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Abstract. This paper presents a constitutive model to describe the non-linear mechanical response
of masonry. This heterogeneous material is represented by a fictitious homogeneous medium whose
natural basis is defined by the material texture, i.e. its joint planes. The model takes into account the
elastic orthotropy of the material as well as the main degradation mechanisms: damage and friction.
This thermodynamics-based model is used to estimate the dissipations. This model is implemented in
a finite element code and validated at the Gauss point scale. It is then used to evaluate the response of
structures subjected to monotonic and cyclic multi-directional loading. An analysis of regularisation
methods (energetic and non-local integral) is proposed. This model provides a reliable representa-
tion of the overall behaviour of masonry, with the possibility of studying dissipative mechanisms
independently.

1 INTRODUCTION

Masonry structures represent a large part
of the existing architectural and cultural her-
itage. When exposed to natural or anthropic
hazards, these structures may experience signif-
icant structural damage, resulting in their col-
lapses. Developing efficient and accurate tools
to represent their degradation and assess their
vulnerability is crucial to maintain their struc-
tural integrity. Recent seismic events have high-
lighted this need. Examples include the earth-
quakes in L’Aquila (Italy, 2009) and Amatrice
(Italy, 2016), which largely destroyed these
towns, and the earthquake in Le Teil (France,
2019), which caused major damage to histori-
cal structures (Castle of Saint-Tomé, Church of
Saint-Étienne de Melas).

This work focuses on masonry with orthog-
onal joints (see Fig. 1). Several models have
been developed or adapted for masonry over the
previous decades (e.g. [12] [18], [11], [20], [1],
[19], [23]). Macroscopic finite element mod-
els are the most widely used to describe large
structures, but some of them have difficulties
in representing the non-linear anisotropic nature
of the material.

Figure 1: Regular bonded masonry.

A thermodynamically based friction-damage
model for masonry is developed in this work.
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The mechanical behaviour of masonry exhibits
a softening phase typical of quasi-brittle mate-
rials. Local continuum damage models fail to
represent the entire degradation process: the de-
crease in stress (with increasing strain) leads to
a peak around which bifurcations towards lo-
calised solutions appear. Knowing which so-
lutions reflect the failure process is impossible;
the strain localisation phenomenon caused by
softening cannot be captured objectively. From
a numerical point of view, finite element calcu-
lations suffer from mesh dependency. Physical
inconsistencies can be observed in the numeri-
cal results: the process zone size is directly re-
lated to the mesh one, implying that the energy
dissipated at failure tends towards zero as the
mesh is refined. To overcome this problem, a
characteristic length representative of the inter-
actions at the microstructure scale of the ma-
terial is introduced into the solution. Differ-
ent regularisation methods have been developed
in the literature to limit the localisation of de-
formations and degradations in softening media
and to recover objectivity (e.g. [7], [16], [17]).

In this model, an energy regularisation ap-
proach is first tested which explicitly relates the
intrinsic dissipation energy of the material to
the size of the finite elements. Then, an in-
tegral non-local regularisation is used by in-
troducing non-locality on an internal variable
linked to the evolution of the damage through
a characteristic length generating a circular av-
eraging zone. This model and the regularisa-
tion methods were implemented in finite ele-
ment software and tested at the structure’s scale
on a panel.

2 MASONRY MODELLING
Masonry is described as a homogeneous ma-

terial whose main orthotropic base (1, 2, 3) is
related to its orthogonal joint planes (Fig. 2).
In this material, damage evolution is mainly
governed by mortar joints leading to orthogo-
nal crack patterns (Fig. 3). The model based
on Continuum Damage Mechanics proposes an
orthotropic degradation description through the
decomposition of crack families along the nat-

ural directions of masonry joints. An additional
damage variable is also introduced to represent
the crushing of blocs during compression load-
ing. The unilateral effect (recovery of stiffness
during crack reclosure) and the internal sliding
(hysteretic dissipation and permanent deforma-
tions generated due to friction at the crack sur-
face) are introduced to reproduce its behaviour
under cyclic loading. The Gibbs energy of such
a model gives rise to the formulation of an in-
trinsic dissipative energy that allows degrada-
tion mechanisms to be taken into account. The
complete model is given in [21]. Only the equa-
tions related to damage, regularisation and dis-
sipation are recalled.

Figure 2: (left) Explicit and (right)
homogenised descriptions of masonry.

2.1 Damage
When subjected to mechanical stress, ma-

sonry will degrade and dissipate energy. In most
cases, this will lead to the formation of cracks
that will follow the joint planes (Fig. 3). The
development of damage in the material is mod-
elled by the decomposition of the compliance
tensor representing the impact of a network of
orthogonal and independent cracks along the
joint planes (Fig. 4). The damage then affects
the elastic moduli by means of an effect tensor
A(i) whose expression is inspired by models for
composite materials [13] and a scalar variable
di [9], varying from 0 for the absence of cracks
in the i direction to +∞ for a fully degraded
material in this direction (Eq. (3)). Effective
compliance can be calculated by:

Seff = S0+∆S0 = S0+
3∑

i=1

di
(
A(i) : S0

)
(1)

Local evolution: the evolution of cracking is
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governed by both the extension of the material
and the shear deformations through an equiva-
lent strain ε̃i:

ε̃i =
√

⟨εi⟩2+ + βilε2il + ε2im,

with (i, l,m) = (1, 2, 3), (2)

where βil and βim are material coefficients mod-
ulating the impact of shear deformations on the
yield strength and damage evolution. It is di-
rectly involved in the damage threshold func-
tion which, by applying the load-unload condi-
tions, gives the evolution law (Eq. (3)) with ki
the equivalent strain threshold which initiates
damage in the i direction and χi a brittleness
parameter.

di =
ε̃i
ki

exp [χi (ε̃i − ki)]− 1,

with i ∈ [[1; 3]]. (3)

Figure 3: Examples of cracks in bonded
masonry structures [5].

Figure 4: Effect of crack families on the
compliance tensor [21].

2.2 Regularisation
Regularisation techniques must be adopted

to limit the mesh dependency of the solution ob-
tained using the finite element method. Various
methods have been developed in the literature
to maintain the objectivity of the results with
respect to the mesh when locating deformations
(e.g. [6], [17], [16], [2], [14], [15], [4]). In this
work, the following two methods are used:

Fracture energy regularisation [7]: an ex-
plicit relationship between the intrinsic dissi-
pated energy of the material and the size of
the elements is introduced in order to ensure
energy dissipation independent of mesh refine-
ment. The parameters of the damage evolution
law are adjusted to dissipate the amount of en-
ergy Gfi in each finite element. For each el-
ement, a characteristic size hi of the element
along the normal direction of the crack is taken
into account, and the fracture energy is then
written according to the equation (4).

Gfi =

∫ ∞

0

σidεi

→ χi =
Eihiki

Gfi − 0.5hiEik2
i

with i ∈ [[1; 3]]. (4)

However, this method does not eliminate all
biases, as it is dependent on the orientation of
the elements [8].

Non-local integral regularisation [17]: the
non-local nature of the degradation process is
taken into account. Local equivalent strains are
replaced by their associated non-local counter-
part, taking into account the influence of the
neighbourhood. In this way, damage in each of
the i directions is controlled by the non-local
variable ε̄i:

ε̄i =

∫
Ω
α (x, s, lc) ε̃i (s) ds∫
Ω
α (x, s, lc) ds

with i ∈ [[1; 3]]. (5)

where α (x, s, lc) is a weight function depend-
ing on the distance between a source point s
and a target point x and an internal length lc.
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It is classically taken as a Gaussian distribu-
tion. These non-local variables are then di-
rectly involved in the expression of the damage
di (Eq. (3)) in which ε̃i is replaced by ε̄i.

2.3 Dissipation
The total intrinsic dissipation D is deduced

from the thermodynamic potential Ψ through
the Clausius-Duhem inequality (Eq. (6)) [10].

Ḋ = σ · ε̇− ρΨ̇ ≥ 0. (6)

D can be decomposed into two terms
(Eq. (7)) related to the main degradation mech-
anisms (damage, internal sliding and friction).

Ḋ =Ḋdamage + Ḋsliding

=
[
Yiḋji

]
+
[
σπ
k ε̇

π
k −Xkα̇π

k

]
with(i, k) ∈ [[1; 3]]× [[4; 6]]. (7)

Yi, επk , σπ
k , Xk and αk represent respectively

the energy restitution rates, the anelastic fric-
tional strains and stresses, the kinematic strain
hardening variables and those thermodynami-
cally associated.

The energy dissipated is estimated graphi-
cally from the experimental curve E(1)

d (Eq. (8))
and calculated from the numerical results E

(2)
d

(Eq. (9)).

E
(1)
d =

∫
εj

σjdεj (8)

E
(2)
d =

1

V

∫
V

∫
τ

ḊdtdΩ (9)

These names, E(1)
d and E

(2)
d , will be referred

to in the following section.

3 RESULTS
3.1 Gauss point validation

The model was implemented in the MFront
software [http://tfel.sourceforge.net] and tested
on a hardware point using the MTest module.
Three tests were carried out in order to highlight
the main dissipative mechanisms of the model.

Unidirectional tension-compression test: this
test illustrates the evolution of damage and the
unilateral effect (Fig. 5). A strain loading is
applied: ε22 varies from 0 to 3.5 · 10−4, then
decreases to −1.2 · 10−4 and increases up to
5.5 · 10−4. It decreases again to −2 · 10−4
before increasing again to 8 · 10−4 (Fig. 5a).
When the damage threshold is exceeded, a soft-
ening phase is observed (Fig. 5b). The unload-
ing phase shows the degradation of the elastic
modulus and is followed by a recovery of stiff-
ness when the stress becomes negative (com-
pression). The evolution of D2 as a function of
strain in the loading direction (Fig. 5c) shows
that damage remains zero until k2 is exceeded,
then it increases progressively with strain. Dur-
ing discharge, D2 remains constant (no com-
pression damage Dc). Only damage in the di-
rection of the load is activated.

Cyclic shear test without pre-compression:
this test activates the coupling between the dam-
age and friction mechanisms (Fig. 6). The fol-
lowing load is applied: ε12 varies from 0 to
7.5 · 10−4, then decreases to −2.5 · 10−4 and in-
creases up to 3.0·10−3 (Fig. 6a). The shear mod-
ulus degrades as the material becomes damaged
(Fig 6b). The presence of a hysteresis loop dur-
ing the unloading-reloading phase indicates the
development of friction at the crack interface.
A mismatch between the two shear-activated
damages is observed due to the orthotropic be-
haviour of the masonry (Fig. 6c).

Cyclic shear test with a pre-compression
of 0.2MPa: this test shows the response of
the model under non-proportional loading and
highlights the influence of confinement (Fig. 7).
The lateral loading is the same as in the previous
test. A response similar to the case without pre-
compression is obtained; however, the width of
the hysteresis loop increases with confinement
(Fig 7b). For the damage variables (Fig. 7c),
similar evolutions are observed with and with-
out confinement, the latter mainly impacting the
friction mechanism.
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Figure 5: Results for the unidirectional tensile-compression test along direction 2.
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Figure 6: Results for the cyclic shear test along direction 12 without confinement.
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Figure 7: Results for the cyclic shear test along direction 12 with a pre-compression of 0.2MPa.
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3.2 Cyclic shear test on a panel (energetic
regularisation)

The model is used to perform non-
linear static analyses on in-plane loaded ma-
sonry walls by studying their overall load-
displacement response, the distribution of dam-
age and the energy dissipated. All the numer-
ical results presented in this section were ob-
tained using the Cast3M finite element solver
[http://www-cast3m.cea.fr] in which the model
was implemented.

Cyclic tests were carried out and compared
with the experimental campaign conducted by
[3] to analyse the model’s ability to describe
the hysteretic response at the scale of the struc-
ture. The wall geometry, loading and boundary
conditions are presented in Figure 8a. A uni-
form vertical pre-compression p of 0.6MPa is
applied and then held constant while the cyclic
horizontal displacement d is applied. Parame-
ter identification was performed upstream on a
monotonic shear test representing the envelope
curve of the cyclic test.
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Figure 8: (a) Wall geometry (b) Global F - u response for CUB8 elements of size 0.125m
(c) Experimental cracking pattern and numerical damage map [21].
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Figure 9: (a) Comparison of the evolution of total experimental and numerical dissipations
(b) Energy dissipated per loop and mechanism.
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A comparison of the cyclic responses ob-
tained numerically and experimentally suggests
a good representation of the overall behaviour
of the wall (Fig. 8b). The hysteresis phe-
nomenon develops with the material’s progres-
sive degradation: the size of the loops increases
with the development of damage (expanded
sliding surfaces with the appearance of new
cracks). The shear modulus deteriorates with
loading. The classic cross-shape characteristic
of shear damage is obtained (Fig. 8c).

The general trend in the evolution of dissi-
pation per loop is well represented (Fig. 9a) but
the numerical values are lower (except for loops
1, 8 and 9) (Fig. 9b). Under monotonic loading,
the main degradation mechanism is damage:
cracks tend to open in one direction, so friction
is limited. In the case of cyclic loading, fric-
tion becomes the main dissipative mechanism.
Since Ḋdamage (Eq. (7)) depends on the dam-
age increment ḋi, it remains zero if the strain
reached in the previous cycle is not exceeded
because the damage is not evolving (case of
loops 4 and 5) (Fig. 9b). The frictional dissi-
pation Ḋsliding stays the same when the cycle is
performed several times (case of loops 4 and 5).
This leads to a stabilisation of the total dissipa-
tion Ḋ per loop which is found both experimen-
tally and numerically.

3.3 Effect of the regularisation method for
a wall under monotonic loading

The choice of regularisation method mainly
affects the representation of local quantities
such as damage and mesh independence. A wall
with a window (Fig. 10) is studied here from a
purely numerical point of view to compare the
impact of the regularisation techniques.

When no regularisation method is applied
(Fig. 11a), the results do not converge to a so-
lution when the mesh is refined. As the dis-
sipated energy is related to the area under the
stress-displacement curve (Eq. (8)), it tends to-
wards zero as the mesh size decreases, which is
nonphysical. Energetic regularisation requires
the mesh size to be reduced (Fig. 11b), whereas
non-local regularisation allows the results to

converge more quickly (Fig. 11c). The curves
are not exactly the same between the two meth-
ods since the brittleness parameter has not been
recalibrated.

Figure 10: Wall geometry [22].

As far as damage is concerned, the non-
local regularisation provides a more diffuse re-
sult since the energy dissipation is no longer re-
duced to a single element, which avoids localis-
ing the damage in a line of elements. Even for a
coarse mesh size (8cm), the damage map is sat-
isfactory for non-local damage (damage around
the window and at the ends of the walls) [22].
Although more costly (Tab. 1), the better mesh
convergence of non-local calculations justifies
their use.

The dissipations are shown in Figure 13 for
the different methods used. It can be seen that
when no regularisation technique is used, the
dissipation decreases with mesh refinement and
the results do not stabilise. For the Hiller-
borg technique [7], convergence is observed
when the mesh size decreases. For the non-
local method, total dissipation is almost con-
stant, which can be explained by the conver-
gence speed of the mesh. As expected, the main
dissipation mechanism is damage because the
loading is monotonic (Fig. 13c versus Fig. 13b).

4 CONCLUSIONS AND PERSPECTIVES
The model’s ability to describe the response

of masonry to complex loading was illustrated
by local tests. In particular, it was able to re-
produce the hysteretic loops observed for cyclic
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shear loading, as well as the effect of confine-
ment on friction. Numerical analyses on struc-
tural elements have shown that the model is
capable of satisfactorily representing the over-
all behaviour of the material (in particular the
force-displacement curves). Local quantities,
such as the damage field, are qualitatively well
reproduced, but a non-local regularisation gives
better results. The contributions of dissipa-

tion by degradation mechanism have been esti-
mated. Damage is the main dissipative mecha-
nism for monotonic loading. However, friction
takes over as soon as a cyclic behaviour or a
discharge phase is initiated. This work provides
a first step towards a future assessment of the
seismic vulnerability of masonry structures for
weak to moderate earthquakes.
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Figure 11: Force-displacement curve for different regularisation methods.

Figure 12: Damage map for different mesh sizes.
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Table 1: Calculation time as a function of mesh size and regularisation method.

Techniques Energetic Non-local
Mesh size 8cm 4cm 2cm 8cm 4cm 2cm

Calculation time 2min 13min 2h 5min 3h34 14 days
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Figure 13: Dissipations for different regularisation techniques and mesh sizes.
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