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Abstract

There is much experimental evidence on the existence of the size
effect in concrete and reinforced concrete (RC) structures. The pro-
blem has two aspects — statistical and deterministic. Although the
statistical aspects are not negligible, the size effect on the nominal
strength is controlled by the structural energy release due to con-
crete cracking. If a stable crack growth before reaching peak load is
possible, strong size effect may be expected. If this crack growth is
not possible, structure fail at crack initiation with no size effect. In
any small concrete and RC structure relatively stable crack growth
is possible. As a consequence, any small structure exhibits a relati-
vely ductile behavior and size effect which is at least in a limited size
range always present. There is no general size effect law, however,
it may be useful to classify structures in two classes: (1) Structures
of positive geometry — size effect strong only in a limited size range
and (2) Structures of negative geometry — size effect strong in a
broad size range.
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1 Introduction

The size effect problem has two aspects: (1) Statistical and (2) de-
terministic (mechanical). Although the statistical aspects (Weibull,
1939) are not negligible, it has been generally agreed that the main
reason for the size effect lies in concrete cracking and related struc-
tural energy release (Bazant, 1984). From the deterministic point
of view, the formulation of the size effect relationship has been in
the past principally treated in two different ways: (1) Based on ex-
perimental results, for each particular problem, without any theory
behind and (2) based on a theory, general size effect laws have been
formulated which in a simple close form relate the nominal structu-
ral strength for any geometry type with it’s size. The first approach
is strictly practice oriented and it covers only a limited size range
for a certain problem type. The second (theoretical) approaches
rely on the assumptions which need not to be generally fulfilled.

Currently, two major completely opposite types of theoretical
scaling laws for concrete structures exist. The first type is essentially
derived using linear elastic fracture mechanics (LEFM), nonlinear
fracture mechanics, the cohesive crack model or simple energy ba-
lance considerations between the structural energy release and the
concrete energy consumption capacity. These approaches deal with
a single crack and an a priori assumption on a constant or propor-
tionally scaled initial law. They are important from the theoretical
point of view and useful for determination of the material fracture
properties. However, for concrete and reinforced concrete structu-
res the single crack growth assumption is unrealistic i.e. in most
structures more than one crack always exists.

Applying one of the above methods and assuming: (1) The crack
length proportionality at peak load and (2) the size of the concrete
fracture process zone (FPZ) different from zero, all these approaches
essentially yield to Bazant size effect law (Bazant, 1984):

oy = Bfi(14+ 8% B=d/dy (1)

where o y= nominal strength, d= structure size, f; = tensile strength
of concrete, B and djy are two constants to be determined either ex-
perimentally or by a more sophisticated analysis. According to (1),
the size effect is transitional between the yield limit (plasticity, no
size effect) and the size effect of linear elastic fracture mechanics
(maximal size effect).

The assumption of a constant and size independent concrete frac-
ture energy is for concrete structures approximately true. However,
the hypothesis on the crack length proportionality at peak load is
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generally not fulfilled. As a consequence, the validity of Bazant’s
size effect law is limited.

The second type of the scaling law, recently introduced by Car-
pinteri (1994), is based on the multifractal aspects of damage —
multifractality of the crack surfaces. Practically, the concept relies
on the homogeneity (inhomogeneity) of the material i.e. in a small
concrete structure the aggregate size is large relative to the struc-
ture size and, therefore, the inhomogeneity is maximal and the size
effect strong. On the contrary, in a large concrete structure the ag-
gregate size is small relative to the structure size and the material is
close to be perfectly homogeneous. As a consequence the size effect
disappears. According to the fractal damage concept, the size effect
law (MFSL) is of the form (Carpinteri, 1994):

ox = (A+ )P @)
where A and C are two constants obtained by fitting of test or
calculated data. As can be seen from (2), if d — oo the nominal
strength yields to a constant value different from zero (strength
limit). On the contrary, when d — 0, oy — oco. This means that
the size effect for any concrete structure is strong only in a limited
size range.

Many experimental and numerical results for concrete and RC
structures can be interpreted using this non-mechanical concept
(Ozbolt, 1995). However, in the concept the basic mechanical back-
ground is missing — the homogeneity (inhomogeneity) of the strain
field. For small concrete structures the strain inhomogeneity nor-
mally coincides with the material inhomogeneity. In larger structu-
res the material inhomogeneity disappears, however, the inhomoge-
neity of the strain field generally does not. Namely, by the nature
of the problem the strain inhomogeneity may be present even when
d — oo (all proportionally notched structures). Therefore, the same

s (1), Eq. (2) has a limited range of applicability.

2 Scaling laws — new crack propagation approach

The structural size effect is caused by cracking and structural energy
release as a consequence of cracking. Therefore, to understand the
size effect and to recognize structures which are size effect sensitive
it is important to distinguish different types of crack propagation.
After the crack initiates (o = f;), it’s growth is controlled by energy
balance between the structural energy release rate (AU/Aa) and
the concrete energy consumption capacity (Gy), with U= energy
accumulate 1 in the structure and a= crack length. Depending on
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the energy balance, two principally different types of crack propa-
gation may be distinguished: (1) AU/Aa > Gy — unstable crack
propagation and (2) AU/Aa < Gy — stable crack propagation.

When unstable crack growth takes place the structural energy
release caused by crack growth can not be consumed by concrete
(there is no energy equilibrium). Therefore, the load must decrease
after the crack initiates. This means that the structure fails when
in the critical cross-section the concrete tensile strength is reached.
With this failure type the structure exhibits a strong sensitivity
on the variation of the tensile strength and no sensitivity on the
variation of the concrete fracture energy i.e. the ultimate load is a
function of the tensile strength only and there is no size effect on
the nominal strength (expect statistical).

At stable crack growth, the structural energy released as a con-
sequence of cracking can be consumed by concrete (energy equili-
brium is possible). Depending on the extend of cracking, the energy
consumed by concrete may significantly contribute to the ultimate
load. This contribution is the main reason for the existence of the
size effect on the nominal strength. Therefore, with stable cracking
the ultimate load is mainly controlled by the cracking process rat-
her than by the tensile strength. Structures which exhibit a stable
type of fracture are sensitive to the variation of the concrete frac-
ture energy and insensitive to the variation of the tensile strength.
Consequently, the sensitivity of any structure to the size effect can
be checked by checking the sensitivity of the structural response to
the variation of G/.

2.1 Scaling laws for typical concrete and RC geometries
According to LEFM, with respect to a single crack growth, two ty-
pical structure configurations (geometries) exist: (1) Positive con-
figurations (geometries) — after crack initiation an unstable crack
growth takes place (see Fig. la) and (2) negative configurations
(geometries) — after initiation the crack grows in a stable manner
(see Fig. 1b).

The above mentioned geometries are two extreme cases. Howe-
ver, in concrete and RC structures one has to account for some
additional aspects such as: (1) Finite size of the FPZ, (2) existence
of a number of cracks before reaching failure, (3) concrete nonlinea-
rity and related change of the failure mode when increasing the size
and (4) influence of reinforcement. Consequently, with respect to
crack growth, the concrete and RC structures may be classified in
three typical categories: (1) Single crack growth — positive geome-
try, (2) single crack growth — negative geometry and (3) multiple
crack growth — complex type of geometry.
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Fig. 1 Structural response for typical fracture geometries:
a) Positive (normal) geometry: b) Negative geometry.

2.1.1 Single crack propagation — positive concrete geometry

As discussed above, positive geometries exhibit unstable crack gro-
wth i.e. the load decreases immediately after crack initiation. Ho-
wever, FPZ in concrete has a finite size, different from zero. The-
refore, for a relatively small structure the formation of a stable
damage zone is possible. Generally, when d — 0 it can be shown
that in the critical cross-section the strain gradient (Ae/Az) ap-
proaches infinity i.e. a strong strain localization exists. For such
a case U — 0 and also AU/Aa — 0. Since Gy is a constant dif-
ferent from zero, G;/(AU/Aa) — oo, and theoretically oy — oo.
However, practically d = 0 has no physical meaning and, there-
fore, ong_.0 = ONplasticity- Lhis nonlinear effect (relatively large
concrete FPZ) disappears when the size of the FPZ becomes ne-
gligible in comparison to the structure size (d — o0). Conse-
quently, in the critical cross section Ae/Az — 0, AU/Aa —
and G;/(AU/Aa) — 0. This means failure at crack initiation and
no size effect.

The size effect law for positive concrete geometries may be ap-
proximately described by an empirical equation of the form:

ON = Bﬁf(l + A/)a < Opiasticity, | = d()/d (3)

where B and dj are two constants which depend on the problem type
and material fracture properties (similar as in the case of Bazant’s
size effect law), « is a problem dependent constant between 0 and
1.

The general shape of the curve from (3) is plotted in Fig. 2a in
a double logarithmic scale and in Fig. 3 in normal scale. The shape
is essentially the same as predicted by (2) although with a comple-
tely different physical background. The nonmechanical arguments,
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exploited in the multifractal damage theory, coincide with the me-
chanical arguments discussed above. However (3) is in contradiction
with BaZzant size effect law (1). For positive geometries the crack
length proportionality at peak load does not hold. Only in special
cases when the size of the initial flaw is proportional to the struc-
ture size (e.g. an artificially notched beam) Bazant’s size effect law
applies. However, in such a case the crack length proportionality
is not a structural property but an imposed boundary condition on
the crack length.

a) b)
log(@,,/Bfy) log(0,, /Bt )
A N Fe
s 76‘(\ plasticity limit plasticity limit
o ;
-5 T.=Bi(1+do/d) < O,
= ED N t( o/d) Npl —
0 ~1/2 \
4y J,=Bf(1+d/d
strength limit N t{1+d/do)

log(d,) log(d) log(d/do)

Fig. 2 Size effect laws: (a) positive geometry and (b) negative
geometry.

2.1.2 Single crack propagation — negative concrete geometry

For negative geometries (e.g. in case of a headed stud embedded
in a large concrete block) a stable crack growth before reaching
the ultimate load is possible and G's significantly contributes to the
ultimate load. For extremely large structures (d — oo) the relative
size of the FPZ yields to zero. It can be demonstrated that for
such a case the crack length at peak load increases approximately
proportionally with the structure size (Elices and Planas, 1992) i.e.
a strong strain localization in a broad size range exists. Therefore,
Bazant’s size effect law approximately applies (see Fig. 2a and 3).
Strictly speaking, in the limit case (d — oo) the contribution of
the tensile strength to the ultimate load is always larger than the
contribution of the concrete fracture energy. Therefore, theoreti-
cally, the nominal strength yields to a constant value different from
zero. However, in contrast to positive geometries, this takes place
for a relatively large structure size and is not interesting from the
practical point of view. Namely, the ratio between the "residual
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nominal strength” (d — oo) and the maximal nominal strength
(d — 0,0N,,,u0,) 18 negligible small (see Fig. 3).

In the past, the upper limit on the nominal strength (mode-I
single crack) was often considered as a strength or plasticity limit
(Bazant, 1984). This is principally not correct since there is an
essential difference between strength and plasticity limit. Namely,
the plasticity limit (contribution of both, strength and cracking to
the ultimate load) is the highest and the strength limit (only con-
tribution of the material strength) the lowest limit on the nominal
strength i.e. they can never coincide.

N\
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nominal strength

Bazant’s SEL
negative geometry limi /

—B
size

e N

r ™

size range of practical
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Fig. 3 Schematical plot of the nominal strength as a function of the
size for positive and negative geometries.

2.1.3 Complex concrete and RC geometries

In the case of the aforementioned positive and negative geometries
it has been assumed that after crack initiation only a single crack
grows. Due to the reasons mentioned before, in most RC structu-
res more than one macrocrack grows before reaching the ultimate
load. When extensive cracking in the pre-peak load-displacement
response takes place the concrete fracture energy significantly con-
tributes to the ultimate load and the size effect is strong. Due to the
complexity of the failure mechanism each case must be separately
studied, not using a simple single crack approach, but employing a
more sophisticated nonlinear numerical fracture analysis. If possi-
ble, numerical results should be checked by experiments. This is,
however, not simple since systematic tests on large concrete and
RC structures are usually related with extremely high costs. Prin-
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cipally, structures with a complex crack growth may exhibit a size
effect on the nominal strength either as a structure of positive geo-
metry, negative geomeiry or as a combination of both.

3 Example — Diagonal shear failure of slender RC beams
without shear reinforcement

To demonstrate the size effect for a typical complex geometry, the
results of a numerical study using the nonlocal micreplane FE code
(Ozbolt and Bazant, 1994) for slender RC beams without shear re-
inforcement which fail in diagonal shear are shown in Fig. 4. The
calculated nominal shear strength obtained for a broad size range
are plotted and compared with test results and Bazant’s size effect
law. The fit of the calculated data, using linear regression analy-
sis, with the size effect law prr}ﬂoqed fqr positive geometry (3) is
alsa plotted. The fit agrees well with the calculated data and the
experimental results in the whole size range. On the contrary, for
larger beam depths, the calculated and test data show an obvious
disagreement with Bazant’s size effect law which underestimate test
and calculated data.

DIAGONAL SHEAR FAILURE
+ slender beams, h= 100-2000 mm
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Fig. 4 Size effect on the nominal shear strength — comparison
between calculated data. test data and Bazant's
size effect law,

Summarizing the numerical results, it may be pointed out that
the size effect on the nominal diagonal shear strength is in a size
range up to approximately h= 1000 mm strong and close to that
obtained by LEFM. Therefore, in a limited size range the beams act
as a structure of negative geometry i.e. stable crack growth is possi-
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ble. For large beams the size effect disappear and the nominal shear
strength yields to a constant value different from zero. In the limit
case (d — o0) the structure acts as a structure of positive geometry
i.e. the beam fail at initiation of the first bending crack. This means
that the failure mode is changing when increasing the beam depth
from diagonal shear to failure at crack initiation. The nominal dia-
gonal shear strength must yield to a constant value different from
zero, otherwise, large beams would fail in diagonal shear before any
bending crack at the beam bottom initiates, what is impossible.

4 Conclusions

1. The main reason for the size effect on the nominal strength in
concrete structures is due to concrete cracking and the related
structural energy release. If in a broad size range a stable crack
propagation is possible the size effect is strong. On the contrary,
if no stable crack propagation is possible the structure fails at
crack initiation without size effect.

2. The ultimate load of structures which exhibit a strong size ef-
fect is a function of both, concrete fracture energy and material
strength. However, if there is no size effect, the ultimate load is
a function of the material strength only. Therefore, the sensiti-
vity of any structure on the size effect may simply be checked
by investigating the sensitivity of the ultimate load on the va-
riation of the concrete fracture energy. If it is strong, the size
effect must be also strong.

3. There is no general size effect law for concrete and reinforced
concrete structures. However, it may be useful to distinguished
two classes of structure configurations (geometries): (1) positive
(normal) — stable crack growth is possible for small structures
and (2) negative — stable crack growth is possible. In the first
case the the size effect is strong only in a limited size range
and for d — oo the nominal strength tends to a constant value
different from zero. In the second case the size effect on the
nominal strength is strong in a broad size range and for d — oc
the nominal strength yields approximately to zero.

4. Due to the complexity of concrete and RC structures, most of
them exhibit a transition of the failure mechanism when incre-
asing the size i.e. in a small size range they act as a structure
of negative geometry (stable crack propagation, quasi ductile
behavior). On the contrary, large structures act as a structure
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of positive geometry. For any concrete and RC structure the
size effect always exists at least in a limited size range.
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