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Abstract

Modelling of material behavior generally involves the development of a
mathematical model based on observations and experimental data. An
alternative way discussed in this paper, is neural network based modelling
which is a subfield of artificial intelligence. The main benefit in using a neural
network approach is that the network is built directly from experimental data
using the self organizing capabilities of the neural network. In this paper, size
effect in fracture of cementitious materials is modelled with a back-
propagation neural network. The results of the neural network based size
effect law look viable and very promising. A large concrete member without
initial crack can resist some stress. The neural network based size effect law
behaves asymptotically in the case of larger sizes.

This paper was written during a stay of the first author as fellow at Delft
University of Technology, Stevin Laboratory, Delft, The Netherlands.
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1 Introduction

It is a common observation that while computers can perform symbolic
manipulation faster and more reliable than humans, people outstrip machines
easily in many areas of information processing. This observation has led
many scientists to view the facts of our brains that carried out highly
significant about the style of computation. Many attempts have been made to
solve problems by using simplified principles of nervous systems. These
attempts include expert systems, fuzzy logic and neural networks.

Development of neural networks was mainly driven by the desire to
develop computational models of the human brain. A small neuron in the
human brain is meaningless unless it works together within a parallel network
system. In other words, a human brain is a massively parallel system. Von
Neumann type computers have shortcomings in this respect because of their
serial computings.

The most important property of neural networks in engineering problems is
their capability of “learning” directly from examples. The other important
properties of neural networks are their correct or nearly correct responses to
incomplete tasks, their extraction of information from noisy or poor data, and
their production of generalized results from the novel cases. This has been
particularly observed in previous studies (Arslan and Ince,1994,1995) as well
as in the study.

2 Neural Networks

Neural networks are basically immerse the imitations of behaviour of human
brain. Even a quite simple neural network of small size when compared to the
human brain, has some powerful characteristics in knowledge and information
processing due to the similarity to the human brain in computation. This
makes neural networks as a powerful tool for engineering applications.

Neural Networks solutions puts a fundamentally different approach in
dealing with modeling problems than traditional methods. The main
advantage of neural networks is that experimental and field data are utilized
directly, without simplifying assumptions. All arrangement for organization
and learning are formed internally within the network.
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The idea of a neural network was originally conceived as an attempt to
model the biophysiology of the human brain, to understand and explain how
the brain operates and functions. The goal was to create a model capable of
human thought process. Neural networks attempt to achieve these intelligent
capabilities by using a densely interconnected system of simple computational
elements that operate in parallel. The central motivation underlying the
development of artificial neural system is to provide a new type of computer
architecture in which knowledge is acquired and stored over time through the
use of adaptive learning algorithm.

Neural network technology brings completely different concepts to
computing. Neural computing is a non-algorithmic method of computing
which is able to take full advantage of massively parallel computer
architectures. Neural networks learn an application, they are trained through
examples rather than programmed by software. Neural networks distribute
abstract forms of information throughout a network in the form of
interconnection weights, rather than storing specific information in specific
locations like computer memory.

Rumeldardt et. al.(1986) derived a learning algorithm for a formalized
model of a biological neuron so called “perceptron” networks with hidden
units based on Widrow and Hoff learning. Their learning algorithm is called
backpropagation and is now the most widely used learning algorithm.

A wide variety of neural networks have been reported in the literature.
Each type of neural network has an advantage in different tasks. Some of
them are suitable in optimization problems while others are useful in
adaptation and learning . However, the backpropagation networks probably
the most widely used neural networks (Rumeldardt et. al.,1986).

Due to noisy data in experimental results on size effect, a size effect theory
can be established based on artificial neural networks. This will be very
meaningful and a reasonably well approximation to the size effect.

3 Backpropagation neural networks
Backpropagation is a specific learning law. However, the term is often used

to refer as a network architecture that uses the backpropagation algorithm.
The backpropagation learning law is used for updating the weights of each
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layer based on the error present at the network output. The processing units in
a backpropagation neural network always consist of at least three layers; an
input layer, a hidden layer, and an output layer. For some applications more
than one hidden layer is used. The presence of these hidden layers allows the
network to present and compute more complicated associations between
patterns. The number of neurons in the input layer is equal to the number of
inputs and each of these neurons receives one of the inputs. The output of the
neurons in the output layer is the output of the network. The number of
neurons in the hidden layer is up to the discretion of the network designer.
Too few neurons in the hidden layer will not allow the network to produce
accurate maps from the input to the desired output, while too many neurons
will result in difficulties in dealing with new types of input patterns.

In a backpropagation network, no interconnections between neurons in the
same layer are permitted. However, each neuron on a layer provides an input
to each every neuron on the next layer. The backpropagation network uses
supervised learning so the input and output patterns must be both known .

In feedforward phase, the input layer neurons pass the input pattern values
onto the hidden layer. Each of the hidden layer neurons computes a weighted
sum of its input, and passes the sum through its activation function and
presents the activation value to the output layer. The weights between the
layers are initially small random values. Following the computation of a
weighted sum of each neuron in the output layer, the sum in passed through
its activation function, resulting in one of the output values for the network.

The training process is successfully completed, when the iterative process
has converged. The connection weights are captured from the trained
network, in order to use in the recall phase.

A sigmoidal or so calded logistic function is used as the activation or
transfer function f; for modeling the nonlinear transformation.

1
e resoa] W

where, A is a constant, controls the shape of the activation function, and x; is
the total input to a neuron.

As stated previously, in the learning phase the network is presented with an
input pattern and a corresponding output pattern. The network produces its
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own output pattern with the above described expressions by using its weights,
which are initially incorrect. This calculated output is compared with the
desired output value.

The training of a multi-layer backpropagation neural network, via the
generalized delta rule, is an iterative process. By using the so-called delta
rule, the convergence toward improved values for the weights may be stated

as,
Awik = B.8k.oj 2

where [ is called the learning rate parameter, and df is the error signal at an
output neuron k, and o; is the output of a neuron in layer j.

4 Size effect in concrete fracture

4.1 Early size effect tests

In general, the change of a structural property when the size of a structure
changes is known as a size effect related to this property. It is well known
that structures become more brittle as their size increases, but the classical
procedure uses the same working stresses in design.

Because fracture in a concrete structural element is driven by the stored
elastic energy released from the whole structure, this size effect can be well
explained by fracture mechanics. The fact that the strength of brittle materials
is affected by the presence of imperfections was first suggested by Griffith
(1921). Due to his conclusion, it can be expected that the value of the
ultimate strength will depend upon the size of specimens. As the specimen
size increases, the strength is expected to decrease since the probability of
presence of weak links increases. Traditionally, the size effect in fracture of
concrete structural elements has been explained by means of Weibull's theory
(Weibull, 1938, 1951). He showed that if tensile tests are performed on two
geometrically similar specimens with different volumes, the corresponding
ultimate strengths are different. It has also been concluded by Mihashi
(1983).

The effect of specimen size on the fracture performance of concrete has
been investigated by numerous researchers. Earlier studies have been
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conducted by Walsh(1972), Kani(1967), Leonhart and Walter(1961, 1962,
1963) and Riisch et. al.(1962), but most of these studies are not performed on
the relative dimension. The effect of specimen size on the fracture toughness
of concrete has also been reported by Mindess(1984) and Nallathambi et.
al.(1984). The main conclusion from the work reported by Mindess(1984)
was that the fracture energy increased considerably in the case of large test
specimens. Nallathambi et. al.(1984) determined the fracture toughness of
concrete using both the energy (Gy.) and the stress intensity factor methods

(K1) The result of the energy method (to give Gy.) indicated that the fracture
toughness increased substantially with increasing specimen size.

Besides, the statistically based size effect, the second size effect as referred
to fracture-type size-effect in concrete fracture has been described repeatedly
by Bazant et. al.(1984). This is referred to as Bazant's size effect law(1987)
which has been shown to agree well with test data. Size effect in concrete
behaviour has been extensively studied both experimentally and theoretically
with a notable success (Bazant, 1984, 1987 and Bazant et. al.,1986).
However, some published experiments indicate results contrary to Bazant's
size effect law. A large concrete member without initial crack can resist some
stress as contrary to the size effect law. Barr et. al.(1990) argued that the
approximate size-effect law is shown to be only reasonably applicable
according to their torsion test results. It has been concluded that the variation
between actual experimental results and those determined from the
application of the size effect law is significant. Some experimental studies
have shown that the size-effect law is reasonably applicable, in particular for
tests with more than three similar specimens. The variation between the
experimental results and those calculated from the size effect law is higher in
this type of experiments. '

4.2 Size-Effect Tests Used In Training Phase of The Network

In the training phase of the developed neural network, only results of size
effect tests which have been carried out at Northwestern University were
considered. This is because of the experiments were performed under similar
testing conditions in the same laboratory. These tests include three-point
bending, uniaxial tension, eccentric compression, and cylindrical torque. First
three experiments were reported by Bazant and Pfeiffer(1986, 1988).
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Fig 1. The specimen geometries used in training and testing of the network.

The same geometry, except the notches, was used in the three-point
bending, uniaxial tension, four-point shear and eccentric compression
specimen. (Fig.1a-d). All the specimens were of the same external shape. For
each specimen size and each type, three specimens were tested. All the
specimens were mixed in the same conditions and with the same mix
proportions. The notches were introduced by means of a diamond saw into
hardened specimens.

Recently Bazant and Prat(1988) applied the size effect law to mode-III
fracture tests of cylindrical specimens with circumferential notches, subjected
to torsion. Significantly different size of specimens were tested. The
diameters of the cylinders were d=38.1, 76.2 and 152.4 mm. The length-to-
diameter ratio was 1/d=2. The torques were applied at each end as force
couples in the way shown in Fig le. ’

Size effect tests on different specimens and loading conditions other than
summarized above, certainly do exist. However, due to the complexity of the
neural network solution, only the five summarized tests were considered
initially. Some of the other size effect tests were taken as the control of the
neural network analysis(Barr et al. 1990).A circumferentialy notched cylinder
concrete specimen subjected to a torque has been tested. The test specimens
were subjected to opposing couples via a pair of split collars.(Fig 1f.). The
specimen diameters were d= 80, 100, 150 and 200mm, the length-diameter-
ratio was constant at 2, and the notch-depth ratio was constant at 1/5.
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5 NETICE Development

A backpropagation training neural network program, NETICE (Neural
nETwork In Civil Engineering) has been developed. NETICE is written in
C++, and also Quick BASIC 4.5 version was written due to widespread use
of the language. NETICE presently being run on an IBM-compatible personal
computer. The program allows a user-friendly input of datas. It gives an easy
entrance of the number of input neurons, the number of hidden neurons, the
number of output neurons. Also it is possible to change the other specific
network parameters. The program structure is well designed to use
applications in any field, but the primary goal to develop NETICE is to solve
many problems in civil engineering.

NETICE has been tested on some civil engineering problems. These
includes an eccentrically loaded r.c. column design and r.c. slab design
problems (Arslan and Ince, 1994, 1995).The results were very promising.
These and the other applications show that NETICE may be capable of
learning to solve engineering problems in which analytical solutions exist.
These tests were shown that one single program (NETICE) is capable of
solving many problems in civil engineering, by simply changing the number of
neurons and weights. This is one of the main advantage of NETICE to the
conventional programs.

6 Neural network based approach to size effect in concrete fracture

6.1 Input and output to the neural network

The purpose of this investigation was to illustrate the neural network-based
methodology and to show that this approach could be further developed to
estimate the ultimate carrying capacity of any size of concrete specimens
from the result of known size. However, generalizing the presented study to
any shape and loading arrangement needs further research.

The experiment type was represented by the first 5 input terminals in the
input layer. Each type of size-effect test was represented as a set of binary
codes. The next input terminal was used to input of aggregate size, overall
size and notch depth, overall size ratios of tests, respectively. The output of
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the neural network is only the normalized ultimate strength at failure (oN/f't)
of each type of experiments.

6.2 Architecture of the neural network

A backpropagation neural network architecture was used in this investigation.
The mput and output layers were described in the previous section. In
addition to the input and output layers one hidden layer was used. The initial
investigations showed that when more hidden layers or nodes are used, the
network would not converge. If the network is smaller, it would not converge
either. The network well converged with one hidden layer of 10 nodes. The
general view of the neural network architecture shown in Fig 2.

6.3 Training of the neural network

A total of 21 training data sets were presented to the neural network. The
number of training data sets were varied with the test method due to the
availability in the literature. The training phase took about 850000 iterations,
using the given data. At the end of the training stage, the mean error was
4.76 % and the maximum error within the test methods was 8.75 %. It has
been observed that the network was capable of learning the relationship
between the structural element size and ultimate strength. It is certainly
possible to train the network further to give less error. However, the network
can overfit the data. In this case it learns irrelevant details of the individual
data, rather than learning the generalized structure of the data.

INPUT HIDDEN OUTPUT
Layer Layer Layer

Test type »»O\

Aggregate size ~>O-—

Specimen size ——»O———
Notch depth —»O/

Fig 2. General architecture of the neural network.

o Normalized
' O ™ strength (ON/I})
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6.4. Testing of the Neural Network

After the neural network was trained on the 21 training cases in 5 different
test methods, it was tested to see how well it would recognize other test
conditions, such as these corresponding to failure state of specimens. The
results of these are shown in Table 1. As can be seen the network was able to
adequately recognize the complete failure of specimens. The ultimate strength
values are nearly zero, which means that complete failure (a/d=1) occurred.
Only the result of three-point bending test seems a little higher. While this
error may be due to a variety of different causes, it was felt that this was most
likely due to the network not being provided with enough information, or
being more unstable of this type of tests with respect to the others.
Nevertheless, the network was able to detect the global failure. An important
observation is that although the failure case was not used for training, the
results were very close to the exact solution. This shows the typical
advantage of using neural network in uncompleted tasks.

The network were also tested with some other size effect test results
reported in the literature. Barr's (1990) torsion tests for size-effect were used
as the control data couples in the recall phase of the trained neural network.
These were give in Table 2. The results of the comparison of the actual value
and network values were also impressive, since this testing procedure is
based on the network trained with different mode-IIl specimen and testing
conditions. The maximum error occurred at 19.17%. Particularly, when the
coefficient of variation of the tests is considered (8.2%), this error is not so
high.

Table 1. Neural network results at a/d=1 and a/d=0

oN/ ft‘
a/d | d /dy | Three-point | Uniaxial | Eccentric | Four-Point | Cylindrical
Bending Tension | Compression Shear Torque
1 12 0.1303 9.43E-5 9.37E-6 0.019 8.29E-5
1 3 0.2115 1.27E-5 2.23E-5 0.016 8.02E-5
0| 12 0.3162 0.9627 0.9600 0.7791 0.1320
0 3 0.5033 0.9683 0.9947 0.8615 0.4988
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Table 2. Barr's torsion test results.

d/d, Experimental Output | Network Output | Percent Error [%]
8 0.408 0.356 12.74

10 0.346 0.338 2.31

15 0.386 0.312 19.17

20 0.291 0.300 1.35

The overall nominal strength- specimen size variation for each of the
proposed specimens are given in Fig 3. It can be clearly seen from the neural
network based size effect that all curves behave asymptotically in the case of
larger sizes. In fact, this is an agreement to the results of the multi-fractal
scaling law proposed by Carpinteri and Ferro(1994). The maximum effect of
the size were observed in cylindrical torque (a/d=1/4) and three-point bending
specimens. However, eccentric compression specimen represents a higher
decrement within a narrow size variation. The strength of concrete is equal to

that of the aggregate itself at d/dy < 1. However, the size-effect curves for

torsion and three-point bending specimens represents the strength at d/d; =1
smaller than 1. This might because the assumed strength calculation

procedure is no more valid around d/dy =1. The global shape of the size-
effect curves of the two torsion specimens are quite similar. The only
difference seems to be different asymptote value at larger sizes. This may
because of ignoring the notch depth effect on the formula for calculation of
maximum stress. It also has been observed from 3D finite element analysis
for prismatic torsion specimens that the change of notch depth substantially
affects the maximum stress in the proposed failure plane. (Arslan, 1991).

7 Conclusions

The network predicted output with an accuracy that is acceptable in most
design considerations. It should be noted that once the network was trained,
the time required to output results for a given set of input was nearly
instantaneous on a personal computer. This indicates that a neural network
may have considerable potential for solving time-consuming problems.
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Fig 3. The neural network based size-effect curves.

The purpose of this article was to summarize the characteristics and to
demonstrate the use of neural networks and their application to structural
engineering problems. Because neural networks directly use the experimental
results in training, there is no need to do any assumptions on material
parameters. This is the main advantage of using neural networks, particularly
for problems for which more than one calculation methods exists, or that are
based on empirical approximations only. However, it should be noted that
neural network theory is a phenomenological procedure. It does not follow a
procedure based on the existing basic theories related to the problem, i.e.
some physical properties and relations. It searches the target only based on
the given experience, which is a unique property for humans. Consequently,
the results given in this paper must be considered in a qualitative way only.

Although the unpredictable generalization remains to be solved, existing
neural network algorithms have shown promising results on small problems.
Neural networks are well suited to tasks which require faster computation.
Their ability to generate complex mappings based on simple data may mean
that their first applications are in complex and poorly defined problems.
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