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Abstract

Representative volume is redefined from statistical point of view. First,
a representative relationship is established among three parameters: the
local volume under consideration, V, a effective property
corresponding to the volume, Qy, and the coefficient of variation of the
effective property, p,. Then, an arbitrary level of the variation can be
set, any Vo corresponding to a variation below that level may be
considered to be acceptable as representative volume. The present study
focus on p,, due to variation in local volume fraction, which depends on
the local microstructural configuration, and can be described by
autocorrelation function of internal structure of the composite. The
autocorrelation function is formulated based on a morphological model
called mosaic pattern. The representative volume of effective bulk
modulus of a two phase composite, concrete, is determined as an
example.

1 Introduction

Representative volume (RV) of a composite material has been defined as
the minimum volume on which the measured properties of the
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composite material can be considered to be equivalent to the real
effective properties of the composite. RV is important not only for
experimental determination of materials properties, but also for
theoretical analyses of various properties of the materials. However, a
general and quantitative description on RV of composite materials has
not been developed simply because the complexity of the problem. In
fact, RV is not a very well defined quantity, and, there is no distinct
value of RV in the sense of the definition. Because one cannot say that
an effective property of a composite measured from a sample with a
given volume represents the real effective property perfectly, while
another result from a sample with 90% volume of the first one does not
represent the property at all.

In the present study, we first define a representative relationship,
which is the relationship among three parameters: the volume under
consideration, V, a property corresponding to the volume, Q,, and the
variation of the property, p,. Under this definition, a property of a
composite measured based on a given volume may predict the real
property with 20% variation, while the same property measured based
on a larger volume may have only 10% variation. Actually, the
asymptotic trend of the variation is very clear. It decreases
monotonically with increasing size of the volume, and approaches to a
constant as the size of the volume approaches to infinity.

Now that the representative relationship is a continuous function in
terms of the variation, an arbitrary level of the variation can be set,
which may be called the acceptance level or the critical level. Any
volume corresponding to a variation below that level may be considered
to be acceptable as RV, otherwise should be rejected. This is the new
definition of RV proposed in the present study. One of the advantages
of the definition is that the adequate RV can be quantitatively evaluated
upon different requirements on degree of variation of measurements,
which is important not only for theoretical analysis but also for
engineering practice.

The fundamental question, now, is how to determine the variation of a
material property, p,, under certain volume. For a composite material,
there are two possible sources that induce variations in the effective
property, namely, uncertainty of properties of each constituent phase,
and uncertainty of the local microstructural configuration, such as local
volume fraction of aggregate in the case of concrete. Apparently, the
variation of local volume fraction depend on the size of the local
volume. In general, with increasing size of the local volume, the
statistics obtained based on the local volume will asymptotically
approach the value of the global average. Similarly, the variation of
properties of the aggregate and the cement paste depend also on the
local volume. But as the local volume increases, variations of local
properties approach not to zero but to certain constants, which are
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inherent variations of the properties of aggregate and cement paste
measured as single phase.

The main purpose of this paper is to establish a theoretical model for
quantitative evaluation of the RV for cementitious materials. Focus will
be made on the effect of variation in local volume fraction, because it is
important for fracture analysis of concrete. In fracture analysis, the
local volume fraction of aggregate around a crack tip has dominant
effect on the resistance to crack growth, but the local volume fraction is
different with the one used in mixing design for the specimen. This
local heterogeneity of the internal structure explains size effect and
large scattering in fracture testing. Since local heterogeneity is related
to the morphological features of the internal structure of concrete, a
morphological model, called mosaic pattern (Xi and Jennings, 1995) , is
adopted in the present study. A simplified method for evaluation of
morphological parameters of two phase composites is provided, and as
an example, RV for effective bulk modulus of concrete are
demonstrated.

2 Criterion for determination of representative relationships

Let us denote Q, as an effective property of a composite in a finite
volume V. Q,, depends on three types of parameters. The first type is
local volume fractions of the phases, 7, ; the second is corresponding
properties of the constituent phases, Q,, which is the averaged value
over the local volume V; and the third is related properties of the phases
averaged over V, ¥,. Q, and these three types of parameters can be
written in a general functional form as follows

Qv'_—g(ﬂn\Pka) 1)

where i = 1,2, ..., m, m = the total number of phases in the composite; j
=12, .., M; k=12, ..., m-1, since only m-1 of local volume fractions
are independent; g is a functional form which depends on various
factors such as the property to be studied, the type of composite under
investigation, and the theory employed to establish Eq. 1. Since Q., ¥ i
and 7, are considered to be random variables, Q , as a function of
these random variables, is a random variable too. According to
probabilistic theory, the mean value and variance of Q, can be written
in general forms

E{Q}=]". [ Ts@. ¥, 1)f(Q, ¥, 1,)dQd% dt, 2)
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o = E{Q}}-[E{Q}] 3)

in which f(Q,.¥;,7,) is the joint probability density function for the
random variables; E{.} is the expectation operator; o, is the standard
deviation of Q,. The mean value, Eq. 2, can be evaluated easily because
E{Qy} must equal to the global average 2

E{Q,}=Q=2g(Qi, ¥, 0,) 4

in which Q., ¥;, and ¢, are global averages of Qj, ¥j, and 7k,
respectively. Actually, we are more interested in the second order
information in a dimensionless form, that is, the coefficient of variation,
P, which can be obtained by combining Eqgs. 3 and 4

oo {E@}-[EQN]

_ _ )
YOEQ} g6

p, depends on f(Q, ¥, 7,) and g(Q,¥, 7). gQ,¥, 7,) represents
physical relationships among the effective properties, the local
properties of each constituent phase, and the local volume fractions.
f(Q,¥;, 7,) characterizes the statistical features of these random

variables. As one can see clearly that Eq. 5 is exactly the representative
relationship that we are looking for. To evaluate Eqg. 5, both
f(Q, ¥, t) and g(Q,¥;, 7,) must be determined first.

Determination of effective properties of composite materials based on
the properties of their constituents, i.e. g(Q,¥,,7,), has long been a

major research topic in composite mechanics. A wide variety of
mathematical models has been developed to evaluated many different
effective materials properties. However, all these methods have been
developed to evaluate the effective properties of composites presumably
with a very large volume, much larger than any possible size of RV.
Then, the methods will be valid for all kinds of composites.

As a simple example of g(Q,,¥,, 7,), Hashin and Shtrikman bounds

(lower bound only) for bulk modulus of a two phase composite is listed
as following (Hashin and Shtrikman, 1963)

*

K =K + -7

1 37, (6)
+
K,-K, 3K +4G,
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in which Kl* is the lower bound for effective bulk modulus of the
composite; K1 and K2 are bulk moduli of the two phases with K2 > K1;
G1 is the shear moduli of the phase 1.

The exact solutions for f(Q,, ¥, 7,) are very difficult to determine in
most of the cases. For practical engineering problems, however, we are
interesting in the variations close to mean values rather than extreme
values. This provides us an alternative to evaluate o, approximately.
In fact, assuming only the local volume fractions are random variables,
an approximate evaluation of o} can be obtained by linearization of
g(Q,,¥,, ) around the mean values (Ditlevsen, 1981)

_ m=1m= lag(gl’ \P], E{Tk}) (9g(Q', ‘I’], E{Tl})
k=1 =1 T 91’1

Cov(t,, 1)) @)

in which Cov(t,,7,) is the covariance of the local volume fractions.
Assuming 7, are mutually independent random variables, Cov(7,.7,) = 0

for k # 1. For a two phase composite, by denoting Cov(7,7,)=0? Eq. 7
can be further simplified as

(9. ¥, E{1,})
GQ _( aTl o-‘r (8)

Now, one can see from Eqgs. 7-8 that the problem that determination
of variance of an effective property, o, has been transformed into

another problem, that is, the determination of the variance of local
volume fraction.

3 Variation of local volume fraction

Variation of local volume fractions is related to the microstructural
configurations of the material under investigation. It depends on many
factors, such as the size of the local volume, the global volume fractions
of the constituent phases, and the coarseness of the grains. Obviously, a
quantitative evaluation on o’ requires a mathematical model that
includes all these influential factors. A method developed by Lu and
Torquato (1990) will be used in the present study for evaluation of .

ot =gz ] [R- 6] VPR ) dr ©)
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in which V( is the local volume; R( is the shape factor of V(; r is the
distance between the centroids of two local volumes; R (r) is the
autocorrelation function of the microstructure; V,*(r,R,) is the
intersection volume of two identical local volumes, it is a function of r
and RQ. When the local volume is a sphere with diameter R(), the
intersection volume of two spheres with a center to center spacing r can
be easily determined

w_ TRy, _3r
= {1 2R0+2R8} (10)

Autocorrelation function is the second order information of the
spatial arrangement of randomly distributed constituent phases. In the
present study, the autocorrelation functions for multiphase composites
developed based on mosaic patterns will be used (Xi, 1995). Figs. 1 and
2 show two different kinds of mosaic patterns, the one on Fig. 1 is
called L-mosaic, and the other one on Fig. 2 is S-mosaic.

Fig. 1 Generated 2D and two Fig. 2 Generated two dimension and
phase L-mosaic pattern two phase S-mosaic pattern

Two dimensional polygons in the figures are called basic cells of
mosaics. The methods to construct these mosaic patterns can be seen in
literature (Xi and Jennings, 1995; Kumar, 1992; Pielou, 1977). From
Figs. 1 and 2, it is clear that L-mosaic may be used for the concrete
with crushed stones, and S-mosaic for river gravels. The
autocorrelation functions for two phase L- and S-mosaic are (Xi, 1995)

RA(r)= ¢! +(¢,— ¢} )™ (11a)
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RN =0! +(0,— 0] 1+ Ar)e™ (11b)

in which the superscripts L and S represent L- and S-mosaic,
respectively. Parameter A in Eq. 11 is called coarseness of grain
structures, it is the number of segments of the basic cells on unit length
when a 2D mosaic is cut by a transect. A is independent with the
volume fraction, and is a measure of the grain sizes of the mosaic.

4 Influential factors on representative relationships

The representative relationship (RR) for a two phase composite material
(m = 2) can be established by combining Eq. 5, 8 and 9

12
! é}g(ﬂf’qjj’E{Ti})T : 27 y7int
Po= — IR (=0, V"I R, dr (12)
’ g(Qi,‘?]‘,gb})H ar, ng[ 1] > (rR,)

Consider the effective bulk modulus shown in Eg. 6 as an example.
From Eq. 12, the complete expression for the RR of effective bulk

modulus of a two phase composite (L-mosaic) is

oK, 1 |-24 o el 21 60 60 o 60)]|"
PQ=§&)I—E{?(¢1—¢1 )[e 5(3+—%—+?+-§}+(—2+—5——-€—3H} 13)

where £ = A R, called characteristic number.
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Fig. 3 £ and the coefficient of variation of effective bulk modulus.
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Fig. 3 shows curves of p, verses characteristic number & at ¢, = 0.5.
Also, the effect of bulk moduli on p, is analyzed by taking X,/K, =

3,5,7,10, respectively. Poisson's ratio for the two phases are assumed to
be v, = 0.1 for phase 2 and v, = 0.2 for phase 1, and thus
G /K, =3(1-2v,)/2(1+v,) = 0.818. From Fig. 3, one can see that the
effect of K,/K, is significant especially when & is small. The effect of
Poisson's ratio has shown to be negligible.

Eq. 13 is based on the effective bulk modulus of a two phase
composite. RR and characteristic number for any other effective
properties of composite materials can be obtained in a similar manner.
Then the RV for any of the effective properties can be determined when
A is known. The main progress made in the present study is that the
estimation on RV is not based on qualitative analysis or probabilistic
reasoning but on rigorous theoretical modeling. Derivation of Eq. 13 is
completely analytical, and there is no free parameters involved in the
derivation that must be determined by curve fitting.

S Representative volumes of cementitious materials

Once the characteristic number is obtained for a property of a
composite material, the determination of A becomes a major concern. A
can be determined by image analysis method which, however, is not
available in many cases. It is therefore desirable to develop a method
for evaluation of A based solely on those parameters of initial mixing
design that can be easily assessed in most of practical engineering
laboratories. Next, portland cement concrete will be taken as an
example to demonstrate how to determine A and RV without using
image analysis method.

Initial parameters in concrete mixing design that are needed for
determination of coarseness A are volume fraction of aggregate ¢, and
grading curve of the aggregate (particle size distribution). From the
latter, the average size of aggregates, E{D}, can be obtained. In one
dimension case where a transect cutting through the sample of the
concrete, the same ¢, can be obtained as ¢, = E{L.}/[E{L.} + E{L.}]. in
which E{r,} is the average length of the aggregate segments on the
transect, E{L.} is the average length of the cement paste segments on
the transect. Then the coarseness A can be evaluated as (Xi, 1994; Xi
and Jennings, 1995) 2 =2, +, = I/E{L,}+Y/E{L} = Y[E{L.}I-¢,)]-

Now, one must realize that E{L.,} is not the average size of the
aggregates, E{D}, obtained from sieve analysis, because E{L,} is the
average segment length of aggregates on transects used for one
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dimension mosaic analysis. While the sieve analysis gives the average
size of aggregates in three dimension. As a first approximation, E{L,}
= (2/n) E{D} (Xi and Jennings, 1995). The final expression of
coarseness A for concrete is

i 1

- L (14)
2E{D}I-¢,

As an example, let us take ¢, = 0.7 and E{D} = 0.7 inch (for coarse
aggregate), then from Eq. 14, A = 7.48. According to Fig. 3 with v /v,
=2, v, =0.1, and K,/K, =7, for variation of bulk modulus of concrete
below 5%, the corresponding characteristic number & = 23, and thus
acceptable RV = R = &/A = 3 inch. It is exactly the diameter of the
most commonly used cylinder size for concrete testing although the
standard cylinder size is 6 inch. We now know from the present
example that the minimum variation of 3 inch cylinder test for concrete
is about 5%, and the actual scattering must be larger than 5%, because
variations due to random sources other than local volume fraction of
aggregate are not included in this example. Eq. 14 is valid not only for
concrete but also for any two phase composites.

6 Conclusions

1. Representative volume is defined from statistical point of view.
First, a representative relationship is established among three
parameters: the local volume under consideration, V, an effective
property corresponding to the volume, Qvy, and the coefficient of
variation of the effective property, p,. Then, an arbitrary level of the

variation can be set. Any volume corresponding to a variation below
that level may be considered to be acceptable as representative volume,
otherwise should be rejected.

2. The variation of an effective property is due mainly to two
sources, namely, uncertainty of the properties of constituent phases, and
uncertainty of the local microstructural configuration. The present
study focus on the latter one, particularly on the variation in local
volume fractions. The variation of the local volume fractions depends
on autocorrelation function of internal structure of the composite under
consideration, which has been formulated based on a morphological
model, called mosaic pattern. Two controlling parameters of the
resulting representative relationship are volume fractions of constituent
phases and characteristic number &, & = A Ro, where Rg is the size of
the local volume and A is coarseness of the mosaic, i.e. the coarseness of
the grain structure of the composite.
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3. The representative relationship of effective bulk modulus of a two
phase composite is determined as an example. A simplified method is
developed to evaluate A for a two phase composite. A numerical
example shows that for commonly used concrete composition, the
representative volume (diameter) for concrete cylinder test should not
be smaller than 3 inch, if variation of the measured property (bulk
modulus) is required to be less than 5% (variations due to random
sources other than local volume fraction of aggregate are not included
in this example).
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