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Abstract 

ELASTIC FRACTURE 
AND PRESTRESSED 

Starting from previous studies, the report deals with the application 
Linear Elastic Fracture Mechanics to reinforced and prestressed concrete 
structures. A particular correlation is established between the critical 
bending moments of a beam in plain, reinforced and prestressed concrete. 
For these last structures, are considered both the cases of unhanded and 
bonded reinforcement. 

1 Introduction 

The author had published a paper on the application of Fracture Mechanics 
to reinforced concrete structures submitted to bending moments, the 
hypothesis of High Strenght Concrete (HSC) -C70/80, whose high 
brittleness makes it suitable to be treated, at least in first approximation, 
within LEFM. 

Starting from the papers quoted in bibliography (Okamura, Watanabe, 
Carpinteri and others), we consider a rectangular cross section (b x d see 
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fig. 1) of a as composed by a concrete uncracked section 
(delimited by a crack of depth a and submitted to a compression 
force) and by a steel section (reinforcement submitted to a tensile force). 

1 __ ___ 

Fig. 1. Stress 
beam 

on a cracked cross section of a reinforced concrete 

The total external moment, M, was considered from the superposition of 
a couple fanned by the tensile force F in the reinforcement and by a 
compression force, always F, in the concrete cross section located at the 
half depth of the beam and equal to tensile force in reinforcement, plus a 
bending moment M 1 (fig.2) according to: 

= F ( d/2 - h ) + MI· (1) 

At the crack 
of the effects 

K1 (the stress intensity factor) is given by superposition 

(2) 

where Y111 YP are known functions of ratio a/d (depth of the crack/ 
total depth of the beam). 

Another information is requested in order to know the distribution of the 
total moment in the two shares according to (1 ). 

The adopted hypothesis resulted from the planarity of cross sections and 
the linear elastic distribution of stresses in steel reinforcement and in the 
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concrete (delimited 
K1c is reached). 

conclusion, reference to the fig. 1, a r11
1 ...,r'\"" ... '"'r'..-. 

\.Ill llLllVC.u moment was established: 

d/2 

d 

d/2-h 

2. moments 
concrete 

(d- a) 2 + 2nµd(d - h) 
X=--------

1=-+-----+ -h-
3 

section) 

parameters a/ d 
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It was possible to establish the minimun reinforcement ratio (horizontal 
branch of the diagram), showing a steady cracking for nµ = 0.01 , i.e. µ = 

0 .15% for n = 6. This result, in agreement with EC2, has been obtained 
without any hypothesis on the values of the involved parameters. 
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3. Diagrams of critical moments versus crack depth for reinforced 
concrete beams 

2 Prestressed unbonded structures 

The formulations of Fracture Mechanics prove to be very simple, not 
requiring supplementary hypotheses about the stresses in the reinforcement, 

the case of prestressed unbonded structures, where the prestressing force 
can be considered constant, not depending on external loads. So the 
arbitrary hypothesis of planarity of cross section and elasticity for the 
stresses in the reinforcement, as assumed in the previous study for the 
reinforced concrete, is no longer necessary. 

Always with reference to a rectangular cross section according to fig. I, 
we suppose F be the prestressing load applied by unbonded tendons, 
located at distance h from the lower edge, and M the external moment; the 
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effect of M and F is equivalent to a force F located at the half depth of the 

beam and to a moment M 1 according to (1 ), so that K 1 is still 

where now F is known and constant. 

Inversely the total (dimensionless) moment M can be written: 

M Mer 1 {1 pp } = 3/2 = - + 112 
K1cbd ~11 K1cbd 

(4) 

The total moment M can be drawn versus a/ d, assuming as a parameter 

the quantity Fl( K1c bd 112
). 
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Fig. 4. Critical moments for unbonded prestressed concrete beams 
(2 types of concrete: K1 = 70-90 N mm-312) 

The diagrams of fig. 4 are drawn, with reference of actual cases, these 
assumptions (using units N, mm): 
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• prestressing F = 225000 

value are ,...(""'\,"Y\r\1"'"""'"'"'" 

• edge 
lower edge 1 

d = 300, b = 100, h = 60, (fig.2) 
K1c respectively 70 and 95. 

Supposing a moment Mu (induced by a live load) of 33000 KN.mm, we 
stresses as follows: 

curves indicates values of Mer little by 
practically constant the range a/d = 0.1 - 0.5. In the two 0 vn.rn""'""rt 

are comprised between 42000 - 44000 

u ;::::: 1.3 could assume the meaning of a cracking ratio; 

value is same as imposed by italian recommendations 
prestressed concrete. 

case 
by superposition 
concrete, always 
cross section of 

concrete (with bonded tendons) can be 
results of reinforced and prestressed (unbonded) 

hypothesis of linear elasticity for the 
concrete. At the of the crack, K1 , 

'""..., ... _ .. '""'"''"' ....... ,,;.,,is expressed by: 

= -F(d /2-
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K -- Pl' 
I - bdl/2 

These values add up to the value of Ki due to the loads, according to 
(2) and (3) already written in the case of reinforced concrete for an ...,.f'lo.._..., .......... u 

moment M. In fact we suppose that the prestressing reinforcement, 
injected and bonded, could collaborate to bear the bending moment .... ..., ......... io-. 

after prestressing and injecting of the tendons. By superposition of two 
effects, we can write: 

K =-1-{M[Y _ nµ(l-h/d-x/d)lf']-Fdlf'} 
IC bd3/2 m J / (bd3) 

whence we obtain the value of the critical moment: 

Mer {1 Flf' } 1 
K

1
cbd312 = + K

1
bd 112 y _ nµ(l- h Id- x I d)lf' 

111 JI (bd 3
) 

This expression can be written also in the fonn: 

where Munb is the corresponding moment of the unbonded prestressed 

cross section, Mca is the relevant moment of a reinforced concrete cross 

section, Y111 is the known dimensionless function which has the,.,.,..,,,....,"'""' 

the inverse of the critical moment of a plain concrete cross section 

according to the (3) with nµ = 0. 
A calculation has been carried out always on the same rectangular cross 

section, with the same reinforcement (nµ = 0.05), comparing bonded and 
unbonded prestressed beams (see fig.5). 
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Critical moments: comparison between bonded and unbonded 
prestressed beams 

difference is remarkable for advanced cracking which gives rise, 
bonded beams, to considerable increases of the stresses reinforcement 

increases of the corresponding moments); at contrary in unbonded 
beams the stresses (and therefore the moments) remain pratically constant. 

the actual production of prestressed beams, during prestressing the 
tendons, a share of the load (for instance, dead load) is already acting, 
also in order reduce tensile stresses by prestressing. 

This share gives rise to a moment .6.M 1 according to: 

.6.M = F(d I 2 - h) + .6.M 1 

whence 

K - .6.M1Ym - FYP - .L1MYm PI' 
1- bd 3/2 bd 1/2 - bd 3/2 - --v2 (5) 

The residual moment M - .6.M be supported subsequently by 

bonded structure and will give a contribution to the value of K 1 , according 

to previous results, as follows: 
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---{Y _ nµ(l-h/d-x/d)\J'} 
bd312 m JI (bd3) 

(6) 

Adding in value sign the (5) and (6), we obtain 

K = ~MYm + - ~M{y _ nµ(l-h/ d-x/ 
I bd312 bd312 m J / (bd3) }- bd112 

whence: 

M 1 {i M1 nµ(l-h/d-x/d)'P F'P} 
_ nµ(l- h Id- x I d)'P - K

1
bd312 . JI (bd3) + K

1
bd 112 

JI (bd3) 

The final result can be written more expressively 
between the critical (dimensionless) moments of 
considered cases, in the following form: 

M= Mca Munb +~M(l-M /M) 
M ca o 

0 

terms of a relation 
above 

is ~M = ~M I (K1c bd 312
) and the expression m brackets, 

multiplying ~M, is negative and, if tends to M, M tends to the value 

Munb· 
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