :

2π
a     

 
 
 
 

 ε N C N σf (5) 

in which Ca is the local compliance tensor in 

the local coordinate system of a microcrack 

(r,s,t) and N the stress transformation tensor. 

The crack density parameter is related to a 

directional microcracking parameter ω (0 ≤ ω 

≤ 1) such that: 

L

( , )
( , ) ( , )

1 ( , )
a 

  
   

  
 


C C Cf    (6) 

where L

1 0 0

1 4
= 0 0

2-

4
0 0

2-

m m

m

E 



 
 
 
 
 
 
 
 
  

C is the local 

elastic compliance tensor, with νm and Em 

being  Poisson’s ratio and  Young’s modulus 

of the matrix phase respectively. Introducing 

Equation 5 and Equation 6 into Equation 4 and 

rearranging gives: 
1

4s mΩ

π2π

2

mΩ

: (θ,ψ) : sin(ψ)dψdθ
2π

:

 


 
 
    
 
 
 



 
D

σ I N C N

D ε

 (7) 

3.4 Microcrack initiation criterion 

The crack initiation criterion proposed by 

Mihai & Jefferson [6] is employed here; 

microcracking in each direction is assumed to 

initiate in a band of matrix material within the 

interfacial transition zone (ITZ), when the 

local principal stress in this band reaches the 

tensile strength of the interface (fti). The initial 

damage surface, Fs is given by: 

( , ) ( ) 0s L ti I L tiF f f  σ σ     (8) 

where σL is the local stress which is related 

to the average far-field stress as follows: 

( , ) ( , ) :L    σ N σ      (9) 

The local stresses in the thin band of matrix 

material in the ITZ are evaluated based on the 

exterior point Eshelby solution [8] which gives 

the expression of the total stress field outside 

an ellipsoidal inclusion embedded in an 

infinite elastic matrix [9]. The Mori-Tanaka 

homogenization scheme is applied in order to 

account for the interaction between inclusions 

and the total stress field in the matrix outside 

an inclusion is obtained as:   

 
1

4
mΩ m E

4
a

( ) ( )

:

s

s
mf f





 

     
 

   
 

σ x D I S x B

T I ε ε
 (10) 

in which   
1

1

m m




  
     
 

B S D D D  . 

SE(x) is the exterior point Eshelby tensor for 

spherical inclusions, derived in a 

dimensionless form in Li et al. [10] and x is 

the position vector relative to the centre of 

inclusion. A local microcracking function was 

subsequently derived from the local crack 

initiation criterion in Equation 8 and is given 

by: 
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 
2

2 2 2 2

1
( , )

2

1

2 L

L
L Lrr

L
Lrr Lrs Lrt

F

r




 


   


 

 
    

 

ε

  (11) 

in which L
1

m

m








, L

1/ 2

1

m

m

r








and noting 

that the following loading/unloading 

conditions apply: 

0; 0; 0ζ ζF F                 (12) 

3.5 Rough crack contact 

A rough crack closure component is also 

implemented to simulate the recovery of stress 

on microcracks that regain contact. In each 

direction the local stress was written as a 

summation of the average stress on intact 

material and the recovered stress on debonded 

material that regains contact: 
2

α L L L L(1 ) ( ) ( , ) :s
f gH m    

 
s D I ε Φ ε ε   (13) 

Hf is a reduction function that decreases 

from 1 to 0 as the potential for shear transfer 

reduces with increasing crack opening. This is 

given by 
1

0

-

L( )=

Lrr tmc

fH e

 

 



ε  with c1 = 3, 

η=ht/u0,  1
L L

D C  and εL is the local strain 

tensor.  

Φ(mg, εL) is a contact matrix that depends 

upon the contact state (Figure 5) as follows: 

Φ = 0,  if crack surfaces are not in 

contact (open region) 

Φ = Φg,  if crack surfaces are in contact 

(interlock region) 

Φ = I, if are in fully closed region. 

The expression of the contact matrix in the 

interlock region is: 

2

2 2

1

1

T

int int int
g int

g L L Lm

  


     
    
       

Φ
ε ε ε

(14) 

where: 

2 2
int L Lrr Lrs Lrt

2 2
cl L Lrr Lrs Lrt

( , ) ε ε ε

( , ) ε ε ε

g g

g g

m m

m m





  

  

ε

ε
         (15) 

mg is the slope of the interlock contact surface 

and, in a physical sense, it represents the slope 

of the asperity, thus being a measure of the 

crack surface roughness. 

 

 
Figure 5. Contact model concepts 

3.6 Crack bridging action of fibres 

The influence of fibres is taken into account 

in the crack-plane stress – strain expression 

assuming that the fibre contribution develops 

after crack initiation. This is illustrated in 

Figure 6.  In the case of fibre reinforced 

concrete Equation 13 becomes: 

L fL L L L L= (1- ) (1- ) ( ) ( , ) :f f gH m        s D D ε D Φ ε ε (16) 

where ωf is an effective fibre pull-out 

parameter that characterises the crack-bridging 

state of fibres and varies from 0, for a state 

before any fibre pull-out occurs, to 1, for a 

case in which all fibres are completely pulled 

out from the matrix. DLf = Edf ∙ I2s is a local 

elastic stiffness given by the interface bond of 

the fibres crossing the crack-plane, before the 

start of pull-out, assuming a linear debonding 

behaviour. 

 

 
Figure 6. Crack-plane model with rough contact and 

fibre-bridging 
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The evolution of the effective fibre pull-out 

parameter ωf is obtained from the following 1-

D relation: 

(1 )f df f cbE                (17) 

in which ζf is a resultant crack opening 

parameter that takes into account the normal 

and shear components of the crack-plane strain 

tensor and is governed by the effective fibre 

pull-out function given in Equation 18 and the 

loading/unloading conditions given in 

Equations 19: 

 

 2 2 2

1
( , )

2

1
4

2

f L f Lrr

Lrr Lrs Lrt f

F  

   

 

   

ε

(18) 

0; 0; 0ζf f ζf fF F                (19) 

σcb in Equation 17 is the crack bridging 

stress that is transferred between two opposing 

faces of a fully formed crack subjected to 

normal opening displacements, through the 

pull-out action of the fibres that cross the 

crack. The crack-bridging model of Lin & Li 

[11] is employed in which a crack-bridging 

stress – crack opening relationship was 

obtained by averaging the contributions from 

all fibres that cross the crack-plane during the 

debonding and the pull-out phases 

respectively: 

 
( /2)cos/2

B 2
0 0

4
σ ( ) ( ) ( ) ( )d d

fL

f

f z

V
P p p z z

d





   


 

   (20) 

in which Vf is the volume fraction of fibres, Lf 

and df are the length and diameter of the fibres 

respectively. P(δ) describes the debonding and 

pull-out force - displacement behaviour of a 

single fibre embedded in a concrete matrix, in 

a direction along the fibre axis. p(φ) and p(z) 

are probability density functions of the 

orientation angle φ and centriodal distance z 

respectively. The single fibre P-δ relation was 

derived assuming a linear slip-hardening 

interface constitutive relation between the 

fibre-matrix interface shear stress τ and the 

interface S: 

0(1 / )fS d                (21) 

in which τ0 is the frictional sliding shear stress 

at the tip of the debonding zone before any slip 

takes place and β is a nondimensional 

hardening parameter. The two fibre-matrix 

interface parameters, τ0 and β can be obtained 

from an experimental single fibre pull-out P-δ 

curve as detailed in[11]. 

Incorporating the rough crack contact and 

the crack-bridging effect of fibres, the final 

stress-strain model is: 

 
1

4s mΩ
add

π2π

2

mΩ

: (θ,ψ) : sin(ψ)dψdθ
2π

:




 
 
    
 
 
 



 
D

σ I N C N

D ε

(22) 

where: 

 

1

1 2s
add L i i i fl

i

L

1 (1 )c fp H   




  

      
   



C C I Φ D

C

(23) 

and in which the contact component was 

expanded and written as a weighted 

summation to account for the variability of the 

crack roughness. pci is the proportion, or the 

probability of the occurrence, of a certain type 

of asperity. The integration over a hemisphere 

in Eq. (21) is evaluated numerically by 

employing McLaren integration rule with 29 

sample directions.  

 

4 NUMERICAL RESULTS 

4.1 Uniaxial tension 

Numerical results for a uniaxial tension 

strain path obtained with the proposed 

micromechanical model and using a single set 

of realistic material properties (Table 2) are 

compared with experimental data of Li et al. 

[12] and presented in Figure 7. The numerical 

simulations compare well with experimental 

results; the model is able to predict the 

increase of strength and ductility of the 

composite with the in-crease of the fibre 

dosage.  

 
Table 2. Material properties (Uniaxial tension test) 

Lf 

(mm) 

df 

(mm) 

τ0 

(MPa) 

β Em 

(GPa) 

EΩ 

(GPa) 

fti 

(MPa) 

30 0.5 0.8 0.1 25 60 1.5 
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Figure 7. Numerical predictions of uniaxial tensile tests 

of Li et al. [12] 
 

4.2 Uniaxial compression 

Numerical results for a uniaxial 

compression strain path are next compared 

with experimental data of Cachim et al. [13] 

and presented in Figure 8. The material 

properties employed for the numerical 

simulations are presented in Table 3. 

Numerical predictions lie between 

experimental bounds and the mod-el captures 

the slight increase in strength and an enhanced 

ductility of the FRC relative to plain concrete. 

 
Table 3. Material properties (Uniaxial compression test) 

Lf 

(mm) 

df 

(mm) 

τ0 

(MPa) 

β Em 

(GPa) 

EΩ 

(GPa) 

fti 

(MPa) 

30 0.5 1.0 0.1 17 44 1.5 

 

 
Figure 8. Numerical predictions of uniaxial 

compression tests of Cachim et al. [13] 

 

 

4.2 FE simulations 

The fibre model has been implemented in 

the commercial finite element software 

LUSAS and a numerical study based on the set 

of experimental tests from Section 2 is 

presented below. 

Numerical analyses were carried out to 

simulate the experimental tests with the three 

types of specimens given in Table 1. In this 

work geometric properties from industrial data 

sheets for Dramix fibres were employed along 

with the set of material properties given in 

Table 4. 

 
Table 4. Material properties (4 point bend test) 

Lf 

(mm) 

df 

(mm) 

τ0 

(MPa) 

β Em 

(GPa) 

EΩ 

(GPa) 

fti 

(MPa) 

60 0.71 1.1 0.04 21 30 1.5 

 

The finite element mesh with the boundary 

conditions used for the numerical analysis is 

presented in Figure 9. Finite element 

predictions of the load-deflection curves are 

compared with the experimental curves for the 

three sets of tests (Figure 10). The proposed 

model is able capture accurately the increase 

in capacity with increasing fibre content. 

Plots of the major principal strains obtained 

from the finite element simulations showing 

the regions of localised damage are presented 

in Figures 11 & 12 for a mid-point 

displacement of 15mm. Plots of the 

experimental crack patterns obtained from the 

DIC monitoring are also presented in Figures 

11 & 12. 

It can be seen that with the addition of 

fibres cracking becomes more distributed and 

the model captures this characteristic well. 

 

 
Figure 9. Finite element mesh 
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Figure 10. Force-displacement results 

 

 
Figure 11. Numerical and experimental crack patterns. 

Control specimens 

 

 
Figure 12. Numerical and experimental crack patterns.       

SFRC2 Vf = 2% 

5 CONCLUSIONS 

An experimental study on cracking in FRC 

was presented and a constitutive model for 

FRC based on micromechanical solutions was 

proposed. Good correlation between numerical 

results – obtained from both single-point and 

finite element simulation - and experimental 

data indicates that the proposed model 

captures correctly key characteristics of the 

overall macroscopic mechanical behaviour of 

fibre reinforced cement based composites, 

such as the increase of ductility and overall 

toughness of the fibre reinforced composite 

relative to the plain concrete matrix. 
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