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Abstract. This work is concerned with the numerical study of dynamic mode I and mixed-
mode fracture in fiber reinforced concrete (FRC). A recently developed eigensoftening algorithm
to deal with the fracture of quasi-brittle materials is employed in a meshfree framework. Three-
point bending tests on notched beams reinforced with steel fibers carried out through a drop
weight device at two loading velocities are modelled herein. Since the notch was placed with
an offset from the middle section, mixed-mode crack formation was facilitated. Three types of
concrete with the same matrix reinforced with different amounts of steel fibers were used for
these beams. All mechanical and fracture properties were measured through independent tests.
Assuming a linear softening stress-equivalent crack opening relation, the numerical methodology
is first validated against experimental results on plain concrete. Subsequently, it is applied to
study the dynamic fracture of fiber reinforced concrete with a bilinear softening relation. The
numerical simulations reproduced remarkably well the experimental results such as load-line
displacements, crack patterns and reaction forces. The parametric studies show that the total
energy dissipation plays an important role on the peak reaction load, whereas the transitional
point between the two branches has a significant influence on the crack patterns.
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1 INTRODUCTION

The rate effect on fracture propagation in
concrete with or without reinforcements has
been the centre of interest for the last three
decades, from both experimental and numer-
ical standpoints. In the current work, we en-
deavor to model the dynamic fracture prop-
agation (mode I and mixed-mode) in plain
and fiber reinforced concrete employing the
optimal transportation meshfree (OTM) ap-
proximation scheme [1, 2, 3, 4]. A concept
based on the eigenerosion approach to brit-
tle fracture developed by Pandolfi et al. [5],
the eigensoftening procedure is proposed for
quasi-brittle materials [6]. This is engineered
for the gradual rather than abrupt dissipa-
tion of the fracture energy. In other words,
the material softens in a progressive man-
ner until its complete failure, i.e. the for-
mation of a stress-free crack. This is equiv-
alent to the crack band model [7], since en-
ergy dissipation is through the softened (or
failed) volume. In the meantime, the anal-
ogy to cohesive approaches is straightforward
through the definition of a damage variable.
Furthermore, the implementation follows the
same procedure as that of the eigenerosion
algorithm except for the strength criterion
for crack initiation. Consequently, a simple
alternative particularly suitable for a mesh-
free framework, is formulated for the fracture
quasi-brittle materials. The current work is a
short version of the work developed in detail
in [6, 8].

Next the experimental setup and observa-
tions are presented. The meshfree method-
ology, eigenerosion and eigensoftening algo-
rithms for fracture are described in Section 3.
Numerical results are given in Section 4. Fi-
nally, relevant conclusions are drawn in Sec-
tion 5.

2 EXPERIMENTAL OBSERVATIONS

While the experimental work on the rate
effect on flexural fracture in high strength
concrete [9, 10], the experimental campaign
on the dynamic mixed-mode fracture of plain
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Figure 1: (a) The drop-weight device developed by
Zhang et al. [11]; (b) three-point bend beam with a
central notch to facilitate mode-I fracture propaga-
tion; (c) three-point bend beam with an offset notch
to facilitate mixed-mode fracture initiation.
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Figure 2: Typical crack patterns for beams with an
offset notch made from plain concrete (H00) and con-
crete reinforced with 45 kg/m3 steel fibres (H45) im-
pacted at 1.77 m/s (top row) and 2.66 m/s (bottom
row).

and steel fiber reinforced concrete by Ruiz et
al. [12] was designed to study the influence
of loading velocity and fiber content on the
developed crack patterns.

The drop-weight device [11] designed and
constructed in the Laboratory of Materials
and Structures at the University of Castilla-
La Mancha was employed for exerting dif-
ferent loading velocities (in particular 881,
1770 and 2660 mm/s) on notched beams by
dropping a mass up to 120.6 kg. The impact
force was measured through a piezoelectric
force sensor and the reaction force was deter-
mined by two force sensors located between
the supports and the specimen. For mixed-
mode fracture, beams of 100×100 mm2 in
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cross section, 400 mm in length, 333 mm in
span, see Fig. 1, were tested in a three-point
bend configuration. The notch is located at
an offset of a quarter span from the central
section. The initial notch-depth ratio was
approximately 0.5.

In the experimental campaign [12], con-
crete with the same matrix but reinforced
with different fiber contents was tested. For
instance, H00 is the base concrete, fabricated
as a reference material, whereas H15 and H45
are with the same matrix but reinforced with
15 and 45 kg/m3 of steel fibers. The fibers
were 35 mm in length and 0.55 mm in diam-
eter. Material properties, such as the elas-
tic modulus, E, the Poisson’s ratio, the com-
pressive strength, fc, the tensile strength, ft
and the specific fracture energy, GF , were all
characterized with independent tests.

Typical crack patterns loaded at two dif-
ferent velocities are given in Fig.2 for the
base concrete H00 and the concrete reinforced
with 45 kg/m3 of steel fibers, H45. Note that
as the increase of fiber content, the crack is
going away from the loading zone. In addi-
tion, as the compressive zone is approached,
crack bifurcation occurs.

3 NUMERICAL METHODOLOGY

3.1 The OTM scheme

The OTM approach [1] is a meshfree up-
dated Lagrangian numerical scheme that com-
bines concepts from optimal transportation
theory with a material-point sampling and
the local max-ent meshfree approximation [13].
The method has been used in applications in-
volving dynamic deformation and failure of
materials with excellent results. The numer-
ous advantages previously mentioned ensure
its robustness and stability in numerical cal-
culations.

Two sets of points, namely, nodal points
and material points are introduced in the
OTM method. A schematic of the OTM ap-
proximation scheme for an incremental mo-
tion from time tk to tk+1 is shown in Fig. 3.
The kinematic information of the domain,

Np,k
Nodes
Material Points

Figure 3: The incremental motion from time tk to
tk+1 in the OTM approximation scheme. The empty
circles represent the nodal points, xa,k and xa,k+1,
whereas solid circles stand for material points xp,k

and xp,k+1.

such as the displacement, velocity and accel-
eration field, is stored at the nodes. The ma-
terial responses and local state variables are
evaluated at the material points, which are
also transported by the incremental motion
of the domain. To approximate the incre-
mental motion from nodal displacement field,
the local max-ent approximation scheme de-
fined by Arroyo and Ortiz [13] is employed.
The local max-ent function (LME), as a Pareto
set, is optimal for β ∈ (0,∞) and obtained
as

Na(x) =
exp [−β |x− xa|2 + λ∗ · (x− xa)]

Z(x,λ∗(x))
,

where

Z(x,λ) =
n∑

a=1

exp
[
−β |x− xa|2 + λ · (x− xa)

]
,

being λ∗(x) the unique minimizer for logZ(x,λ).
The parameter β is related with the discretiza-
tion size (or nodal spacing), h, whereas γ
controls the locality of the shape functions,
as follows

β =
γ

h2
. (1)

For a uniform nodal spacing, β is also a con-
stant, thus the first derivatives can be ob-
tained by employing the following expression

∇N∗
a = −N∗

a (J
∗)−1 (x− xa)
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where J is the Hessian matrix, defined by

J(x,λ, β) =
∂r

∂λ
,

r(x,λ, β) ≡ ∂λlogZ(x,λ)

=
∑
a

Na(x,λ, β) (x− xa).

Note that the objective of the above proce-
dure is to find the λ which minimizes logZ(x,λ).
This unconstrained minimization problem with
a strictly convex objective function can be
solved efficiently and robustly by a combi-
nation of the Newton-Raphson method and
Nelder-Mead Simplex algorithm [14].

In calculations, the max-ent shape func-
tions are reconstructed continuously from the
nodal set, which changes in every step by
adapting to the local deformation of the ma-
terial points. This overcomes the essential
difficulties of mesh entanglement that arise
in Lagrangian grid-based numerical schemes.
On the other hand, material points result
from the spatial approximation of the mass
densities ρh,k(x) by M points

ρh,k(x) =
M∑
p=1

mpδ(x− xp,k),

where xp,k represents the position at time tk
of material point p, mp is the mass of the ma-
terial point and δ(x−xp,k) is the Dirac-delta
distribution centered at xp,k. Material points
are convected by the deformation and carry a
fixed mass as well as serve the purpose of in-
tegration points for the calculation of the ef-
fective nodal forces and masses. The spatial
discretization is completed by approximating
the deformation mapping as

ϕh,k→k+1(x) =
N∑
a=1

xa,k+1Na,k(x)

where xa,k+1 is the position of node a at time
tk+1, and Na,k(x) are max-ent shape func-
tions defined over the configuration for node
a at time tk. The interpolation at a material
point xp,k depends solely on the nodes con-
tained in a small local neighborhood Np,k as

shown in Fig. 3. The reconstruction of the
local neighborhoods leads to a new reconnec-
tion of the material points and the nodal set
on the fly adaptively.

3.2 The eigensoftening algorithm for
fracture

The eigensoftening algorithm was proposed
by Navas et al. [6] as an extension of the
eigenerosion approach by Pandolfi et al. [3, 4]
to quasi-brittle fracture. It was validated
against experimental tests for the dynamic
mode-I fracture in high strength concrete.
Herein, the methodology is applied to study
the dynamic mixed-mode fracture of steel fiber
reinforced concrete.

The implementation of the eigensoftening
algorithm is based on a strength criterion for
the crack initiation and a softening law which
is proper to the material under study before
the formation of a stress-free crack. For the
stress measurement, the maximum principal
stress theory is considered for brittle fracture
at the current time tk+1 for the material point
q. In other words, σq,1 is the maximum prin-
cipal stress for material point. Consequently,
the definition of an equivalent critical stress
at the material point xp,k+1 for a Bε neigh-
borhood can be calculated as follows

σε
p =

1

mp

∑
xq,k+1∈Bε(xp,k+1)

mqσq,1,

mp =
∑

xq,k+1∈Bε(xp,k+1)

mq.

The concept of the Bε-neighborhood was uti-
lized for the eigenerosion algorithm by Pan-
dolfi and Ortiz [5]. In this neighborhood, the
material points involved in the fracture pro-
cess are located. A parametric study con-
firmed that the size of this neighborhood for
accurate results yields between one and two
times the nodal spacing.

For a quasi-brittle behavior, when σε
p,k+1

surpasses the tensile strength, ft, the soften-
ing law is activated, which in turn causes a

4



R. C. Yu, P. Navas and G. Ruiz

reduction of the internal forces as follows,

f int = (1− χ)

p∑∫
Ω

σp,k+1∇NdV,

where χ is the damage variable, ranges be-
tween zero (an intact material) and one (com-
pletely failed material points).

In addition, the softening process is gov-
erned by a stress-crack opening displacement
relation, often termed as cohesive law. For
the eigensoftening algorithm, a length scale,
hε, equivalent to the crack band model of
Bažant [7], is defined. A reference value for
hε between two and four times the maximum
size of the aggregates for concrete was recom-
mended by Bažant [7]. The effective fracture
strain, εεf , defined as the difference between
the maximum principal strain at crack initia-
tion, ε1(xp,0), and the current one, ε1(xp,k+1),
for material point p, k + 1 being the cur-
rent integration time. Meanwhile, εεf can
also be represented as the current crack open-
ing displacement, w, within the band width,
hε. Consequently, for a linear softening be-
haviour,

εεf (w) = ε1(xp,k+1)− ε1(xp,0) =
w

hε
.

Therefore, the damage variable is pertinent
to cohesive law parameters such as the frac-
ture energy, GF , the critical crack opening
displacement, wc and the tensile strength, ft,
as well as the effective fracture strain and the
crack band width.

χ = χ
(
εεf , h

ε, ft, wc, Gf , w
)
.

In Fig.4, the influence of the band width
parameter, hε, is demonstrated for a mode-
I crack propagation in a three-point bend
beam loaded at 2.66 m/s. The maximum
aggregate size of the material is of 12 mm.
The stress distribution is demonstrated for
three values of hε, 12, 30 and 60 mm when
the peak load is attained in Fig.4a. Note
that when the band width is too small, the
stresses at the crack tip are overestimated,
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Figure 4: Influence of the band width parameter: (a)
stress distribution at peak load; (b) stress evolution
for a point above the notch point for a three-point
beam impacted at 2.66 m/s.

consequently the crack initiation is delayed,
the crack propagation takes longer time, as
can be seen in Fig.4b, where the stress evo-
lution for a point above the notch tip is com-
pared for three values of the band width.

4 DYNAMICMIXED-MODE FRAC-
TURE IN PLAIN AND FIBER RE-
INFORCED CONCRETE

4.1 Softening law for fiber reinforced
concrete

In order to model the fracture behavior of
fiber reinforced concrete, as a first approxi-
mation, the fracture anergy of the base con-
crete is augmented by a factor η, i.e. GF2 =
ηGF1 . For a linear softening law, the param-
eter η is equal to the amplification factor, α,
for the critical opening displacement of the
base concrete, wc, see Fig. 5. For a bilinear
relation, the transition point between the lin-
ear segments need to be calibrated. For both
cases, the contribution of the base concrete is
through the linear-decreasing cohesive law,

σb(w) = ft

(
1− w

wc

)
,

5



R. C. Yu, P. Navas and G. Ruiz
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Figure 5: Linear and bilinear cohesive laws for the
FRC, where the lightly-shaded area is the specific
fracture energy, GF1 , ft is the tensile strength, and
wc is the critical opening displacement of the base
concrete; whereas GF2

is the equivalent specific frac-
ture for FRC. The dashed lines outline the fiber con-
tribution.

whereas the fiber contribution, activated once
the crack is open, is obtained as

σf (w) = σ(w)− σb(w).

Subsequently, the damage variable is calcu-
lated as:

χ(w) = 1− σ(w)

ft

4.2 Simulated crack patterns

First, the developed methodology is ap-
plied to simulate the mixed-mode fracture
propagation in a plain concrete (H00) beam.
The simultaneous flexural and shear crack
propagation is observed, see Fig.6 for the dam-
age distribution at 0.17, 0.19 and 0.20 ms
after the beam was impacted at 2.66 m/s.
Next, employing a bilinear softening relation,
with different amplification factors for GF ,
the mixed-mode fracture is reproduced for
H00, H15 and H45 beams impacted at 1.77
and 2.66 m/s, respectively. The comparison

0.25

0.5

0.75

0.0

1.0
2760 mm/s  -  0.2 ms

0.25

0.5

0.75

0.0

1.0
2760 mm/s  -  0.2 ms

0.170 ms

0.190 ms

0.200 ms
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Figure 6: Damage evolution for the simultaneous
flexural and shear crack propagation for H00 im-
pacted at 2.66 m/s.

with the experimental crack patterns is il-
lustrated in Fig. 7b. Additionally given in
Fig. 7a is the distribution of the damage vari-
able χ for a flexural beam impacted at 0.881,
1.77 and 2.66 m/s. Note that crack bifurca-
tion is observed near the impact point for
higher loading velocities.

5 CONCLUSIONS

A recently developed eigensoftening algo-
rithm is employed to study the dynamic frac-
ture in mixed-mode in plain and fiber rein-
forced concrete under two impact velocities.
The calculations were carried out in a mesh-
free framework. Three point bending beams
with notches with an offset from the mid-
dle section were modelled. Even though a
notch away from the middle section facili-
tated the initiation of flexural cracks, two
main cracks were formed in plain concrete
beams, whereas the crack started from the
notch tip developed into a macro crack when
fibers were added. The numerical simula-
tions reproduced very well these crack pat-
terns.
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Figure 7: Simulated crack patterns: (a) mode I:
central-notched beams impacted at 0.881, 11.77 and
2.66 m/s, respectively; (b) mixed-mode: offset-
notched beams made from H00, H15 and H45 im-
pacted at 1.77 and 2.66 m/s, respectively.
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