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Abstract

This paper proposes an overview of different aspects of the similarity
problems and their applications to concrete structures under dynamic
loading.

Useful for experimental studies on reinforced concrete structures, the
applications presented concern a shaking table test on a one-third scale
structure. Based on non linear simulation, an analysis of the behaviour of
the prototype (scale 1) is deduced.

1 Introduction

The use of testing facilities to both characterise and analyse the
response of concrete structures under dynamic loading such as
earthquake, is in practice performed on reduced scale structures.

In that case, several problems have to be solved in order to obtain
similar behaviours when the specimen tested is compared to the full scale
structure under study.
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The basic assumptions commonly adopted (Wang et al. 1993) for
similarity laws are :

1 - same stress field,

2 - same acceleration.

They require adjustments on both the mass distribution and the time scale
of the input signal.

But if, for the linear behaviour those assumptions are sufficient, it is
not the case when non linearity occurs.
In concrete structures, non linearities are generally linked to the
microcraking of concrete and the yielding of R-bars.

When damage occurs, there is strain localisation ; then to insure the
same relative size of the localisation zones, it is necessary to adapt the
concrete mixture of the model.

Such a problem is the concern of the French research program CASSBA
(Bisch & Coin 1994) involving a shaking table test on a 1/3 scale
structural wall building.

This paper proposed through the CASSBA case, an overview of
different aspects of the similarity problems and, using both, experimental
results and numerical simulations, an analysis of the relevance of the
choices carried out.

2 Similarity framework

To realise a model at reduced scale with a good faithfulness, it is
imperative to examine all similarity conditions which come from
equations governing all the phenomena :

1. Dynamic equations
2. Constitutive equations for the material behaviour
3. Boundary conditions.

The first group, of equations constitutes the mechanical similarity, the
second group the rheological similarity and the third one, the site
similarity.

2.1 Mechanical similarity
Considering a given structure submitted to an acceleration I'(t) ; assuming
at the first stage the linear elastic behaviour, the equation of motion is :

MX + CX + KX = -T'(t) Mu .

X =X (t) : displacement vector, is the solution of the equation (1),

M : mass matrix,
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K : stiffness matrix,

C : damping matrix, its formulation is a problem, generally solved
considering C as a linear combination of M and K.

u : unit vector in the direction of the loading at the locations where
acceleration is imposed.

2.1.1 Similarity relations

In the following, the subscript p is used for the prototype and the
subscript m for the model, the scale of which is 1/o; o>1 is the reduction
factor of all the dimensions of the prototype.

- Mass matrix
The assumption : "same stress field", implies that gravity loads, which act
on surfaces, satisfy :

Mszp /(12 (2)

However if the dimensions verify the scale 1/0, the volume does it by the
ratio 1/a3. Then, to obtain My = Mp/a2 requires, either to change the
specific mass, or to add masses.

- Stiffness matrix

The assumption "same stress field" and the one "same material behaviour"
induce : "same strain field". Assuming a discretized representation of the
structure, the classical relation between strain and displacement X at
Gauss points is given by the matrix relation € = BX With the expression

for stress, 6 = D g, the local stiffness matrix is : K (X) = f B'DBdV

v

Xm = Xp/0t induces By = Bpor and dVi = dVp/o3, which implies
Km (Xm) = Kp (Xp) /o (3)

- Natural modes.
They come from the solution of the equation

"K -M Q2“= 0 which gives n natural frequencies 1/Q;. From (2) and (3)
it comes :

- Damping matrix.
As said before usually the damping matrix is formed using a linear

combination of the mass matrix and the stiffness matrix :
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C=0a M+ B K; values of o and B are determined in order to find on the
first 2 natural modes (frequencies 1/Q; and 1/2;) the reserved value for
damping, &.

These considerations lead towards :

C =—L[Ql QM+K Then (2), (3) and (4) implies :
1+ €20
1
Chp=—"7—=20C 5
m= o P (5)
- Time scale :

From equation (1) we can write respectively for the prototype and the
model] :

Mp Xp (tp) + Cm Xp (tp) +Kp (Xp) Xp (tp) = - Tp (tp) Mp up (6)
Mmpn Xq (tm) + Cin X (tm) + K {Xm) Xm (tm) =-T'm (tm) Mp i (7)

One can notice that to satisfy the scale implies um = up/o, then
considering the similarity relations obtained before, the only way to make

(7) consistent with (6) is to impose : tm = ty/N et (8)
- Conclusion : The mechanical similarity is respected if :

1 - masses are added in order to obtain My, =M,/ a? as the weight of the
structure verifies the ratio 1/03 (assuming that densities of materials

M . M
are the same) then Mm=E3B +m ,Wlthm=a—§ (o - 1)

2 - the time scale is changed in order to obtain for the model ty= tp/\/a

The second point is easy to be satisfied, it consists in a "compression" of
the accelerogram used as the load.

The respect of the first one is not so easy. For that the best would be to
distribute the mass m on the whole structure which is equivalent to change
the material density. The other way is to add these masses at the different
floors but this unperfected distribution induces errors.

This point can be a problem in satisfying the similarity.

2.1.2 Toward a generalisation using forces similarities.

Considering equations (6) and (7) and the time "compression" (8), one
can observe that different forces, inertia forces MX, damping forces CX
and internal forces KX, verify the similarity ;

Fm = Fp /o2 1304 ®)




This must be considered as a rule for the general non linear case which
implies at each step of the movement to ensure (9) and, as seen here after,
what is called for the material behaviour, "Rheological similarity".

2.2 Rheological similarity

The main aspect usually considered is the mechanical behaviour of the
material which must be the same for the model and the prototype. This
means that at any time the irreversible processes, such as damage which
affect the stiffness matrix, or plasticity which creates permanent strains,
must have the same distribution. This implies to have between prototype
and model :

- the same stress field

- the same strain field, including permanent and localisation aspects.

Then, for concrete like-material, full rheological similarity means to
respect same behaviour, and to insure the similarity for strain
localisation.

2.2.1 Size effect and non locality of damage.

It is now well-known that for a same material there are 2 phenomena
which play a size effect role : one is linked to the volume and the other to
the size of damage localisation (Mihashi, Otamura & Bazant 1994). It has
been shown that both are mainly related to the heterogeneities size inside
the material.

Bazant - Pijaudier-Cabot (1989) and later Berthaud et al (1994) have
shown that the size of the localisation zones is more or less proportional
to the size of biggest grains of the concrete mixture. Assuming that the
volume effect is governed by the same kind of rule, 2 points must be
satisfied by the model's concrete mixture :

- same behaviour as that of the prototype and,
- aggregates similarity (the size of the grains must satisfy the scale factor
1/o).

2.3 Site consistency

Boundary conditions play a fundamental role in the functioning of a
structure under loading. Particularly, the seismic load is created by
acceleration imposed on a system through its support; so the base of the
structure is obviously very important, but what must be done to respect
similarity ?

When this link is perfect for the prototype (structure embedded into the
support) , the same conditions are required for the model.

When the link is imperfect, rotation and/or displacement, are then
possible at the base of the structure.
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The case of possible sliding (not very common) requires for similarity
the satisfaction of the same rule for friction (same friction coefficient if
Coulomb laws are assumed).

The case of rotation is more common on real sites (due to soil behaviour).
On shaking table that kind of movement is possible when the structure
is not fixed and when the loading is sufficient to create uplifts. This

situation can be modellized as a local moment-rotation behaviour :
M=k ®, (12)

The "dimension" of M is a mass-dimension product. Then, there is a
1/03 ratio between model and prototype. To respect similarity, @ must
remain the same, so for Kk = M /@ the 1/03 ratio is required.

3 Application to the CASSBA case

The LMT Cachan, within the GRECO Géomatériaux (a national research
network), was involved in the French research seismic program CASSBA
("Conception et Analyse Sismique des Structures en Béton Armé", Mazars
1994a, Bisch 1994). Based on a shaking table experiment performed at
CEA Saclay on an 8 storeys 1/3 scale model, the aim of the research was,
1) a better understanding of the behaviour of structural wall
constructions, 2) an improvement of the non linear modelling of
structures of such kind.

3.1 The CASSBA Experiment (scale 1/3 ) and its modelling
The experiment leads to large quantities of information (3 levels of
loading, 120 channels recorded) and the main observations during and
after the tests were :

- the major effect of the table-model contact (without any fixing) which
allowed uplifts during the movement,

- the appearance of cracks mainly located at lower parts of the walls.

The analysis of results required a lot of work, in particular to estimate
the local behaviours and their consequences on the response of the
structure. To treat in deep these aspects a combination of experimental
and numerical results has been necessary.

To simulate the non linear behaviour we have used a damage model (La
Borderie et al. 1993), which incorporates two scale damage variables, one
for damage due to tension D1, the other for damage due to compression
D2, and which includes a recovery stiffness procedure and the description

of anelastic strain :
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€ =&C + €P = elastic + permanent, strain 11
ot on Y
€ = —_— -
€ =Eo( -D1) TEo(1-D2) tEg@-Tro )
__B1D1  of B2 D2
e =Ep(1-D1)as T Eg (1l -Dp) -

E( is the initial Young's modulus, v is the Poisson ratio.

ot and ¢~ are respectively the "traction-tensor" and the "compression-
tensor”". D1 and D7 are respectively the damage variables of traction and

compression. B1 and B are constants and f(o) allows to manage the

closure of cracks (LLa Borderie al. 1993).

The discretization used is based on a multilayered description with 27
beams elements(or 54 in a 2nd stage) of 18 layers (reinforcements are
located on layers on each side of the model and the lowest element is
"semi-rigid" Fléjou 1993) , see figure 1. In the standard version each
layer behaves uniaxially, but in a more recent version the addition of
shear effects allowed to simulate the distortion of plane section (Crisfield
1984, Dubé 1994). For the CASSBA structure it was shown that these
effects are minor.

The dynamic calculation (code EFiCoS - La Borderie 1993) uses a
Newmark implicit algorithm (Bathe and Wilson 76) . The material
parameters used were determined from characteristics measured before
the test : fc = 34 MPa, ft = 3 MPa, E¢c = 32000 MPa for concrete and

Es=2. 105 MPa, fe = 496 MPa for steel. Based on the response of the
structure under free vibrations, a structural damping & = 5% is
considered.

3.2 Identification procedure for the connection modelling

The structure has been tested with 3 different levels of the same
accelerogram, which corresponds respectively to a maximum acceleration
of 0.1g - 0.36g - 0.5g. An important effect on the global behaviour of the
contact structure-support was observed. It is due, 1) to the fact that the
connection was without any fixing, which allowed uplifts, 2) to the
damage of the base of the structure due to previous loading related to
transportation (the model was built out of the shaking table).

A preliminary calculation performed using a 3D F.E. model (with
contact elements at the base to simulate the connection) in order to deduce
the Moment - Rotation behaviour of the connection, leads to unrealistic
simulations, particularly at the lowest level 0.1g (Mazars et al. 1994b).

This confirms that transportation had introduced a permanent
curvature of the footing, observed and measured during the test, which
changes a lot the table-model contact conditions.
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To model as well as possible the contact, the only solution was to
identify directly from the real response of the structure. An automatic
procedure of identification was used to obtain the best adapted parameters
to model the connection behaviour. This procedure, developed at LMT
Cachan (code SIDILO, Pilvin 1983), is based on a combination of 2
orthogonal "cost functions" able to represent the distance between an
experimental curve and its simulation for a given set of parameters. The
best set of parameters is that which insure the minimum values for the
cost functions.

For CASSBA different strategies of identification have been used,
depending on the constitutive relation used for the connection (linear,
multilinear,...), depending on the data base considered (displacement at
the top for 1,2 or 3 levels of loading ). See Mazars, Dubé et al (1994a,
1994b) to have more details on that.

Because it is sufficient for our presentation, we have chosen here to
work with the simplest moment-rotation model, a linear elastic one
(M=k®, with K=Cst, see Dubé 1994) identified on the response at the
level 0.1g. It gives good simulations for other 2 levels (see figure 1 for
0.5 g).

3.3 Simulation of scale 1 using similarity laws

Before and after this experiment the main question was : " is it possible to
extrapolate to real constructions observations and conclusions done on the
CASSBA model ?". The first answer was : "yes, for a construction put in
same conditions, because the similarity has been respected”. Which means
that there are :

- Mechanical consistency, by satisfying, the scale for all dimensions of
the structure (concrete and R-bars), the compression of the time scale
(1/‘5) and the mass ratio (1/32);

- Rheological consistency, by satisfying the same material behaviour
including localisation similarities (aggregates ratio : 1/3);

- Site consistency, the real site must verify the same rules for the
interface behaviour than those activated during the experiment.

The experiment on scale 1 is not what is concerned here. Obviously if it
was possible the use of scale 1/3 was not done. The only thing possible is a
numerical experiment using the similarities laws.

The first credible point is to be confident on the modelling used: the good
agreement shown before and reported in other papers (Mazars 1994),
between simulations and experiments, constitute a good starting point.

From this we have to approach, using these 3 kind of consistencies, as
well as possible the real situation (scale 1). What does it mean ?
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Figure 1, CASSBA program results on 1/3 scale building at 0.5g loading.
a) Top displacement comparison between experimental results (dash lines),
and, numerical results based on the presented model (solid line).
b) Comparison between Damage maps obtained by numerical means, and
the real fractures observed on the test specimen; on the left: "macro
damage" (D>0.99) after 3. sec, on the right: global damage (D>0.) at the
end of the experiment.
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To be consistent with mechanical similarity, apart from the
"decompression" of the time scale, it is necessary to respect the original
distribution of masses; as mentioned in § 2.2 this point creates a
difference with the model because the additional masses needed in the
model were located exclusively on the floors.

About rheological similarity, we used the same constitutive relations
and parameters, and to insure similarity for localisation, exactly (apart
for the scale) the same discretization.

We have seen before that the site similarity will be respected if the
same rules were used at different scales, which means in the framework
of our modelling that kK (=M/®) must respect the ratio 1/33.

3.4 Analysis of the results obtained
The design of the construction from which the model has been deduced
was done for an earthquake at 0.36g, thus this loading is chosen to
compare the behaviour of the model and that of the prototype.

Since it is easy to change the model, the comparison concerns different
situations, linear or non-linear behaviour, fixed or non-fixed connection
with the support. Comments on this are given next.

- Quasi- identity in a linear regime

Concerning the results obtained from the prototype and the model, in
some different situations among which embedded conditions of
foundations and different values for structural damping, time-history top
displacement curves show for every case a quasi superposition. Proving
that similarity is totally verified in a linear regime.

- Good concordances for the experimental conditions

These conditions are, non-linear behaviour, of course, and structure non-
fixed on the support (simulated as said before, with a linear moment-
rotation law).

Figures 2 gives the results for the displacement at the top and the
damage field at the end of the earthquake. Very few differences appear
after 6 seconds which lead to small permanent deformations at the end but
with no significant differences for the damage of the two structures.

- Significant differences for fixed support conditions

This case was not considered for the experiment. But simulation allowed
to forecast what could happen if the structure was anchored with the
support.

In that case one can see on figure 3 that damage on the prototype is
further more distributed than in the model. The difference in the
evolution of damage induce differences in the displacement at the top
visible after 4 seconds. They concern, the maxi values on different peaks,
the frequency, and finally leads for the model to a significant permanent

displacement.
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Figure 2, Top displacement and final damage-map comparisons between the two numerical
analysis made on the model and the prototype (scale 1) at the following conditions:
experimental base contact condition (moment/rotation behaviour), 0.36g load level.
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An explanation for these differences

Considering a cantilever beam, it is easy to show that the moment on the
support due to a concentrate loading at the end is greater than those
created by the same load distributed along the beam. The concentration on
the floor of additional masses, necessary for similarity, creates during the
loading greater moment at the base of the wall at each floor. This effect
which stays low, is sufficient to activate localisation in spite of distributed
damage in that condition of fixed support (which was not the case when
rotations were possible). However in both cases of support this effect can
be responsible for the creation of permanent deformations due to the
entrance into plastification of the R-bars.

This confirms what is now commonly admitted : softening materials
are very sensitive to loading and boundary conditions and
approximations, even light, can create different responses. The solution is
to use adequate simulations before concluding.

4 Conclusions

Experiments in the field of structural dynamics, such as seismic
engineering, generally require to work on reduced scale structures.

In that framework this paper proposed an overview of different aspects of
the similarity problems and their applications to concrete structures.

Three main points must be considered :

- Mechanical similarity, which insures the consistency of the equation of
motion which leads to act on the mass distribution and the time scale.

- Rheological similarity, which consists to insure the creation of the same
stress and strain fields implying the same similar behaviour for strain
localisation.

- Site consistency, which concerns the crucial problem of boundary
conditions; interface rules (friction, rotation, ...) between structure and
support must be the same in order to verify similarity.

The analysis of the choices and the results obtained on the French

experiment CASSBA (R.C. structural wall at scale 1/3, tested on a shaking

table) show that the similarity on the experimental conditions was
accurately respected. However simulations performed using a damge
model show, that other site conditions (structure fixed on the support),
could lead to create different damage and fracture paths on the model

(scale 1/3) and on the prototype (scale 1). This seems to be mainly due to

the location of masses added on the model in order to respect the

mechanical similarity.
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Figure 3, Top displacement and final damage-map comparisons between the two numerical
analysis made on the model and the prototype (scale 1) at the following conditions:
embedded base condition, 0.36g load level.
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